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Abstract

Toxic speech, also known as hate speech, is regarded as one of
the crucial issues plaguing online social media today. Most re-
cent work on toxic speech detection is constrained to the modal-
ity of text and written conversations with very limited work on
toxicity detection from spoken utterances or using the modality
of speech. In this paper, we introduce a new dataset DeToxy,
the first publicly available toxicity annotated dataset for the En-
glish language. DeToxy is sourced from various openly avail-
able speech databases and consists of over 2 million utterances.
We believe that our dataset would act as a benchmark for the rel-
atively new and un-explored Spoken Language Processing task
of detecting toxicity from spoken utterances and boost further
research in this space. Finally, we also provide strong unimodal
baselines for our dataset and compare traditional two-step and
E2E approaches. Our experiments show that in the case of
spoken utterances, text-based approaches are largely dependent
on gold human-annotated transcripts for their performance and
also suffer from the problem of keyword bias. However, the
presence of speech files in DeToxy helps facilitates the devel-
opment of E2E speech models which alleviate both the above-
stated problems by better capturing speech clues.

Index Terms: Speech Toxicity Analysis, End-to-End, 2-step,
multimodal

1. Introduction

Social network platforms are generally meant to share positive,
constructive, and insightful content. However, in recent times,
people often get exposed to objectionable content like threats,
identity attacks, hate speech, insults, obscene texts, offensive
remarks, or bullying. With the rise of different forms of con-
tent available online beyond just written text, i.e., audio and
video, it is crucial that we device efficient content moderation
systems for these forms of shared media. However, most prior
work in literature and available datasets focus primarily on the
modality of conversational text, with other modalities of con-
versation ignored at large. Thus, to alleviate this problem, in
this paper, we propose a new dataset DeToxy, for the relatively
new and unexplored Spoken Language Processing (SLP) task
of toxicity classification in spoken utterances, which remains a
crucial problem to solve for interactive intelligent systems, with
broad applications in the field of content moderation in online
audio/video content, gaming, customer service, etc. DeToxy is
a large-scale multimodal dataset with both speech and text cues,
manually annotated for toxicity detection in spoken utterances,
with potential applications in building unimodal or multimodal
models for conversational utterance-level Speech Toxicity Clas-

sification (STC) and End-to-End (E2E) speech systems which
better capture semantics of the utterance.

The key challenge in toxicity classification in spoken
speech is to learn good representations that capture toxicity sig-
nals from raw speech signals which is inherent in a rich set
of acoustic and linguistic content, including semantic mean-
ing, speaker characteristics, emotion, tone, and possibly even
sentiment information while remaining invariant under differ-
ent speakers, acoustic conditions, and other natural speech vari-
ations. However, different from Speech Emotion Recognition
(SER) and similar to Speech Sentiment Recognition (SSER),
toxicity classification from spoken utterances involve the sys-
tem capturing semantic and syntactic properties of the utterance
beyond just acoustic and prosodic cues which makes this task all
the more difficult.

Traditional approaches for various speech downstream
tasks involving spoken utterance classification employ low-
level acoustic features, such as band-energies, filter banks, and
MEFCC features [1], or raw waveform [2] . We acknowledge the
fact that models trained on these low-level features can easily
overfit to noise or signals irrelevant to the task. One way to
remove variations in speech is to transcribe the audio into text
and use text features to predict toxicity as done with SSER by
[3]. Nonetheless, toxicity signals in the speech, like tone and
emotion, can be lost in the transcription. Thus, it is essential for
any system to learn speech representations that make high-level
information from speech signals available to solve downstream
SLP tasks. Inspired by this, we provide both 2-step cascade
and E2E baselines for STC on DeToxy and analyze the advan-
tages and disadvantages in both, concluding why the modality
of speech is crucial for the task of STC and makes DeToxy an
important contribution to the speech community. Additionally,
we show how prosodies and linguistic cues in natural speech aid
our E2E model, which outperforms the 2-step methodology us-
ing less than 10% of the total amount of labeled data available
to our 2-step system.

2. Related Work

Hate speech or toxic speech detection is a challenging task ex-
tensively studied in the literature, with techniques including
dictionary-based search, distributional semantics, and recent lit-
erature exploring the power of neural network architectures for
the same. However, most of the work done on hate speech de-
tection is constrained to just text, in English and some other
foreign languages [4. 15, 6] with the only existing work done by
7] for audio.

On the other hand, the most commonly explored SLP tasks
include Automatic Speech Recognition (ASR), SER , speaker



verification, speaker identification, speech separation, speech
enhancement, Named Entity Recognition (NER), phoneme
recognition, etc, and the most recently explored speech sen-
timent classification which is very related to our task. All of
these tasks are well studied with a lot of open-source datasets
available online. With recent advancements in Natural Lan-
guage Processing (NLP) and SLP, a lot of the systems achieving
state-of-the-art in these tasks leverage E2E multi-layer neural
networks like CNNs or Transformers, including self-supervised
and semi-supervised techniques which have shown to help mod-
els in the low-resource data paradigm and proven to learn pow-
erful speech representations 8,9} [10].

With downstream SLP tasks like speech sentiment classifi-
cation and NER requiring an understanding of the contents and
semantics of the spoken utterance, people have employed both
2-step [L1] and E2E methodologies [12, [13]. Some of these
self-supervised methodologies, originally invented for pushing
the performance of state-of-the-art in ASR systems, have also
shown success in other downstream tasks [[10]].

3. DeToxy and DeToxy-B

In this paper, we present DeToxy, the first annotated dataset for
toxic speech detection in the English language. Our dataset is a
subset of various open-source datasets, detailed statistics about
which can be found in Table 1. We also present DeToxy-B, a
balanced version of the dataset, curated from the original larger
version taking into consideration auxiliary factors like trigger
terms and utterance sentiment labels.

3.1. Dataset Collection and Annotation

For annotation, we define toxicity as rude, disrespectful, or
otherwise likely to make someone leave a discussion. For the
initial version of our dataset, we primarily focus on openly
available speech databases with or w/o text transcripts avail-
able. For obtaining transcripts of datasets for which transcripts
were not available, we use pre-trained wav2vec-2.0 to obtain
the transcriptions from a similar domain. In the process of con-
solidation of our dataset, primarily, after an empirical analy-
sis of the transcripts of a majority of the open-source datasets
available online, we found that most of them did not contain
toxic utterances. Thus, we follow a 2-step approach to anno-
tate our dataset. First, we train a textual toxicity classifier us-
ing BERT pase and use that to filter out datasets that had at least
10% of their total number of utterances flagged as toxic by the
model. Some datasets which did not fit this criterion were Lib-
riSpeech [14]], TIMIT [15], TED-LIUM [16] and MASS [17].
Next, all these utterances from all datasets filtered through step
1 were manually annotated by 3 professional annotators using
audino [18]] taking both the textual transcript and speech files
into account. Finally, we do a simple majority voting among
the 3 annotations to determine the final toxicity class of each
utterance. The Cohen’s Kappa Score for inter-annotator agree-
ment is 0.76. Table[I]and Table [2]show detailed descriptions of
DeToxy and DeToxy-B datasets respectively.

3.2. Sampling DeToxy-B and Test-Trigger Datasets

For DeToxy-B, we keep all the toxic utterances from DeToxy
and sample thrice the number of toxic utterances as our non-
toxic utterances. We acknowledge the fact that sentiment is
a strong controlling factor for various speech cues, and over-
sampling any one of the sentiments might lead our E2E model
to overfit the same. Thus, we don’t sample at random but use

sentiment labels to sample non-toxic utterances so that the fi-
nal DeToxy-B dataset has an equal distribution of sentiments
for its non-toxic utterances. These sentiment labels were anno-
tated by a single annotator only for the purpose of constructing
DeToxy-B and thus we don’t include these labels in our final re-
lease of the dataset. In this paper, we evaluate all our proposed
baselines on only DeToxy-B, with a Training, Development and
Test stratified split of 70:15:15.

Finally, we also collate an explicit test set with just non-
toxic utterances where each utterance consisted of at least one
trigger term [T_] We do this to evaluate how our baselines per-
form against not getting biased to trigger terms, a long-standing
problem in toxicity classification [[19] 20].

4. Baselines
4.1. Problem Formulation

The task of toxicity detection from spoken utterances involves
assigning a probability score, denoting the toxicity, to each ut-
terance fed to the model. Formally put, if X = {z1, - -, zs,
-+, xn } are the set of input utterances from the dataset D with
N utterances, then Y = {y1, -+, yi, - -+, yn } are their corre-
sponding labels where y; € {0, 1}.

In the next 2 sections we describe in detail our proposed
2-step and End-to-End baselines for DeToxy, the different com-
ponents involved, and the training procedure involved in each.

4.2, 2-step Baselines

Our 2-step approach consists of 2 primary components, an ASR
component that produces transcriptions from spoken utterances,
and a Sequence Classification Model for classifying the toxicity
of the output transcript. For our ASR model, we resort to using
wav2vec-2.0 [8]. Wav2vec-2.0 is built on the transformer ar-
chitecture and has a Convolutional Neural Network (CNN) fea-
ture encoder layer, which encodes raw audio into speech frames.
Wav2vec-2.0 follows the pre-training and fine-tuning paradigm
wherein we first pre-train the model using a large unlabeled au-
dio corpus in a self-supervised fashion solving a contrastive task
as follows:

exp (sim (c¢, q¢) /K)
> ogmq, €XP (sim (ct, @) /k)

where L, is the InfoNCE loss that wav2vec-2.0 tries to
minimize, c; is the context representation of a masked frame
obtained from the last transformer layer, q; is the quantized
representation of obtained through a product quantization based
quantization module and q. Precisely, for every masked input
frame which is input from the feature encoder module to the
transformer-based context encoder, wav2vec-2.0 tries to iden-
tify the true quantized representation among a set of distrac-
tors. For more implementation-specific details about wav2vec-
2.0, we refer our readers to [8]]. For our 2-step approach, we
use the wav2vec-2.0LargE architecture to push performance on
ASR.

Post SSL pre-training, the model is then fine-tuned by min-
imizing the CTC objective function on labeled speech data. We
do not use a Language Model in our final setup to decode our
utterances during inference, as we did not find significant dif-
ferences in Word Error Rate (WER) with it in our experiments,
and also to keep the setup simple.

Lm = —log (D

Uhttps://hatebase.org/



Table 1: DeToxy Statistics

Dataset # Utterances  # Toxic  # Non-Toxic # Sp Toxic Emo  Sent TL (hh:mm:ss)
CMU-MOSEI [21] 44,977 217 44,760 1,000 v v 4 65:53:36
CMU-MOSI [22] 2,199 67 2,132 98 v X v 02:36:17
Common Voice [23] 1,584,219 2,888 1,581,331 66,173 v X X /22181 : 00 : 00
IEMOCAP [24] 10,087 274 9,813 10 v v X 11:28:12
LJ Speech [25] 13,100 40 13,060 1 v X X 23:55:17
MELD [26] 13,708 142 13,566 304 v v 4 12:02:44
MSP-Improv [27] 8,348 129 8,219 13 v 4 X 8:25:41
MSP-Podcast [28]] 73,042 692 72,350 ~ 1,273 v v X 113:41:00
Social-1Q [29] 12,024 122 11,902 - 4 X X 20:39:00
SwitchBoard [30] 259,890 456 259,434 400 4 X X ~ 260 : 00 : 00
VCTK [31] 44,583 50 44,533 110 v X X 70:22:28
Table 2: DeToxy-B Statistics
Dataset # Utterances  # Toxic  # Non-Toxic # Sp # Positive  # Neutral  # Negative TL (hh:mm:ss)
CMU-MOSEI 860 217 643 - 233 151 476 1:44:25
CMU-MOSI 260 67 193 - 77 49 134 0:18:03
Common Voice 11,551 2,888 8,663 6,350 3,241 2,199 6,111 12:38:17
IEMOCAP 1,090 274 816 - 313 195 582 1:19:26
LJ Speech 148 40 108 1 30 27 91 0:14:57
MELD 565 142 423 ~ 67 145 136 284 0:31:05
MSP-Improv 523 129 394 12 115 91 317 0:36:32
MSP-Podcast 2,772 692 2,080 ~ 415 842 516 1,414 4:01:57
Social-1Q 479 122 357 - 147 93 239 0:36:40
Switchboard 1,824 456 1,368 - 500 345 979 2:28:57
VCTK 199 50 149 81 58 33 108 0:08:51
Total 20,271 5,077 15,194 - 5,701 3,835 10,735 24:39:10

Both self-supervised and supervised training paradigms for
ASR tend to get biased to the domain from where the data origi-
nates [32] and therefore we make careful data considerations for
pre-training and fine-tuning our model. Most works in literature
report results on a single benchmark dataset and so we resort
to multiple dataset pre-training but single dataset fine-tuning,
We choose to pre-train our model using a combination of Libri-
Light, Common Voice (CV) [23], SwitchBoard (SWBD) [30],
and Fisher [33]. These 4 datasets cover a diverse set of domains
and suit well to our downstream ASR fine-tuning needs without
creating a huge domain-shift [32]. For downstream ASR fine-
tuning, we resort to 3 different dataset setups as follows: 1) To
fit our model to the conversational domain, we fine-tune it on
300 hours of SWBD . 2) For read speech we resort to 960hrs of
LibriSpeech fine-tuning and finally 3) We also fine-tune on CV
which comprises of a majority of DeToxy.

For our text-based sequence-classification model, which
is the second step of our 2-step approach, we employ the
BERTpasg architecture from the transformer family. Since its
inception, transformers have achieved SOTA on sequence clas-
sification tasks including toxicity or hate-speech classification
[34,135]. Formally put, we tokenize each word in the sentence
and feed it as input through the transformer architecture. Next,
we utilize the hidden state embedding e corresponding to the
[CLS] token, where e € R7®® as the aggregate representation
of words in the transcript of the utterance. This embedding e is
now fed through a final classification layer which learns a pa-

rameterized function f(.) and outputs f(e) = h, € R™ where
n = 2. Finally, we pass the logits obtained through a softmax
activation function to get the probability distribution p of toxic-
ity for each sentence. For training our model we minimize the
Cross Entropy (C.E.) loss as follows:

LM
CE. = _szy’ﬁ‘ log (pij) 2)
i=1 j=1

where y;, is corresponds to the j*" gold annotated class
from the *" training instance in our dataset and pi; is the
probability score given by the model that the i*" instance be-
longs to the 5" class. During inference, we simply perform the
argmax(p;) to find the final class for each utterance.

We fine-tune BERTgase on a publicly available large-scale
hate-speech classification dataset [36] or on the relatively
smaller gold toxicity annotations from the DeToxy-B dataset.

4.3. End-to-End Baselines

For our End-to-End (E2E) Baselines, we choose to experiment
with different feature extractors, where we build baselines em-
ploying either low-level feature extractors (eg. Filter-Banks)
or high-level features from contextual feature encoder models
learned through SSL on unlabelled speech data. In the next 2
sub-sections, we briefly describe both our approaches.
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Figure 1: Proposed Baselines: 2-step approach (left) and E2E
approach (right)

4.3.1. F-Bank

For our Filter-Bank (F-Bank) based E2E approach, given
an audio input sequence x, we extract log-compressed mel-
scaled F-Banks with a window size of 25 ms and a hop
size of 10 ms to obtain 7 frames. Post this, we employ
Global AveragePooling(.) over all the T frames [y, - - - ,hr],
where h; corresponds to the frame at time-step ¢, to obtain a
single embedding e € R for each utterance. This embedding
is then fed into a toxicity classification decoder, consisting of
a single fully connected layer post which we employ the soft-
max activation function to the output of this layer to obtain the
probability of toxicity for each utterance.

4.3.2. wav2vec-2.0

For a fair comparison with our 2-step approach, we employ the
same wav2vec-2.0 architecture employed in the 2-step proce-
dure for our E2E system and experiment with only the BASE
architecture. We follow the same pre-training methodology as
our 2-step baseline ASR system, but this time we fine-tune the
parameters of our model on DeToxy-B, solving a downstream
toxicity classification task, and train in an E2E fashion. During
downstream training, we either freeze or keep all the parame-
ters of wav2vec-2.0 trainable. In both cases, the CNN feature
extractor remains frozen by default.

To fine-tune our model on the downstream task, we em-
ploy the same pooling strategy and prediction-head as our
F-Bank approach, except now we take the embeddings from
the last layer of our ASR encoder and obtain a single em-
bedding e € R7%® for each utterance by passing it through
a Global AveragePooling(.) layer which pools over all the
time-steps.

Both these models are trained using Cross-Entropy Loss (Z)
and similar to our 2-step procedure, during inference, we take
the argmax(.) of the output of the softmax(.) function as the
final class for each utterance.

5. Experimental Setup

We use the PyTorch Framework for building and evaluating
all our Deep Learning models along with the Transformer im-
plementations, pre-trained models, and specific tokenizers are
taken from the HuggingFace library. We train all our models
with Adam optimizer in batched mode with a batch size of 8
and a learning rate of 1e~* for a maximum of 100 epochs with
an early-stopping of 5 epochs. We make all our code and data

publicly available on GitHulﬂ

6. Results and Result Analysis

Table 3] provides the macro-averaged F; scores obtained for
variations of both our 2-step and E2E baselines on the Devel-
opment, Test and Test-T splits of DeToxy-B post training on the
Train split. The category section of 2-step system is denoted as
“Transcript Source - Sequence Classifier Data Source”, where
Gold is gold transcripts and LS, CV, and SWBD stand for fine-
tuning on LibriSpeech, Common Voice, and SwitchBoard re-
spectively. CC [36] and DB stand for BERTgase fine-tuned on
Civil Comments or DeToxy-B gold text transcripts respectively.
Beyond freezed and un-freezed wav2vec-2.0 E2E setups, based
on findings by [37]], we also test our E2E model by taking em-
beddings from the 9" layer which contains maximum semantic
information.

Table 3: Experimental Results of our 2-step and E2E baselines
on DeToxy-B

System Category Dev Test Test-T

2-step Gold-CC 0.787 0.801 0.258
Gold-DB  [JO2INN0934N 0.492
LS-CC 0.672 0.682 0.281
LS-DB 0.742 0.744 0.484
CV-CC 0.659 0.674 0.270
CV-DB 0.505 | 0.724 0.474

SWBD-CC 0.672 0.682 0.270
SWBD-DB | 0.726 0.737 0.478
F-Bank - 0.610 0.620 0.491
wav2vec-2.0 Freezed 0.448 0.457 @ 0.497

Un-freezed
wav2vec-2.0 (9)  Un-freezed

As we see in Table 3, our E2E system clearly outperforms
our 2-step system setup when gold transcripts are not available
to the text sequence classifier. We hypothesize the true reason to
be that ASR models don’t generalize across domains and gen-
erally fail to perform well when trained on one domain and in-
ferred on another. This is also very evident in our case where
we get an average WER of 33%, 43% and 26.9% on LS, CV
and SWBD respectively. 2-step systems trained on CC consis-
tently under-performs, which reveals that text sequence classi-
fiers models trained to classify toxicity are not robust to changes
in domain.

Our un-frozen wav2vec-2.0 E2E setup with representations
taken from the 9" layer outperforms all our true baselines.
This proves that semantic information of the utterance is crucial
to toxicity classification from spoken speech. This setup also
outperforms other baselines on Test-T, in which very evidently
all our baselines struggled on, especially our 2-step baselines
trained on CC.

7. Conclusion

In this paper, we introduce the first publicly available human-
annotated dataset DeToxy for the task of toxic speech classifi-
cation and propose two strong baselines for this task. Future
work includes expanding the dataset at least 10 fold using more
naturally spoken utterances, exploring different modalities, and
developing better neural architectures to solve this problem.

Zhttps://github.com/Sreyan88/Toxicity-Detection-in-Spoken-
Utterances
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