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Abstract
Filler words such as ‘uh’ or ‘um’ are sounds or words people
use to signal they are pausing to think. Finding and remov-
ing filler words from recordings is a common and tedious task
in media editing. Automatically detecting and classifying filler
words could greatly aid in this task, but few studies have been
published on this problem to date. A key reason is the absence
of a dataset with annotated filler words for model training and
evaluation. In this work, we present a novel speech dataset,
PodcastFillers, with 35K annotated filler words and 50K anno-
tations of other sounds that commonly occur in podcasts such as
breaths, laughter, and word repetitions. We propose a pipeline
that leverages VAD and ASR to detect filler candidates and a
classifier to distinguish between filler word types. We evalu-
ate our proposed pipeline on PodcastFillers, compare to several
baselines, and present a detailed ablation study. In particular,
we evaluate the importance of using ASR and how it compares
to a transcription-free approach resembling keyword spotting.
We show that our pipeline obtains state-of-the-art results, and
that leveraging ASR strongly outperforms a keyword spotting
approach. We make PodcastFillers publicly available, in the
hope that our work serves as a benchmark for future research.
Index Terms: filler word detection, speech disfluency, keyword
spotting

1. Introduction

Speech disfluencies, such as filler words, stuttering, repetitions
and corrections, are common in spontaneous speech [1]. Of
all disfluencies, filler words, especially ‘uh’s and ‘um’s, are the
most common [2]. For content creators working on, e.g., pod-
casts or video interviews, manually finding and editing filler
words in video and audio recordings requires significant time
and effort. Automatically detecting filler words accurately has
the potential to significantly speed up speech content creation
workflows. Such a filler word detection system must be able to
both localize filler words in time and classify them correctly.

Previous work has focused on detecting and removing
speech disfluencies from text transcripts [3–6], some also in-
corporating acoustic features [7]. In some cases, the transcripts
are produced via Automatic Speech Recognition (ASR) [8–10].
In this scenario it is up to the ASR to transcribe the filler words,
which requires training an ad-hoc ASR with filler words in its
vocabulary. This is computationally intensive and challenging
since ASR systems are often trained on spoken text corpora
which do not contain any filler words, and thus cannot detect
them reliably. Furthermore, adding a new filler word to the vo-
cabulary would require re-training the ASR model.

More recently, several data driven methods have been pro-
posed to detect speech disfluencies directly from audio in tele-
phone conversations [11, 12] and naturalistic recordings [13–
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15]. Sheikh et al. proposed StutterNet [14], a time-delay neu-
ral network (TDNN) to classify repetitions, blocks, prolonga-
tions and interjections, the latter being another term for filler
words. They used the UCLASS dataset [16], which is designed
for stutter classification. This poses some challenges, since
the dataset was recorded in a controlled environment, and ex-
clusively contains speech by people who stutter. This, along
with the small size of the dataset (∼4K sentences), means it is
unclear whether the results would generalize to recordings of
spontaneous speech more broadly. To tackle this issue, Kourk-
ounakis et al. [15] expanded the training data by creating a
synthesized stutter dataset, LibriStutter, by inserting repetitions
or interjections in between non-stuttered speech from a subset
of LibriSpeech [17]. The interjections, however, were taken
from UCLASS, presenting the same aforementioned challenge.
Salamin et al. [18] trained Hidden Markov Models to segment
laughter, fillers, speech and silence from spontaneous speech
on the SSPNet Vocalization Corpus, which is also a small-scale
dataset. Lea et al. [12] created a large speech disfluency dataset,
SEP-28K, from podcasts with people who stutter, and used it
to build a stutter detector. As before, there is a generalization
challenge given the audio data are specific to people who stut-
ter. Also, the dataset is annotated at the clip level, so it does not
provide precise timestamps for filler words and cannot be used
to evaluate detection accuracy at a fine temporal resolution.

The closest study to our work is by Das et al. [1], who
proposed a disfluency repair system aiming at removing filler
words and long pauses. They trained a convolutional recurrent
neural network (CRNN) for filler word segmentation (detection
and classification) applied directly to audio recordings. They
used two speech datasets, Switchboard speech data [19] with
transcripts and Automanner [20]. A key limitation of the ap-
proach noted by the authors is that it was unable to distinguish
filler words such as ‘uh’ or ‘um’ from real parts-of-speech, re-
turning false-positives for actual words that sound similar to
or contain filler words, such as “um-brella”. Also, Kaushik et
al. [13] found that the mismatch between training on telephony
speech and testing on naturalistic recordings hurts filler classi-
fication accuracy. The test set for evaluating the methods pre-
sented by Das et al. [1] only contains 20 speech samples, once
again making it hard to draw generalizable conclusions.

In this paper, we address the data scarcity challenge for
filler word detection by creating the largest annotated dataset
of filler words published to date, PodcastFillers, which we make
publicly available online1. We propose an efficient workflow for
generating annotation candidates in continuous speech record-
ings that leverages a robust Voice Activity Detection (VAD)
model and an off-the-shelf ASR, and annotate over 85K filler
word candidates. The resulting dataset spans 145 hours of
speech from over 350 speakers coming from 199 public pod-
cast episodes, and has 35K annotated filler words and 50K an-
notations of other speech events that are common in podcasts

1podcastfillers.github.io
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Figure 1: Filler word candidate generation pipeline: non-
linguistic filler word candidates are identified at times where
VAD is activated while ASR is not.

such as laughter, breaths, and repetitions. It also includes the
ASR transcriptions we obtained for all the episodes. Using Pod-
castFillers, we train a filler classifier similar to a keyword spot-
ting approach, and present an end-to-end pipeline that leverages
VAD, ASR, and the classifier to perform filler word detection
and classification. We compare our proposed pipeline to two
baselines and show that it yields state-of the-art results. We
hope it serves as a robust benchmark for future research.

2. The PodcastFillers Dataset

2.1. Podcast curation

We manually curated 199 gender-balanced, English-language
podcast episodes from SoundCloud2, totaling 145 hours of
speech audio from over 350 speakers sampled at 44.1 kHz.
We searched for episodes using the 24 topic categories defined
in [21] to include a variety of topics and styles, and selected
episodes from different shows or shows with guest speakers to
ensure a diversity of speakers.

2.2. Filler word annotation pipeline

Listening to the entire dataset to label fillers would be highly in-
efficient. Instead, we propose an annotation pipeline that lever-
ages a commercial ASR system3 and a VAD model to generate
filler candidates for annotation, depicted in Fig. 1.

As previously noted, ASR systems typically do not tran-
scribe non-lexical fillers in spontaneous speech. We make use
of this drawback to identify possible filler word locations: non-
lexical fillers such as ‘uh’ and ‘um’ will trigger the VAD model,
but appear as silent gaps in the ASR output. These regions
where VAD activates but ASR does not are candidate locations
for fillers. Using this approach we identified 85K candidates in
PodcastFillers. Since the candidates may contain other sounds
such as breaths, laughter, music, or even words (due to ASR er-
rors), they require manual verification, which we obtained via
crowdsourcing using a custom-built annotation interface.

Voice Activity Detection (VAD) model and data: For de-
tecting candidate fillers, we need a VAD model that outputs pre-
dictions at a fine temporal resolution (100 Hz) to precisely lo-
cate the temporal boundaries of speech regions. It also needs to
be robust to various background and foreground noises in pod-
casts such as music and non-speech sounds (e.g., fan noise).

2www.soundcloud.com
3www.speechmatics.com

We achieve this fine temporal resolution by computing in-
put acoustic features at a 10 ms hop size, such that we can slide
the trained model over the audio at this temporal resolution.
To ensure robustness, we need to combine a generalizable ML
model with a varied training set containing various background
and foreground noises at different signal-to-noise ratios (SNR).
We create a new labeled speech dataset for VAD by progra-
matically combining recordings of clean speech with music and
noise using the Scaper soundscape mixing software [22].

We generate frame-level (10 ms) VAD annotations by
computing the audio amplitude from clean speech recordings
sourced from the Librispeech-100 [17] and VCTK [23] datasets,
labeling regions below a 19 dB threshold relative to the peak
amplitude of the normalized signal as silent. Then we program-
matically mix the clean speech clips with background music and
environmental sound from the strongly labeled subset [24] of
AudioSet [25]. To test our VAD model, we keep a disjoint test
set of audio source material using 8% of the speakers in VCTK,
the test partition of Librispeech, and 5% of sound events from
the AudioSet subset. We generate 300,000 training mixtures
from the training source material and 10,000 test mixtures from
the test source material. Scaper allows us to control the SNR
range and distribution in the mixtures. Preliminary experiments
showed the performance of the VAD model, in terms of produc-
ing filler candidates when combined with ASR, was sensitive to
the SNR range. We empirically settled on a speech SNR range
of [12, 22] dB relative to background noise, [−3, 17] dB relative
to foreground noise and [−6, 14] dB relative to music.

We compute log-scaled mel-spectrograms (log-mel) as in-
put to the VAD model using Librosa [26]. We use 64 mel bins,
and a purposely short window of 25ms and a hop size of 10ms,
to support inference at a high temporal resolution. We adopt
a Convolutional Recurrent Neural Netowrk (CRNN) architec-
ture that has been shown to be robust for VAD in complex en-
vironments with noise [27], but remove the recurrent layer to
improve run-time performance. We found this change does not
impact model accuracy. Our trained VAD model obtained Pre-
cision/Recall of 0.93/0.92 respectively on the test split of our
mixed dataset. Once our VAD model was trained, we used it in
combination with the ASR to produce filler candidates. To min-
imize the chance of missing soft fillers, we set a lenient VAD
activation threshold of 0.1 (as opposed to the standard 0.5 out
of [0, 1]). We found the majority of candidates to have a dura-
tion in the 150-400 ms range. For candidates shorter than 150
ms it was hard to determine by ear whether they were actual
filler words or other sounds, so we decided to remove them prior
to labeling. Similarly, we removed candidates longer than 2 s,
which were rare and not representative of our target use case.

Labeling filler candidates: Based on an initial audition of
a sample of candidates, we identified a set of filler and non-
filler classes for our labeling task. The labels, along with the
final number of annotations per label (in parentheses), are: For
fillers, ‘uh’ (17907), ‘um’ (17078), ‘you know’ (668), ‘like’
(157), and ‘other’ (315). ‘Like’ and ‘you know’ occurred
rarely in our candidate set, when the ASR failed to transcribe
them. For non-fillers, ‘laughter’ (6623), ‘breath’ (8288), ‘agree-
ment sound’ (3755, e.g., ‘mmm’ or ‘uh-huh’), ‘regular words’
(12709), ‘repetitions’ (9024), ‘simultaneous speakers’ (1484),
‘music’ (5060) and ‘noise’ (2735). The first three non-filler la-
bels represent voice sounds that aren’t fillers. The next three
are caused by ASR errors or intentional omissions, and the final
two are caused by VAD false-positives.

The candidates were presented to crowd workers for anno-
tation. Each filler candidate was positioned at time 3 sec inside

www.soundcloud.com
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Figure 2: Proposed two-stage filler detection and classification.

a 5 sec clip (for context), and highlighted in the interface. Anno-
tators had to determine whether the highlighted candidate was a
filler word or not, and based on that select one of the five filler
labels or eight non-filler labels. Each candidate was annotated
by two people, or three when the first two disagreed. Out of all
candidates labeled ‘uh’ or ‘um’ in the dataset, 98.4% and 96.4%
respectively had at least two annotators agree on the label.

3. Filler Detection Pipeline

We propose a filler detection pipeline with two variants: the first
leverages ASR, while the second does not, which is relevant for
deployment scenarios where ASR is not available. The pipeline
is depicted in Fig. 2. In the first stage, the input audio is passed
through the VAD model to find voice regions. The first pipeline
variant also runs the audio through ASR to discard regions with
transcribed words. The second variant passes straight to the next
stage. In the second stage, the remaining candidate time regions
are passed through a classification model that produces labeled
events with a start time, end time, and a label. Moving forward,
we shall refer to the first pipeline as AVC-FillerNet (for ASR +
VAD + Classifier), and the second as VC-FillerNet (no ASR).
By skipping the ASR, VC-FillerNet is computationally lighter,
but runs the risk of detecting parts of actual words as fillers [1].

Our goal is to train a robust multi-class classifier to detect
fillers given a short snippet of audio. Given the label distri-
bution in PodcastFillers, we opted to discard labels with 3K
or less annotations and consolidate other labels, producing five
new labels, each with ample training data: ‘filler’ (‘uh’+‘um’),
‘words’ (‘regular words’ and ‘repetitions’), ‘laughter’, ‘music’,
and ‘breath’. Ultimately, we only care about the detection ac-
curacy for the ‘filler’ class, and we expect this consolidation to
lead to a more robust classifier. In Section 5 we also evaluate
our ability to classify ‘uh’ and ‘um’ as two separate classes.

We use wav2vec [28] embeddings computed with a 10 ms
hop size as input to the model. Wav2vec was pretrained on
over 960 hours of speech, providing a robust representation for
classification of speech-like sounds. During training we apply
time and “frequency” masking to the embeddings via SpecAug-
ment [29], and optimize a cross entropy loss.

Since our goal is to detect specific short utterances in an
audio stream, the task can be viewed as a keyword-spotting
(KWS) problem where our keyword is the joint set of ‘uh’ and
‘um’. With this in mind, we adapt a lightweight KWS model
backbone architecture, TC-ResNet8 [30], for efficient classifi-
cation. TC-ResNet8 only has around 100k parameters, mak-

ing it suitable for low-latency inference. It applies 1D convo-
lutions along the temporal axis and spans the entire frequency
range in every layer, achieving strong performance even with a
small number of layers. Because the filler candidates in AVC-
FillerNet are normally short segments, we can train an event
classifier to directly predict the event label for the entire input
segment. On the contrary, for VC-FillerNet, the filler candidates
are usually long sequences of voice, so we train a frame clas-
sifier to predict frame-level labels at a fine temporal resolution,
e.g., every 100 ms. To get frame-level predictions, we adapt
the TC-ResNet8 backbone by adding an LSTM layer. Similar
to Filler-CRNN [1], we then group contiguous frames with the
same predicted label into an event. The final output of both
the event-level classifier and frame-level classifier are discrete
events with a start time, end time, and a label. We compare the
two approaches as part of our ablation study.

4. Experimental Design

4.1. Data split and training

For our experiments, we split the PodcastFillers dataset into
train, validation, and test sets with 173, 6, 20 episodes respec-
tively, while ensuring each subset remains gender-balanced.
The audio is downsampled from 44.1 kHz to 16 kHz for compu-
tational efficiency. We train our proposed models on the train-
ing set, tune hyper-parameters and the VAD threshold on the
validation set, and report performance on the test set. To train
the event classifier, AVC-FillerNet, we use 1 s input clips with
the labeled filler candidate placed at the center of the clip. The
model produces a single prediction for the input, which is com-
pared to the ground truth label. To train the frame classifier,
VC-FillerNet, we use 1 s input clips where the filler candidate
can appear anywhere in the clip. The model produces per-frame
(10) predictions that are compared to the ground truth events
(which have start/end times) frame-by-frame during training.

4.2. Baselines

We compare our systems with two strong baselines: a neural-
network-based method, Filler-CRNN [1], and a forced-aligner-
based method, Gentle [31]. The input to Filler-CRNN is log-
mel with 128 bins computed from 1 s clips. The original Filler-
CRNN architecture yielded weak performance in our experi-
ments, so we fine tune it (number of layers, kernel size, pool-
ing) on PodcastFillers for a stronger baseline. With Gentle, we
first apply pre-trained Kaldi [32] acoustic models developed on
the Fisher English corpus [33] to generate syllable tokens. We
compare the tokens with the ASR transcript: filler words are de-
tected if the inconsistent regions between the two are re-aligned
by inserting ‘um’ or ‘uh’ into the transcript.

4.3. Evaluation metrics

We compute segment-based and event-based metrics (Precision,
Recall, F1) using sed eval [34] for the ‘filler’ class, to evalu-
ate detection accuracy and localization accuracy respectively.
Segment-based metrics map the system output and ground truth
to a fixed time grid for comparison. Event-based metrics com-
pare the estimated sound events and the ground truth events di-
rectly. A predicted event is considered a true positive if it over-
laps with a ground truth event that has the same label and its
onset and offset are within a threshold (slack) from the refer-
ence event’s onset and offset (200 ms in this work).



4.4. Ablations

We run ablation studies to understand the impact of each of the
two stages of our proposed pipeline, VAD and the filler classi-
fier. For VAD, we vary the activation threshold from 0.1–0.9:
the lower the threshold the more candidates will be passed to
the second stage. For the classifier, we compare different in-
put features (log-mel with 64 bins and wav2vec) and architec-
tures (event classifier and frame classifier). We evaluate both
the AVC-FillerNet and VC-FillerNet pipelines in all ablations.
The output events from each model are converted to frame-level
likelihoods, which are compared to the reference annotations
to produce Precision-Recall (PR) curves, which elucidate the
trade-off between precision and recall.

5. Results

5.1. Ablation studies

We start by analyzing the influence of the VAD activation
threshold, using the PodcastFillers validation set, and wav2vec
as the input feature. The results are shown in Fig. 3(a). The best
PR-curve is obtained using the lowest threshold (0.1), and as we
increase the threshold there is a notable decrease in recall. Inter-
estingly, the precision remains consistent regardless of the VAD
activation threshold. This suggests that the filler classifier is ro-
bust at rejecting false positives with lower VAD likelihoods, and
so a low VAD threshold maximizes recall by ensuring we do not
miss soft filler words, without compromising on precision.

Following this, we fix the VAD threshold to 0.1 in the sec-
ond ablation study where we compare different input features
and classifier backbones, shown in Fig. 3(b). Wav2vec consis-
tently outperforms log-mel as the input feature, confirming that
this model, trained on a large speech corpus, yields a discrimi-
native representation for filler word classification. For the AVC-
FillerNet pipeline, the event classifier is only marginally better
than the frame classifier. In contrast, since the VC-FillerNet
pipeline cannot leverage ASR to determine the precise timing
of filler candidates, the frame classifier outperforms the event
classifier in this pipeline due to its superior temporal accuracy.

Most importantly, we see that across both ablation studies,
AVC-FillerNet clearly outperforms VC-FillerNet. By leverag-
ing ASR, AVC-FillerNet produces tight temporal boundaries
around filler candidates, and dramatically reduces the number
of candidates passed to the classifier. This reduces the chances
of producing false positives, leading to a boost in precision.

5.2. Comparison to baselines

We compare AVC-FillerNet and VC-FillerNet with two base-
lines, Filler-CRNN and Gentle (described in Sec 4.2), and re-
port results the PodcastFillers test set as shown in Tab. 1. For
our pipelines, we use the optimal VAD threshold of 0.1 as de-
termined by the ablation study on the validation set. We see
that AVC-FillerNet significantly outperforms all the other sys-
tems for all metrics. Gentle yields higher precision than VC-
FillerNet and Filler-CRNN, but has the lowest recall among all
the systems. We speculate this may be improved by leveraging
acoustic models trained with filler words in Gentle.

5.3. Filler detection & classification with fine granularity

Finally, we evaluate our systems’ ability to separately detect
‘uh’ and ‘um’ filler words. We re-train the classifier with the

(a) P/R vs VAD threshold (b) P/R vs classifier backbone

(b)

(a)

Figure 3: Frame level P/R vs (a) VAD threshold and (b) classi-
fier backbone. ‘event’ stands for event classifier and ‘frame’ for
frame classifier, solid lines are AVC-FillerNet, dashed lines are
VC-FillerNet. Dotted position is the classifier threshold at 0.5.

Table 1: Segment- and event-based evaluation results (%) for
our proposed systems and baselines for filler word detection.

System Segment Event
P R F1 P R F1

AVC-FillerNet (Ours) 93.0 95.4 94.2 91.7 94.0 92.8
VC-FillerNet (Ours) 71.6 71.0 71.3 66.0 76.9 71.0

Filler-CRNN [1] 56.4 70.3 62.6 37.5 78.3 50.7
Gentle [31] 78.4 64.8 71.0 77.0 64.9 70.4

two labels as separate classes, and evaluate our systems on the
PodcastFillers test set, as shown in Tab. 2. We see that ‘um’ is
easier to classify, especially for VC-FillerNet. We speculate that
this is because ‘um’s are typically longer than ‘uh’s, providing
the classifier with more signal to leverage for inference.

Table 2: Segment- and event-based F1 measure (%) results for
separately detecting ‘uh’ and ‘um’ with our proposed systems.

System ‘Um’ ‘Uh’
Segment Event Segment Event

AVC-FillerNet 92.5 91.0 85.0 84.3
VC-FillerNet 75.2 75.9 57.0 57.1

6. Conclusion

In this work we presented PodcastFillers, a large dataset of pod-
casts with annotated filler words. The dataset was created by
boostrapping a VAD model and a commercial ASR system to
generate filler candidates that were annotated via crowdsourc-
ing. We proposed ASR-based and ASR-free filler detection and
classification pipelines, AVC-FillerNet and VC-FillerNet. Our
experiments showed that AVC-FillerNet achieves state-of-the-
art results, significantly outperforming existing filler word de-
tection systems, and that leveraging ASR outperforms a key-
word spotting approach for filler word detection. Through ab-
lation studies, we evaluated the impact of our design choices on
system performance. We hope the PodcastFillers dataset, our
proposed filler detection and classification pipeline, and our ex-
perimental results serve as a benchmark for future research.
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Appendix
We provide additional information about the annotation interface we built to label PodcastFillers (Appx. A), the distribution of voice
pitch in the dataset (Appx. B), and the model architectures used for our VAD and filler classification models (Appx. C). In Appx. D we
present confusion matrices produced by the filler classification model, to provide further insight into the model’s performance.

A. Annotation interface

To annotate the PodcastFillers dataset, we custom-built the annotation interface depicted in Fig. 4. Annotators were presented with an
audio player with a waveform visualization of a 5 s audio clip, with a filler word candidate at time 3 s highlighted in yellow (Fig. 4(a)).
Annotators were first asked if the yellow region contains a filler word or not. Based on their answer, a second list of options appeared
for them to label the fine-grained filler or non-filler type, depicted in Fig. 4(b) and Fig. 4(c) respectively.

Figure 4: Our custom-built filler word annotation interface used to annotate the PodcastFillers dataset. (a) Audio player with a filler
candidate at time 3 s highlighted in yellow, (b) fine-grained filler labels, (c) fine-grained non-filler labels.

B. Pitch distribution

When curating PodcastFillers dataset, we ensured the pitch (f0) of the voices in the dataset spans the range of adult speech pitch from
60 Hz to 300 Hz. We used CREPE4 for pitch estimation, and measure pitch in cents relative to 55 Hz. The pitch distribution for all
filler candidates in the dataset is depicted in Fig. 5(d), with a mode roughly at the center of the pitch range, around 170 Hz. The dataset
contains roughly equally decreasing numbers of samples as we move away from the mode toward higher and lower voices. The train,
validation and test splits, depicted in subplots (a), (b), (c) respectively, exhibit a similar pitch distribution for filler candidates.

C. Model architectures for VAD and the filler word classifier

The network architecture for the VAD model described in Section 2, adapted from [27], is depicted in Fig. 6(a). The two variants of the
architecture used for the filler classifier described in Section 3, a TCResNet-8 [30], are depicted in Fig. 6(b).

D. Confusion matrices for the filler word classifier

In Fig. 7 we depict the confusion matrices produced by the filler classification model used in the AVC-FillerNet pipeline when evaluated
on 1 s filler candidate clips from the PodcastFillers test set. We use either wav2vec or log-mel as the input feature to the model, and
predict either a coarse label set with 5 labels where ‘uh’ and ‘um’ are grouped into a ‘filler‘ label, or a granular label set with 6 classes
where ‘uh’ and ‘um’ are treated as separate labels. For the coarse labels, the greatest source of confusion is between ‘filler’ and ‘words’,
which makes sense given their acoustic similarity. For the granular labels, ‘uh’ is confused with words more often than ‘um’ is. We
conjecture the additional ‘m’ in the latter makes it easier to classify. For both label sets, using wav2vec as the input feature reduces the
confusion between filler words and regular words compared to using log-mel as the input feature.

4J.W. Kim, J. Salamon, P. Li, and J.P. Bello, “CREPE: A convolutional representation for pitch estimation,” in ICASSP, 2018.



(a) Training set (b) Validation set (c) Test set (d) Entire dataset

Figure 5: Pitch distribution of filler candidates in the (a) train, (b) validation, (c) test sets of PodcastFillers, and (d) the entire dataset.
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Figure 6: (a) Voice activity detection (VAD) network architecture used in both AVC-FillerNet and VC-FillerNet. (b) filler classifier
network architecture used for AVC-FillerNet (left fork) and VC-FillerNet (right fork).
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Figure 7: Confusion matrices for the filler classifier used in AVC-FillerNet for different input features and target labels.
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