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Abstract
In our previous work, we proposed a language-independent
speaker anonymization system based on self-supervised learn-
ing models. Although the system can anonymize speech data of
any language, the anonymization was imperfect, and the speech
content of the anonymized speech was distorted. This limita-
tion is more severe when the input speech is from a domain
unseen in the training data. This study analyzed the bottleneck
of the anonymization system under unseen conditions. It was
found that the domain (e.g., language and channel) mismatch
between the training and test data affected the neural wave-
form vocoder and anonymized speaker vectors, which limited
the performance of the whole system. Increasing the training
data diversity for the vocoder was found to be helpful to reduce
its implicit language and channel dependency. Furthermore,
a simple correlation-alignment-based domain adaption strategy
was found to be significantly effective to alleviate the mismatch
on the anonymized speaker vectors. Audio samples1 and source
code2 are available online.
Index Terms: speaker anonymization, self-supervised learning,
CORrelation ALignment, multilingual HiFi-GAN.

1. Introduction
The human voice contains a wealth of personal information,
such as the speaker’s identity and emotion. Since personal in-
formation can be revealed by advanced speaker or other types
of recognition systems, the demand for privacy-preserving tech-
nologies is growing. Although there is no legal definition of
privacy [1], through the initiative called VoicePrivacy Chal-
lenge (VPC) 2020 [2, 3], the research community has defined
a speaker anonymization task, the goal of which is to protect
the speaker identity information (privacy) while maintaining the
speech intelligibility and naturalness (utility).

While other related methods exist [4], a recently proposed
deep neural network (DNN)-based [5] method was used as the
VPC 2020 primary baseline to disentangle speaker and other
information in the speech data and synthesize speech after
anonymizing the speaker information. The effectiveness of this
speaker anonymization system (SAS) has been confirmed on
English test sets. However, it requires large amounts of text
transcriptions for English training data to obtain accurate lin-
guistic representations, which makes it impossible to use for
an unknown language. While other digital-signal-processing-
based methods [6] require little or no training data, they are less
effective than the DNN-based methods at protecting the speaker
identity [7, 3].

Aiming at an effective speaker anonymization solution that
can be applied to the speech of any language, we have proposed

1https://xiaoxiaomiao39.github.io/IS2022-SAS/
2https://github.com/xiaoxiaomiao39/SSL-SAS

a self-supervised learning (SSL)-based language-independent
SAS [8]. It uses an SSL-based content encoder to extract gen-
eral context representations regardless of the language of the
input speech. The whole SAS requires no text labels or other
language-specific resources, allowing the system to anonymize
speech data from any language. This SAS has been applied
to Mandarin speech data. Even though the Mandarin language
was completely unseen to the SAS, the Mandarin speech sam-
ples were anonymized reasonably well. However, it was also
observed from an increased character error rate (CER) that the
speech contents were distorted after anonymization. While the
trade-off between speaker anonymization and speech intelligi-
bility is common to many SASs [3], our goal is to push the limit
of the language-independent SAS and improve both privacy and
utility metrics in unseen conditions.

This study takes one step towards our goal by experimen-
tally analyzing the performance bottleneck of the SAS. Specif-
ically, it analyzes how the components such as the speech gen-
erator (i.e., vocoder) are implicitly dependent on a particular
language or channel in the training database of that language.
While keeping the target language (i.e., Mandarin) unseen, this
study finds it beneficial to increase the language diversity of the
training data, for example by adding German, Italian and Span-
ish speech data. Furthermore, this study investigates the lan-
guage/channel mismatch brought by the impure speaker iden-
tity representation. It is found that the mismatch can be alle-
viated by transforming the anonymized speaker vector using a
simple CORrelation ALignment (CORAL)-based domain adap-
tion strategy [9]. Transforming the anonymized speaker vector
from the source domain (English) to a general domain covering
German, Italian and Spanish data achieves better performance.
When transforming to a more ideally matched domain with a
few samples of Mandarin data, the CORAL provides the best
utility with remaining high privacy. These findings are expected
to be useful to the community for building a better language-
independent SAS that can work under unseen conditions.

2. SSL-based Language-Independent
Speaker Anonymization System

The baseline SSL-based language-independent SAS [8] disen-
tangles speech into the fundamental frequency (F0), speaker
identity representation, and content representation. Figure 1
shows the training and anonymization procedure of the base-
line system (black and blue arrows path), respectively. There
are two steps in the training stage:
1) Original F0, speaker identity, and context feature extraction
from the original speech recordings. The YAAPT algorithm
[10] is used to extract F0. The emphasized channel attention,
propagation and aggregation in a time delay neural network
(ECAPA-TDNN) speaker encoder trained on the VoxCeleb-1 &
2 [11, 12] datasets is used to extract 192-dimensional speaker
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(a) Training procedure (b) Anonymization procedure
Figure 1: Diagram of language-independent SAS. Blue and red arrows indicate components investigated in this study.

identity vectors. To extract finer-grained context representa-
tions, the HuBERT-based soft content encoder [13] downsam-
ples the input speech into a sequence of 768-dimensional con-
tinuous representations, which is reduced to 200 dimensions
through linear projection. Note that this HuBERT-based soft
content encoder took the CNN encoder and the sixth trans-
former layer from the input of a HuBERT Base model [14] pre-
trained on LibriSpeech3 as the backbone. It was fine-tuned on
the LibriTTS-train-clean-100 [15] dataset, and the training cri-
terion is detailed in [8].
2) Speech synthesis. The frame-wise content features, F0, and
utterance-level source speaker vector are passed to the HiFi-
GAN neural vocoder [16] after the operation of upsampling and
concatenation to synthesize speech. The HiFi-GAN model was
trained on LibriTTS-train-clean-100 [15], denoted as monolin-
gual HiFi-GAN.

An extra step called Speaker vector anonymization is in-
cluded in the anonymization stage [2, 3]. Given a source
speaker vector, cosine distance is used to find the 200 far-
thest speaker vectors from an external speaker vector pool
(LibriTTS train-other-500). From these 200 vectors, 100 vec-
tors are randomly selected and their average is used as the
anonymized speaker vector [17]. Then, the content features, F0
and anonymized speaker vector instead of the source speaker
vector are used to generate the anonymized speech.

3. Analysis of Performance Bottleneck
Although the above SAS performed reasonably well on the un-
seen Mandarin data, the anonymization performance was be-
low the theoretical optimum. Furthermore, the contents of the
anonymized speech were distorted by the SAS. It was shown
that the CER of the anonymized speech reached 18.92%, which
was much higher than the CER of 10.36% on the original data.
Also, when the output speech was produced without actually
anonymizing the speaker vector (i.e., resynthesis), its CER was
still 14.81%. However, resynthesized speech from an ideal SAS
should obtain a similar CER to the original speech.

The above results motivated us to analyze the performance
bottleneck of our SAS under unseen circumstances. Here we
examine the components in the system one by one and present
techniques to alleviate the bottlenecks. Although we only con-
sider Mandarin speech as the unseen test data, the analyses are
expected to apply to other unseen languages as well.

3https://github.com/pytorch/fairseq/tree/
main/examples/hubert

3.1. Robustness of HiFi-GAN

The CER gap between the original (10.36%) and resynthesized
speech data (14.81%) suggests that the speech contents in the
resynthesized speech may have been distorted. A similar find-
ing has been reported on the language-dependent VPC baseline
[18]. Since the system extracted features and re-synthesized the
speech waveform without anonymizing the speaker representa-
tions, the increased CER is only caused by the content feature
extractor and vocoder.

We hypothesize that the HiFi-GAN vocoder is one bottle-
neck4. It is known that to build a neural vocoder that general-
izes well to unseen speakers in unseen languages, the training
dataset has to cover diverse speakers and languages [19]. How-
ever, the HiFi-GAN in our SAS was trained using a subset from
LibriTTS with many speakers, but only English-speaking ones.
To verify the hypothesis, we used a multilingual database [20]
to train the HiFi-GAN and compared its performance with the
HiFi-GAN trained on the monolingual LibriTTS data in the ex-
periments. This comparison is illustrated in Figure 1(a). Note
that the multilingual database does not contain Mandarin data,
and its details are explained in Section 4.2.

3.2. Language and Channel Mismatch on Speaker Vectors

Comparing the CERs in the resynthesized (14.81%) and
anonymized (18.92%) cases, the increased CER is likely due
to the anonymized speaker vector since it is the only difference
between the resynthesized and anonymized data. Many stud-
ies have shown that speaker vectors contain speaker-unrelated
information from the source domain, e.g., channel conditions
and lexical contents [21, 22]. Because the anonymized vector is
composed from the pool of English speaker vectors (i.e., those
from LibriTTS train-other-500 [15]), it may carry irrelevant in-
formation pertinent to the English database. Therefore, directly
using the anonymized vector on Mandarin data may introduce
language, channel, or other types of domain mismatch.

To verify this hypothesis, we use a simple but effective un-
supervised domain adaption technique called CORAL [9]. The
goal of CORAL is to find a transfer matrixA that can align the
feature distributions of the source domain and target domain
by minimizing their covariances. Suppose source-domain En-
glish speaker vectors DS = {ni}, ni ∈ R192, and the target
speaker vectors DT = {mi}, mi ∈ R192, here ni and mi,
are the 192-dimensional vectors extracted from the last projec-
tion layer of the ECAPA-TDNN. After the feature normaliza-

4We also investigated a multilingual-trained SSL-based soft content
encoder but no improvements were observed.
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Figure 2: CORAL transformation on speaker vectors.

tion where the speaker vectors DS and DT are normalized to
have zero mean and unit standard deviation in each dimension,
the relationship of source- and target-domain statistics is that
mean µS = µT = 0 and covariance matrices CS 6= CT . The
transfer matrixA can be obtained via:

CORAL(DS ,DT ) = min
A

∥∥ATCSA−CT

∥∥2

F

where
∥∥.∥∥2

F
represents the matrix Frobenius norm. The detailed

procedure to compute the optimal A∗ can be found in [9, 23].
Then, the anonymized English speaker vectors transformed by
A∗ are used as the new anonymized speaker vector.

We consider two cases of CORAL transformations based
on the data availability:
General CORAL transformation: we assume that Mandarin

data are unavailable, and the target-domain speaker vectors are
collected from the German, Italian, and Spanish speech data;
Mandarin CORAL transformation: we assume that a few (no

more than 100) Mandarin samples that are completely disjoint
(unseen-unheard speakers) with the test set are available as the
target-domain speaker vectors.

In the first case, where the domain of the test data to be
anonymized remains unseen to the SAS, CORAL using the tar-
get speaker vectors from multiple languages and channels is
expected to alleviate the mismatch between the English vec-
tor pool and the vector to be anonymized. The second case is
an oracle scenario where the mismatch caused by the impure
speaker vectors can be reduced to a greater extent when they
are transferred to the matched domain.

Figure 2 plots the t-SNE visualization of speaker vectors
before and after the two cases of CORAL transformations.
These speaker vectors are sampled from the different datasets
listed at the bottom of Table 1. It is observed that the origi-
nal distributions of speaker vectors from the different domains
are widely spread due to the language and channel mismatch.
The distribution between English and general domains has more
overlap than between the English and Mandarin domains. De-
spite the different degrees of overlap, CORAL transformations
push the speaker vectors from different domains to move closer.

4. Experiments
4.1. Evaluation Protocols

Our experiments followed the evaluation protocols of VPC
2020 [2, 3]. The SAS anonymized the Mandarin test trials
shared by users to protect the speaker identity while preserv-
ing the speech contents. To assess how well the speech contents
are preserved, CER was computed using a language-matched
ASR (ASReval) as one utility metric. The protection of speaker
identity was evaluated via one privacy matrix with equal er-
ror rates (EERs) of a language-matched ASV evaluation model
(ASVeval) in two setups:

Table 1: The datasets used in the different models.

Model Dataset

Tr
ai

ni
ng Monolingual HiFi-GAN LibriTTS train-clean-100

Multilingual HiFi-GAN German & Italian & Spanish
LibriTTS train-clean-100

Tr
an

. General CORAL German & Italian & Spanish
Mandarin CORAL AISHELL-3-test-left

Ignorant: the attackers have access to the ASVeval and a few
unanonymized test trials from the users. With ASVeval, the at-
tackers try to recognize the speaker identity by matching the test
trials with the unanonymized data (i.e., enrollment data). How-
ever, they are unaware that the test trials have been anonymized;
Lazy-informed: the attackers have the same resources as in Ig-
norant. Besides these, they know that the test trials have been
anonymized using the anonymization algorithm and CORAL
transformation, but are unsure of the detailed parameters (e.g.,
which speaker vectors are selected to compose the anonymized
vector). The attackers anonymize the enrollment data with their
knowledge of SAS and use them to recognize the test trials.

This study included another two setups as references: Un-
protected: the attackers directly recognize the unanonymized
test trials using the original enrollment data and ASVeval;
Resynthesized: similar to Unprotected, but the test trials are
resynthesized by the SAS using the original speaker vector.
Both setups simulate the case where speaker identity is unpro-
tected, but Resynthesized further examines how the feature ex-
tractors and vocoder degrade the utility and privacy in the resyn-
thesis process [18].

An ideal SAS should achieve high EERs (close to 50%) in
both Ignorant and Lazy-informed setups. The EERs in Resyn-
thesized should be as low as those from Unprotected. Mean-
while, the CERs for all setups should be low.

4.2. Databases

In addition to the standard databases to build the SAS (Sec-
tion 2), this study used external data listed in Table 1 for the
SAS training and CORAL transformation. The multilingual
dataset for HiFi-GAN consists of LibriTTS-train-clean-100 and
subsets that contains German, Italian, and Spanish data sam-
pled from the Multilingual LibriSpeech corpus [20]. Around 78
hours of clean data were selected for each language. The selec-
tion criteria is that the duration of each recording is larger than
10s, and that the signal-to-noise ratio is equal to 100, which is
estimated using the WADA SNR algorithm [24].

The Mandarin test trials and enrollment data were sam-
pled from the test set of Mandarin speech corpus AISHELL-3
[25]. Specifically, 4,179 trials from 44 speakers were randomly
sampled as the test trials, and additional 2 utterances of the
same speaker were sampled for enrollment. They composed
10,120 enrollment-test pairs for the ASV evaluation, which
is denoted as AISHELL-3-test-veri. The target-domain vec-
tors for the oracle Mandarin CORAL were extracted from the
left data of AISHELL-3 test set, denoted AISHELL-3-test-left
in Table 1. Note that there is no speaker or utterance over-
lap between AISHELL-3-test-left and AISHELL-3-test-veri. The
target-domain vectors for the general CORAL were randomly
selected from the German, Italian, and Spanish subsets. The
source-domain vectors for both types of CORAL were ran-
domly selected from the LibriTTS-train-clean-100. Similar to
[8], the ASVeval model was an ECAPA-TDNN trained on the
Mandarin CN-Celeb-1 & 2 [26, 27] datasets. The ASReval

model was an open-source ASR Transformer [28] trained on
the Mandarin AISHELL-1 ASR dataset [29].



Figure 3: EER values for two anonymization systems using monolingual HiFi-GAN or multilingual HiFi-GAN along with different
configurations of the general and Mandarin CORAL transformation.

Figure 4: CERs of anonymized speech on AISHELL-3-test-veri.
4.3. Results and analysis

Our experiments compared the SAS performance on the Man-
darin test data by varying the two factors illustrated in Fig-
ure 1(b): using monolingual or multilingual data to train the
HiFi-GAN vocoder, and whether CORAL was applied on the
anonymized speaker vector. The EERs from different setups are
plotted in Figure 3. The CERs are plotted in Figure 4. Note that,
when CORAL was used, we also analyzed the impact of using
different amounts of data to estimate the CORAL transforma-
tion matrix. The label “w/CORAL-N” in the figures indicates
using N randomly-chosen speaker vectors from the source and
target domain respectively. All the results for CORAL transfor-
mation are computed over 5 runs of speaker vector selection.
Monolingual vs. Multilingual HiFi-GAN: In the Resynthe-
sized setup, the SAS using multilingual training data for HiFi-
GAN achieved a CER of 13.63%, which is lower than 14.81%
when using monolingual data. Meanwhile, the EERs in both
cases are equal to 9.13%. When anonymization was conducted,
the SASs using multilingual HiFi-GAN achieved lower CERs
than their counterparts using monolingual HiFi-GAN in most
of the setups except when no CORAL was used (w/o CORAL,
19.02% > 18.92%). Specifically, when the Mandarin CORAL
was used, the multilingual HiFi-GAN outperformed the mono-
lingual case in terms of CER, no matter how much data was
used to estimate the CORAL matrix.

These results indicate that the multilingual data is helpful to
obtain a robust HiFi-GAN to preserve the speech contents bet-
ter. The improvement is expected to be larger when the domain
mismatch on the anonymized speaker vectors is reduced using
CORAL. The EERs were roughly similar no matter which HiFi-
GAN was used. Therefore, the benefit of using the multilingual
HiFi-GAN is mainly on the better preservation of the speech
contents, rather than better protection of the speaker identity.
CORAL: Compared to “w/o CORAL”, all the EERs on the Ig-
norant condition of “w/CORAL-*” were successfully increased
regardless of the choice of HiFi-GAN training data, CORAL
types, and amount of data for CORAL matrix estimation. Sim-
ilarly, the CERs were significantly decreased after applying
CORAL. These results suggest that the mismatch from the

Table 2: EER values on Lazy-informed condition for the SAS us-
ing Multiligual HiFi-GAN and different CORAL configurations.

EER(%) w/o CORAL CORAL-10 CORAL-10-100
General 22.17 26.93 25.93
Mandarin 22.17 23.33 21.66

anonymized speaker vectors severely affected the SAS, and
CORAL is effective to reduce various types of mismatches (e.g.,
language and channel) between different datasets/domains.

For the different configurations for CORAL, we first ob-
served that the oracle Mandarin CORAL performed better on
CERs than the general CORAL. However, their differences on
EERs are not obvious. This indicates that the SAS performance
on speech content preservation is more sensitive to the mis-
match of anonymized vectors than the CORAL configurations.
For speaker identity protection, using the general CORAL is
sufficient. Interestingly, unlike DNN-based methods, using
larger N to estimate the CORAL matrix did not constantly im-
prove the results. Using 20 samples (w/CORAL-20) generally
performed well in terms of EER and CER. The reason is that
users and attackers randomly choose speaker vectors from the
target domain individually to approximate CORAL transforma-
tion matrices. These matrices can be very different if the num-
ber of the speaker vectors N is relatively small, which increases
the randomness of the new anonymized speaker vectors used by
the users and attackers. Therefore, speaker identity information
can be protected better.

Considering that the users may prefer to choose smaller N
to protect their privacy, while an attacker may be interested to
use larger N to find a more precise CORAL transform matrix
on the Lazy-informed condition, we then set N = 10 for users
and N = 100 for attackers to compute the CORAL matrix inde-
pendently, denoted CORAL-10-100. The results from Table 2
show that the EERs of CORAL-10-100 are lower than those of
CORAL-10 for both general and Mandarin cases in an accept-
able level. Furthermore, ”General CORAL-100-10” still per-
forms better than ”w/o CORAL”.

5. Conclusions
This paper analyzed the previously proposed SSL-based SAS
under unseen conditions. Two hypotheses, which are that
the performance bottleneck exists in the HiFi-GAN and in
anonymized speaker vectors, were presented and experimen-
tally verified. The results indicate that increasing the language
diversity for the HiFi-GAN benefits the preservation of speech
contents. The mismatch on the anonymized speaker vectors
severely affect the SAS. The SAS using multilingual HiFi-GAN
and CORAL strategy easily outperforms the previous SAS us-
ing monolingual HiFi-GAN on both privacy and utility.
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Noé, and M. Todisco, “Introducing the VoicePrivacy Initiative,” in
Proc. Interspeech, 2020, pp. 1693–1697.

[3] N. Tomashenko, X. Wang, E. Vincent, J. Patino, B. M. L. Srivas-
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