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Abstract

We introduce the task of isochrony-aware machine transla-
tion which aims at generating translations suitable for dubbing.
Dubbing of a spoken sentence requires transferring the content
as well as the speech-pause structure of the source into the tar-
get language to achieve audiovisual coherence. Practically, this
implies correctly projecting pauses from the source to the target
and ensuring that target speech segments have roughly the same
duration of the corresponding source speech segments. In this
work, we propose implicit and explicit modeling approaches
to integrate isochrony information into neural machine trans-
lation. Experiments on English-German/French language pairs
with automatic metrics show that the simplest of the considered
approaches works best. Results are confirmed by human evalu-
ations of translations and dubbed videos.

Index Terms: Machine Translation, Isochrony, Prosody,
Verbosity, Automatic Dubbing

1. Introduction
Recent advancements in machine translation (MT), largely due
to the success of transformer models, have improved the qual-
ity of MT significantly [1]. However, when MT is applied to
specific use cases, like subtitle translation or automatic dub-
bing [2, 3, 4], translation quality is not the only dimension by
which a model’s performance is evaluated. In subtitles, trans-
lation of a source sentence should fit in a fixed block size [5].
Automatic Dubbing requires isochrony i.e. when the charac-
ter is on-screen the translation (of source utterance line) should
match the timing of original speech and speech-pause temporal
arrangement in the original audio [6]. This means, pauses in
the source utterance should be projected into the target transla-
tion in relatively similar positions [7]. In this paper, our focus
is on translation and projection of pause markers in the correct
position to enable isochrony in dubbing.

Currently in an automatic dubbing pipeline [2, 3, 4], a
source utterance is first translated and then a prosodic align-
ment (PA) model [6] segments the translated text into phrases
and pauses following the phrase-pause arrangement of the
source utterance [4, 6].1 In these two steps, two distinct mod-
els are deployed, one for translation and one for segmentation,
which is clearly a sub-optimal solution. Our hypothesis is that
better and more suitable translations could be generated by tak-
ing into account the phrase-pause structure to be targeted.

In this paper, we propose to combine the two steps into
a single MT model that directly generates translations includ-
ing pause markers. We, therefore, introduce a new task of
Isochrony-Aware MT (IAMT) where MT system should jointly

*This work was done during an internship at Amazon.
1In this paper, following [6] we define pause as 300ms of silence

between two consecutive spoken words. We define a phrase (or inter-
changeably a segment) as the text between two pauses.

transfer both meaning and the phrase-pause structure from
source to target language.

The task of IAMT is challenging in different ways: 1) MT
needs to learn two distinct modeling problems: MT and PA;
2) while learning to project pauses, MT should not deteriorate
translation quality; 3) MT should temporally map a source seg-
ment (text between two pauses) into a target segment of similar
duration. In particular, the third challenge requires MT to con-
trol the verbosity of translation at the segment level rather than
just at the sentence level.

As part of recent efforts to achieve a better synchrony be-
tween source and target speech, most of the works have been
focused on controlling the length of translated text i.e. its ver-
bosity. [8] introduced a prefix verbosity control token to con-
trol for length and later [9] extended the same by generating
multiple length controlled hypotheses and rescoring them ac-
cording to a synchrony score [10]. [8, 11] controlled the ver-
bosity by utilizing positional encoding in the transformer archi-
tecture [1] while [12] constrained the beam search to generate
similar (source) length translations. With regards to synchroniz-
ing translation with speech, [4] introduced a prosodic alignment
model and later [6] improved over that by utilizing speaking
rate information and cross-lingual semantic matches to project
source pauses to the target translation while [13] leverages the
attention weights in neural MT. None of the previous works
have looked at the problem of translation while maintaining
speech synchronization as a whole except in a related work
where [14] jointly learns to translate and project line breaks in
the context of subtitling.

Despite the progress in adapting MT to use cases such as
automatic dubbing, and subtitling, incorporating isochrony in-
formation in MT has not yet been explored. The main contribu-
tions of this work are:

• Introduce the task of IAMT, investigate several ap-
proaches and report experimental results on a publicly
available speech translation data set.

• Introduce a suite of automatic metrics to jointly evaluate
phrase-pause alignment and verbosity of the translated
phrases with respect to the source.

• Run subjective human evaluations on different MT sys-
tem outputs and the final dubbed videos to measure the
impact of the proposed approaches.

2. Isochrony-Aware Machine Translation
The task of IAMT involves translating sentences in source lan-
guage containing pause markers correctly to the target language,
which includes 1) projection of the pause markers and 2) ver-
bosity control of phrases (see Fig. 1). To incorporate vari-
able speaking styles, we refer to phrase as the text between two
pauses, and not necessarily a group of words acting as a gram-
matical unit.Below we will discuss our proposed approaches of
implicitly and explicitly formulating IAMT.
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well, i was next.

na gut, [pause] jetzt war ich dran. 
na gut, jetzt war ich dran. 

well, [pause] i was next.

na gut, [pause] jetzt war ich dran. 

Figure 1: Two step approach of translation and pause projection using MT and prosodic alignment [15] systems (left), and the proposed
IAMT model generating translations along with [pause] markers denoting the temporal speech pause (right).

Method MT+PA MT+[pause] MT+DIS Emb MT+DIS Att
SA 100 98.9 30.1 30.1

Table 1: Preliminary results on En-De shows disentangled
features (MT+DIS*) with embedding concatenation (Emb) or
cross-attention (Att) under perform in terms SA metric.

2.1. Implicit Control of Pause Marker positions

2.1.1. Pause Marker (MT+[pause])

Injecting meta information or linguistic markers in neural MT
is a well studied topic [16, 17, 18]. A straightforward approach
is to insert pause markers in the source and/or target text be-
ing generated. We simply add a [pause] token to delineate
pauses in the source and target sentences. The MT model learns
the phrase boundaries implicitly leveraging the [pause] posi-
tions along with tokens of the sequence. This way we incorpo-
rate pauses directly in the vocabulary of the model which allows
it to learn semantics of the marker itself, and at the same time
it implicitly learns to control the verbosity of the phrase by de-
marcating the phrase boundaries.

2.1.2. Disentangling Feature (MT+DIS*)

Factored MT has been used to inject external knowledge infor-
mation in MT [19, 20] via a source factors [20, 21] and/or as a
target factors [22]. This factorization allows the model to disen-
tangle the meta information from the actual input. In our case,
we add a binary feature in both source and target side as sepa-
rate factors indicating whether there is a pause marker after the
current token. The model then use these disentangled features
to output two predictions: the next token, and whether there is
a pause marker after the next token.

We experiment with two ways of modeling these two fea-
tures: i) concatenating the embeddings of features and tokens
in the input layer, and ii) having distinct encoders and decoders
for tokens and binary features, connected by cross attention to
model interactions between tokens and features.

We ran preliminary experiments with MT+[pause] and
the disentangling approaches (see Table 1) against a strong
baseline (MT+PA) where we first translate and then use a sepa-
rate prosodic alignment model (with access to speech features)
to project the pauses from source to target. These systems were
evaluated on Over-/Under- Segmentation Accuracy (SA) i.e. ac-
curacy of generating the same number of phrase segments in the
target with respect to the source. SA is an initial indicator of the
performance of the model on projection of pauses. To circum-
vent the lack of labeled training data with [pause] markers, we
use a simulated training data for this process (refer Sec. 3.1 for
more details). As it turns out, the segmentation accuracy goes
down significantly for models with the disentangling feature,
thus, we did not pursue this approach any further.

2.2. Explicit Control of Pause Marker positions

A drawback of the implicit approaches is the lack of control
over the verbosity of each phrase between the pauses at infer-
ence time. While the projection of pause markers is important,
we also need to control for the verbosity of phrases to achieve
isochrony [23]. As a result, we further consider the objective of
controlling the verbosity of each phrase and as a by product, we
can also maximize the SA.

In previous work [24, 8], verbosity control is implemented
using length-dependent positional encoding. Motivated by this,
we look at the problem of transferring pause markers as a mod-
eling problem. The main difference from their work is that in
ours (MT+LC) we have to control for verbosity at phrase level.

Similar to [8], we first compute the ratio of number of char-
acters left to generate in the target sequence: 1 − # char generated

# total char
where total char is the length of the target phrase. These float-
ing point ratios on intervals of 0.1 from 0 to 1 are then quan-
tized to an integer value between 0 and 10. The final embedding
is the sum of token embeddings, sinusoidal positional embed-
dings [1], and the length dependent positional embeddings.

During training, the model uses the total number of charac-
ters in the reference target phrase to compute the ratio of char-
acters left to generate. At inference time, where we do not have
references, the model uses the total number of characters in the
source phrase to compute the ratio of characters left to gener-
ate. Different from [24, 8] which stopped generating at end-of-
sequence token, we stop generating when the ratio of characters
left to generate is zero.

3. Experiments

3.1. Dataset

The HEROES data released by Oktem et. al. (2018) [13] is the
only publicly available data for the task of IAMT for English-
Spanish, however, it contains 7,000 samples in total which ren-
ders it rather small to train MT model. MuST-Cinema data [25]
on the other hand has ≈200,000 samples for 7 language pairs
but it is created specifically for speech to subtitles translation
task, where segmentation is done on the basis of fixed length
constraints (e.g. 42 characters), while for IAMT we require
segmented input based on speech-pause information contained
in the source audio.

MT model training with the proposed approaches require
the source and target sentences to contain pause markers so
that the model can learn to translate the content and project the
pauses to the target side. However, since this information is
unavailable from any of the open source data sets, we leverage
the MuST-C speech-to-text translation data set [26], to create
training and gold standard test sets.



3.2. Datasets for IAMT

3.2.1. Training Data

Training models for the IAMT task requires a much larger
dataset (than the available ones) and performing forced align-
ment (for source pause markers) and post-editing (for target
pause markers) at scale is very costly and time-consuming. To
obtain source pause markers, a viable alternative is to use punc-
tuation like comma or period characters. However, analyz-
ing examples from MuST-C-495 (refer Sec 3.2.2), we noticed
that the speakers do not necessarily pause in correspondence of
these punctuation characters or other linguistic cues in the text.
Rather, they pause at any point of time - for instance to catch
their breath or get a glass of water during their talk.

To generate the training data, we insert the pause markers in
the source text in the following way: First, we computed a dis-
tribution of source phrase lengths from the source side of MuST-
C-495 set. Second, we randomly sampled a phrase length from
this distribution and inserted pause markers after that desired
phrase length. This way, we generated a phrase-pause structure
in the source side of training data. To obtain target pause mark-
ers, we run a light weight PA module [6] (i.e. using only the
cross-lingual semantic match features), to project pause mark-
ers from source to target text. In this way, for the train/dev
data sets we collected about 200,000 sentence pairs with pause
markers synthetically generated in both the source and target
languages for two directions, English-German/French.

3.2.2. Evaluation Data

For evaluation, we collected unique pairs of 495 sentences
from the official MuST-C test set (which contain duplicate sen-
tence pairs). Given the corresponding audio, [6] annotated the
pause information in the source sentence by force aligning the
text with audio using Gentle aligner [27]. For each phrase in
the source sentence, the corresponding target phrase was post-
edited with human annotators to create a parallel data with
phrase-pause structure where the target phrases were similar in
length to the source phrases.

3.3. Models

The baseline model (MT+PA) is a two step approach where
we first translate the source text without pause marker using
MT, and project the pause markers using the light weight PA
module [6]. For IAMT task, we train models using the im-
plicit (MT+[pause]) and the explicit (MT+LC) approaches
proposed in Sec. 2.

Moreover, we compare the proposed models against the two
step approach of Lakew et. al. [9]+PA approach, that trains MT
with verbosity control, cascaded with the application of light-
weight PA (as described in Sec 3.2.1). For all MT training we
use the transformer base [1] model configuration.

3.4. Evaluation Metrics

Given that IAMT task is more complex than a standard trans-
lation task, we introduce additional metrics to measure three
attributes: i) translation quality at phrase level, ii) segmentation
accuracy, and iii) length compliance across source and target
phrases.

We measure overall translation quality (at corpus level) us-
ing detokenized BLEU [28], while at phrase level we evalu-
ate translation quality with ChrF score [29] (ChrF-Phrase) as
precision for higher order n-grams might skew BLEU towards

Method BLEU ChrF-Phrase SA PhraseLC Acceptability

E
n-

D
e MT + PA 27.5 58.5 100 16.1 9.6

MT + [pause] 27.8 59.5 99.8 19.7 11.7
MT + LC 26.5 50.4 100 39.1 19.7

Lakew et. al. [9]+PA 28.8 51.2 100 43 22

E
n-

Fr

MT + PA 36.9 67.1 100 18.6 12.6
MT + [pause] 38.0 68.8 96.3 20.1 13.8

MT + LC 31.2 58.8 100 20.1 11.8
Lakew et. al. [9]+PA 38.4 60 100 43.1 25.8

Table 2: Results comparing the proposed IAMT approaches,
MT+[pause] and MT+LC against the cascaded baseline
MT+PA and the current best MT with verbosity control mecha-
nism of Lakew et. al. [9]+PA, on MuST-C-495 test set [6].

Method Acceptable Fixable Wrong

E
n-

D
e MT + [pause] 26.2 35.3 38.5

MT + LC 12.1 29.0 58.9
Lakew et. al. [9] 26.8 36.7 36.5

E
n-

Fr

MT + [pause] 26.5 35.8 37.69
MT + LC 8.2 28.2 63.6

Lakew et. al. [9] 31.9 41.2 26.9
Table 3: Human evaluation of MT system outputs (without
pauses) on a 200 randomly selected unique samples from the
post-edited benchmark.

zero. To measure the accuracy of the projection of pauses over a
data set, we compute the % of sentences for which the number
of pauses in the target is the same as in the source (SA, seg-
mentation accuracy). For verbosity control, to measure length
compliance at the phrase level, we consider the % of sentences
where length of every target phrase is within ±10% range in
character count of the corresponding (order wise) source phrase
(PhraseLC). Implicitly, PhraseLC also takes into account that
number of pauses on either side should be the same.

Finally, we compute a single score, that gives an overall
picture of the three attributes in question: Acceptability =
ChrF -Phrase ∗ PhraseLC.

4. Results: Automatic Evaluation

Table 2 collects results for all systems evaluated on MuST-C-
495 post-edited test set for both En-De and En-Fr language
pairs. Looking at the Acceptability scores, the approach of
Lakew et. al. [9]+PA achieves the best results but this is ex-
pected as it first applies MT and a re-ranking module to con-
trol for verbosity, and then leverages a PA module (trained with
speech features) specifically for phrase segmentation. Our aim
is not to improve over this cascaded system rather get as close as
possible without deploying multiple modules into production.

The most interesting finding is that while MT+LC outper-
forms the MT+PA on length compliance of phrases it does so
at trade-off with translation quality (c.f. ChrF-Phrase). This is
expected because MT+LC optimizes on phrase level verbosity
control. MT+[pause] on the other hand, consistently fares
better against a strong baseline of MT+PA in terms of ChrF-
Phrase, PhraseLC and Acceptability score. This means an im-
plicit way of integrating pause markers into MT provides a bet-
ter trade-off on all three attributes.



(I) A B C D B
′

D
′

En-De Smoothness 51.9 56.3 65.6 48.4 56.6 55.9
En-Fr Smoothness 44.8 53.1 60.0 40.0 55.2 53.3

(II) A vs. B A vs. C B vs. C D vs. B D
′

vs. B
′

En-De Wins 32.0 41.0∗ 48.4 30.8∗ 51.7 30.1∗ 34.8 40.9+ 37.4 37.5
En-Fr Wins 36.9 38.2 61.4 25.8∗ 60.9 22∗ 29.9 43.4∗ 45.0 35.1∗

Table 4: (I) Automatic smoothness metric [6] and (II) Subjective user preferences (% of Wins) for automatic dubbing in a head to head
comparison of: (A) MT+PA, (B) MT+[pause], (C) MT+LC, and (D) Lakew et al. [9]+PA. Models B

′
, D

′
are versions of models B, D

that also apply the relaxation mechanism in [6]. Significance testing is done for the Wins with levels p < 0.05 (+) and p < 0.01 (∗).

5. Results: Human Evaluation
5.1. Machine Translation Evaluation

Human evaluation follows a simple yet an effective strategy
to grade both quality and fluency of the MT outputs. Follow-
ing [30], we ask subjects to rate 200 randomly selected trans-
lation subset of the test as acceptable, fixable, or wrong with
respect to the reference.2

Table 3 show results comparing two of our proposed ap-
proaches against the state-of-the-art Lakew et al. [9] for MT
verbosity control. For En-De, MT+[pause] shows compa-
rable performance with acceptable translations at 26.2% with
respect to [9] at 26.8%. For En-Fr, MT+[pause] drops by
5.4% from the best performing [9]. For the MT+LC model,
we observed a large drop in the acceptable translations, which
we regard as the outcome of an aggressive verbosity control
that pushes the model to drop certain tokens. Overall, from
the MT human evaluation we confirm that implicitly model-
ing the pause information with MT is a promising direction for
Isochrony aware MT.

5.2. Dubbing Evaluation

We present results of human evaluation on a random subset of
50 single-sentence test videos. For each source sentence and
corresponding video clip, we create dubbed videos using the
dubbing architecture proposed by [4] with the following sys-
tems: (A) MT+PA, (B) MT+[pause], (C) MT+LC and (D)
Lakew et al. [9] + PA. For the two systems in which no sepa-
rate PA module is applied (B and C), time stamps of the source
pauses are directly projected to the corresponding target pauses.
For all systems, TTS audio is generated according to the dura-
tion of each target segment in order to fit the speech timing of
the video. To reduce the cognitive load, we conduct separate
evaluations comparing only two systems at a time. For all eval-
uations, we show as a reference a dubbed video generated from
manually post-edited and segmented translations. Human sub-
jects first watch the reference dubbed video and then rate view-
ing experience of videos dubbed with two systems on a scale of
0 to 10 with 10 being the highest quality and 0 being the worst
quality.

We run evaluations on En-De and En-Fr directions with 40
human annotators, who are native speakers in the target lan-
guage, with each of them grading 25 of the 50 videos, resulting
in a total of 1,000 data points for each comparison. We report
Wins, i.e., the % of times one system is preferred over the other.

Part (I) of Table 4 shows results for automatic evaluation
with the Smoothness metric [6] that computes the stability of
TTS speaking rate across contiguous target phrases. Part (II)
shows the results for subjective human evaluation with the Wins

2Acceptable: meaning is similar, fluency is good, Fixable: meaning
is similar, fluency is poor, and Wrong: meaning is different.

metric. For both automatic and human metrics system B out-
performs system A on both languages with relative improve-
ments for Smoothness (De: +8.5%, Fr: +18.5%) and Wins (De:
+28.1%, Fr: +3.5%) with statistically significant (p < 0.01)
difference in Wins for De. B significantly outperforms C on
both languages in terms of Wins (De: +57.1%, Fr: +137.9%).
Though C has the better Smoothness compared to B, as shown
in Sec. 5.1, C trades off on translation quality for improved
Smoothness and hence results in automatically dubbed videos
of lower quality.

5.2.1. Relaxation Mechanism

Comparing system D (with light weight PA, without speech
features) with B, the latter is better on both Smoothness (De:
+16.3%, Fr: +32.8%) and significant Wins (De: +17.5%, Fr:
+45.2%) for both languages. However, this result does not take
into account the relaxation mechanism [6] that can improve
speaking rate smoothness.

Therefore, we applied the relaxation on the above two sys-
tem and denote with B

′
and D

′
dubbing obtained with outputs

from B and D after applying the relaxation. Note that, for D
′

we apply a full fledged PA module (with speech features), while
B

′
is devoid of any such PA module. From Part (I), we observe

that Smoothness of D
′

and B
′

is improved as expected com-
pared to D and B. Additionally Smoothness of D

′
and B

′
are

now comparable. Also, D
′

beats B
′

for Wins on Fr (+28.2%,
p < 0.01) and obtains comparable Wins for De. The reason
is that after adding relaxation, while both systems reach com-
parable smoothness, D actually provides more acceptable trans-
lations than B (cf. Table 3). In fact, in order to generate high
quality dubs, both translation quality and speaking rates are nec-
essary components, and trading-off between these is the main
challenge for IAMT.

6. Conclusion
In this work, we introduced an isochrony-aware MT task, where
one has to transfer pause information from source to target
along with translating the content. We proposed metrics to eval-
uate on multiple attributes; the correct number of pause mark-
ers, their positions, and verbosity at the level of phrase seg-
ments. We compared our proposed approaches (to model pause
positions and translation) against strong baseline systems that
decouples MT and prosodic alignment steps. We conducted au-
tomatic and human evaluations both on translation quality and
on automatic dubbing, which relies on prosodic and temporal
information projected from the source. As it turns out, the best
approach to model both pause information and translation is to
simply inject the pause markers in the text and let the model
implicitly learn the two tasks.
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