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Abstract
Previous works on expressive speech synthesis focus on mod-
elling the mono-scale style embedding from the current sen-
tence or context, but the multi-scale nature of speaking style in
human speech is neglected. In this paper, we propose a multi-
scale speaking style modelling method to capture and predict
multi-scale speaking style for improving the naturalness and
expressiveness of synthetic speech. A multi-scale extractor is
proposed to extract speaking style embeddings at three differ-
ent levels from the ground-truth speech, and explicitly guide
the training of a multi-scale style predictor based on hierarchi-
cal context information. Both objective and subjective evalu-
ations on a Mandarin audiobooks dataset demonstrate that our
proposed method can significantly improve the naturalness and
expressiveness of the synthesized speech1.
Index Terms: text-to-speech, expressive speech synthesis,
speaker style modelling, multi-scale, BERT

1. Introduction
Text-to-speech (TTS) aims to generate intelligible and natural
speech from text. With the development of deep learning, TTS
models are now embodied with the ability to synthesize high-
quality speech with a neutral speaking style [1–3]. However, the
speaking style with limited expressiveness remains a clear gap
between synthesized speeches and human recordings, which
blocks the development of speech synthesis technology in many
application scenarios such as audiobooks, podcasts, and voice
assistants. Therefore, how to model expressive speaking style
is a hot research topic in academia and industry recently.

One of the general approaches is to extract the speaking
style representation from given reference audio [4–7], which
synthesizes speech conditioned on the extracted representation.
Compared with the reference audio-based methods, another line
that directly predicting the speaking style from text without aux-
iliary inputs is more practical and flexible. The text-predicted
global style token (TP-GST) model [8] is proposed to predict
the global-level style representation from text alone. Benefiting
from the great semantic representation ability of the pre-trained
language models, such as bidirectional encoder representations
from Transformer (BERT) [9], text representations derived from
the pre-trained language model have been used to predict speak-
ing style and shown gains in performance [10, 11].

Some early text-predicted methods concentrate only on the
current sentence, which fails to capture the style information in-
fluenced by the different context of neighbor sentences [12,13].

‡Work conducted when the first author was intern at Huya Inc.
† Equal contribution. ∗ Corresponding author.

1Speech samples: https://thuhcsi.github.io/interspeech2022-msc-tts

To avoid this problem, [14] proposes to use the neighbor sen-
tences to improve the prosody generation. Our preliminary
work [15] utilizes the hierarchical context encoder (HCE) to fur-
ther consider the hierarchical structure of context and predicts
the global-scale speaking style in an explicit way. These studies
demonstrate that taking a wider range of contextual information
into account is helpful for expressive speech synthesis.

However, HCE still suffers from the absence of local-scale
style modeling (e.g., intonation, rhythm, stress). To model
and control local prosodic variations in speech, some previ-
ous works attempt to predict finer-grained speaking styles from
text, such as word level [16, 17] and phoneme level [18, 19].
It is more widely accepted that the style expressions of human
speech are multi-scale in nature [20,21], where the global-scale
style is usually observed as emotion and the local-scale is more
close to the prosody variation [22, 23]. These styles from dif-
ferent levels work together to produce rich expressiveness in
speech. Towards this, some latest researches on similar tasks,
such as emotional speech synthesis [24, 25] and style trans-
fer [22], devote effort to performing a multi-scale style mod-
elling which however require auxiliary labels besides text. To
our best knowledge, there is currently no work investigating on
multi-scale speaking style prediction just from context.

In this paper, we propose a multi-scale speaking style mod-
elling method to capture and predict multi-scale speaking style
from hierarchical context information for expressive TTS. Our
model contains a multi-scale style extractor, a multi-scale style
predictor and a FastSpeech 2-based acoustic model. The extrac-
tor is used to extract style embeddings at global level, sentence
level and subword level from the ground-truth speech, and to ex-
plicitly guide the training of the multi-scale style predictor. The
predictor is based on HCE, and we exploit the hierarchical con-
text information of HCE in a more efficient way to predict style
embeddings at above three levels. To reduce the interference or
overlapping between speaking styles at different levels, residual
style embedding is introduced to represent effective style vari-
ations in speech. Both subjective and objective evaluations on
a Mandarin audiobook dataset demonstrate that the proposed
method can improve the naturalness and expressiveness of gen-
erated speech, benefiting from its ability to accurately predict
both global-scale and local-scale speaking styles from context.

2. Methodology
The architecture of our proposed model is illustrated in Fig.1.
It can be mainly divided into three parts, a multi-scale style
extractor, a multi-scale style predictor and a FastSpeech 2 [3]
based acoustic model. The acoustic model predicts the mel-
spectrogram of the current sentence with the assistance of the
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Figure 1: The architecture of our proposed model.

extractor or the predictor. The extractor is used to extract the
style embeddings at three different levels, and the predictor is
used to predict these style embeddings from the context.

2.1. Multi-Scale Style Extractor

To extract the multi-scale style embedding from the reference
speech, we specifically design a multi-scale style extractor, as
shown in Fig.2. The reference encoders and style token lay-
ers corresponding to three different levels make up this module.
All the reference encoders and style token layers have the same
architecture and hyperparameters as those of the GST [5].

Let L be the number of sentences considered in the past
and future context. The mel-spectrograms corresponding to all
2L + 1 sentences are concatenated and passed to the global
reference encoder to extract global reference embedding Eg .
The sentence reference encoder is used to extract sentence ref-
erence embedding Es from the mel-spectrogram of the current
sentence. Then the mel-speactrogram of the current sentence
is divided by the subword boundaries which are obtained from
the forced alignment phoneme boundaries and the subword-to-
phoneme alignments. The mel-spectrogram of each subword
goes through the subword reference encoder and the output is
denoted as a subword reference embedding Ew. The lower-
level embedding Ew may contain redundant style information
which has already been covered in the higher-level embedding
Es, and similarly for Es and Eg . To reduce such overlapping,
the residuals between three reference embeddings are represent
as the style variation, which can be described as:

Rg = Eg (1)
Rs = Es − Eg (2)
Rw = Ew − Es (3)

whereRg ,Rs andRw is the residual style embedding of global-
level, sentence-level and subword-level respectively.

The residual reference embeddings are passed to the corre-
sponding style token layers to be decomposed into a fixed num-
ber of style tokens respectively, which helps memorize stylistic
information at each level and reduce the difficulty of predic-
tion. After style token layers, the global-level style embedding
Sg , sentence-level style embedding Ss, and subword-level style
embedding Sw are obtained. Finally, for each subword in the
current sentence, the multi-scale style embedding is calculated
as the summation of these three levels of style embeddings.
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Figure 2: The structure of the multi-scale style extractor.

2.2. Multi-Scale Style Predictor

To better model the multi-scale speaking style, we extend the
HCE in our preliminary work [15] and design a multi-scale style
predictor. The lower-level style is derived by being conditioned
on the higher-level style. This structure is symmetrical with the
residual strategy in the style extractor.

The structure of the multi-scale style predictor is shown in
Fig.3, which consists of the HCE and three extra style predic-
tors. Each style predictor is composed of a linear layer and Tanh
activation. Besides the current sentence, the multi-scale predic-
tor also considers L sentences in the past or future. We firstly
concatenate all the 2L + 1 sentences to form a long new text,
and then pass them to a pre-trained BERT model to obtain the
subword-level semantic embedding sequence. The HCE con-
tains two levels of attention network, the inter-subword, and
inter-sentence, each of them contains a bidirectional GRU [26]
and a scaled dot-product attention module [27]. The bidirec-
tional GRU is used to get the context embedding by consider-
ing temporal relationships, and the attention module is used to
aggregate the context embedding sequence into a higher-level
embedding. We denote the output of inter-subword level bidi-
rectional GRU as subword context embedding Cw, the output
of inter-sentence level bidirectional GRU as sentence context
embedding Cs, and the output of inter-sentence level attention
module as global context embedding Cg .

The higher-level style embedding that closer to the global-
scale is firstly generated and then utilized as the conditional
input to the lower-level style predictor. In this way, the style
embeddings at three levels including Ŝg , Ŝs, and Ŝw are se-
quentially generated from the multi-scale style predictor. The
training targets of the predictor come from the corresponding
ground-truth style embeddings in the extractor. It is noteworthy
that these three style embeddings of different scales attempt to
restore the multi-scale speaking style in the human speech by
considering the context information of different levels. Finally,
these embeddings are added together to form the multi-scale
style embedding of each subword in the current sentence.

2.3. Acoustic Model

As shown in Fig.1, the backbone of the proposed method is
based on FastSpeech 2 [3]. The multi-scale style embedding
of each subword in an utterance is provided by the multi-scale
style extractor or the multi-scale style predictor. Then, accord-
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Figure 3: The structure of the multi-scale style predictor.

ing to subword-to-phoneme alignments, each multi-scale style
embedding is replicated to the phoneme-level and added to the
outputs of the phoneme encoder, and then passed to the variance
adaptor of FastSpeech 2 for generating mel-spectrogram.

2.4. Model Training

Generally, it is challenging for the multi-scale style predictor to
derive the multi-scale style in an implicit way. To encourage
this module to learn multi-scale style embedding better, the pa-
rameters of our proposed model are trained with the knowledge
distillation strategy in three steps.

In the first step, the acoustic model and the multi-scale style
extractor are jointly trained to get a well-trained multi-scale
style extractor in an unsupervised way. Especially, to prevent
the learning of style on multiple scales from disturbing each
other, the reference encoders and style token layer of global-
level, sentence-level and subword-level are trained sequentially
and separately. When training modules in one of these levels,
the rest are frozen.

In the second step, we leverage knowledge distillation to
transfer the knowledge from the multi-scale style extractor to
the multi-scale style predictor. That is, we use the speaking style
embedding of multiple levels extracted from the extractor as the
target to guide the prediction of the multi-scale style predictor
from text. The loss function of this step is defined as the sum
of the mean squared error (MSE) between the extracted speak-
ing style embeddings and the predict speaking style embeddings
in global-level, sentence-level, and subword-level. Finally, we
jointly train the acoustic model and multi-scale style predictor
with a lower learning rate by considering both the loss of the
mel-spectrogram and the loss of the speaking style embedding
to further improve the naturalness of synthesized speech.

3. Experiments
3.1. Training Setup

All the models2 are trained on an internal Mandarin audiobook
dataset, which contains roughly 30 hours of audiobook record-
ings created by a professional male native speaker reading a
fiction novel with rich expressiveness. The dataset has a total
of 14,500 audio clips, of which 95% of the clips are used for
training and 5% of the clips are used for validation and test.

For feature extraction, 80-dimensional mel-spectrograms
were extracted with 24kHz sampling rate. The frame size is set
to 1,200 and the hop size is set to 240. The phoneme duration
is extracted by Montreal Forced Aligner [28] tool. In addition,
we average ground-truth pitch and energy by duration to get
phoneme-level pitch and energy. An open-source pre-trained

2Implemented based on: https://github.com/ming024/FastSpeech2

Chinese subword-level BERT-base model3 is used in our exper-
iments. The context of current sentence is made up of its two
past sentences, itself and its two future sentences.

We train all the models for 220k iterations with a batch size
of 16 on an NVIDIA V100 GPU. For our proposed model, we
take 180k iterations to the first train step (60k iterations for each
extractor), 20k iterations to the second train step and 20k iter-
ations to the third train step. The Adam optimizer is adopted
with β1 = 0.9, β2 = 0.98, ε = 10−9 and the warm-up strategy
is employed before 4000 iterations. In addition, we use a well-
trained HiFi-GAN [29] as the vocoder to generate waveform.

3.2. Compared Methods

To demonstrate the performance of our proposed multi-scale
model, three baseline models are implemented for comparison:

FastSpeech 2 An open-source implementation2 of Fast-
Speech 2 [3].

WSV* Word-level style variations (WSV) model. For a fair
comparison, instead of Tacotron2 [1] used in the original ver-
sion of WSV [16], FastSpeech 2 was adopted as the backbone
in our implementation. In addition, an extra bidirectional GRU
is used to consider the context information.

HCE Hierarchical context encoder (HCE) [15] model,
which predicts the style on global-level from the context.

3.3. Subjective Evaluation

We conduct mean opinion score (MOS) test to evaluate the natu-
ralness and expressiveness of the synthesized speech. 25 native
Mandarin speakers are recruited as subjects to rate the given
speeches on a scale from 1 to 5 with 1 point interval. As shown
in Table 1, the results demonstrate the effectiveness of our pro-
posed methods over the baselines. There exists a large gap be-
tween FastSpeech 2 and Ground Truth, indicating that it is dif-
ficult to model multiple speech variations without enough input
information. Our proposed approach achieves the best MOS of
4.058, exceeding FastSpeech 2 by 0.485, WSV* by 0.377 and
HCE by 0.273.

Table 1: The MOS on naturalness and expressiveness of differ-
ent models with 95% confidence intervals.

Model MOS

Ground Truth 4.665± 0.074
FastSpeech 2 3.573± 0.094
WSV* 3.681± 0.080
HCE 3.785± 0.084
Proposed 4.058± 0.074

ABX preference test is also conducted to ask subjects to
give their preferences in terms of naturalness and expressive-
ness between a pair of speeches generated by different models.
We compare the proposed model with each of the three base-
line models. As shown in Fig.4, the preference rate of our pro-
posed model exceeds FastSpeech 2 by 54.8%, WSV* by 38%
and HCE by 26% respectively. Especially, some subjects re-
port the speech synthesized by the proposed model has richer
expressiveness than WSV*, and performs better than HCE on
the local style properties, such as intonation and stress.

Both MOS and ABX preference tests demonstrate that our
proposed approach significantly outperforms the three baselines
in terms of naturalness and expressiveness. Compared with the

3Available at: https://github.com/google-research/bert
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Figure 4: Results of the ABX test on naturalness and expressive-
ness between different models. NP means no preference.

basic FastSpeech 2 that only uses phone sequence as input, the
other three models (WSV*, HCE and our proposed model) all
perform better, indicating that considering context is helpful for
expressive speech synthesis. Our proposed model also achieves
superior performance than not only WSV* that just considers
the local-level style, but also HCE that solitarily considers the
global-level style. It demonstrates that modeling the speaking
style from different scales can improve the naturalness and ex-
pressiveness of synthesized speech significantly.

3.4. Objective Evaluation

The root mean square error (RMSE) of F0 and energy, and the
MSE of duration are adopted as the metrics of objective evalua-
tion following [3,16]. To calculate the RMSE of F0 and energy,
we first apply the dynamic time warping (DTW) to construct the
alignment paths between the predicted mel-spectrogram and the
ground-truth one. The F0 sequence and energy sequence are
then aligned towards ground-truth following the DTW paths.
For the duration, we compute the MSE between the predicted
duration and ground-truth duration. As shown in Table 2, our
proposed method outperforms the three baselines in all metrics,
which indicates that our proposed model can restore more accu-
rate prosody characteristics, such as pitch, energy and duration,
than baselines.

Table 2: Objective evaluations of different models.

F0 RMSE Energy RMSE Duration MSE

FastSpeech 2 65.266 5.162 0.2177
WSV* 64.807 5.221 0.2051
HCE 63.683 5.045 0.2088
Proposed 62.544 4.926 0.2014

3.5. Ablation Study

To demonstrate the effectiveness of several techniques used in
our proposed model, including utilizing global-level style, the
multi-scale framework and the residual style embedding, we
conduct three ablation studies. Comparison mean opinion score
(CMOS) is employed to compare the synthesized speeches in
terms of naturalness and expressiveness. The results are shown
in Table 3. The neglect of modeling global-level speaking style
results in −0.428 CMOS. Removing the multi-scale frame-
work (i.e., only modelling the subword-level speaking style) re-
sults in −0.640 CMOS. The results indicate the importance of
modelling speaking style representation of sentence-level and
global-level for expressive speech synthesis. Moreover, we
also find that removing the residual style embedding result in
−0.516 CMOS. This indicates that using residual style embed-
ding can represent effective style variations of speech by reduc-
ing the interference or overlapping between speaking styles of

HCE Ground Truth Proposed

Figure 5: Mel-spectrograms and pitch contours of speeches syn-
thesized by different models for an example utterance in test set.

different levels.

Table 3: CMOS comparison for ablation study.

Model CMOS

Proposed 0
-global-level style −0.428
-multi-scale framework −0.640
-residual style embedding −0.516

3.6. Case Study

To explore the impact of the multi-scale speaking style on the
expressiveness and naturalness of synthesized speech, a case
study is conducted to synthesize an example utterance in test
set with HCE and the proposed model, and the ground-truth
speech is also provided for reference. The mel-spectrograms
and pitch contours of synthesized speeches as shown in Fig.5.
The speech synthesized by HCE contains larger pitch fluctua-
tions than others. But due to the absence of local-scale speaking
style, it lacks the ability to control the local style characteris-
tics of synthesized speech, resulting in a large difference in the
trend of intonation compared with ground-truth speech. Com-
pared with HCE, the speech synthesized by our proposed model
is more similar to ground-truth speech in terms of fine-grained
style properties, such as the trend of intonation and stress pat-
terns. With the help of the multi-scale speaking style, our model
successfully learns the style variations of human speech, pro-
viding the effectiveness of the proposed model. The result of the
case study demonstrates that modelling the multi-scale speaking
style from hierarchical context information can effectively im-
prove the naturalness and expressiveness of generated speech.

4. Conclusions
In this paper, we propose a multi-scale speaking style modelling
method to capture and predict multi-scale speaking style from
hierarchical context information for expressive TTS. Experi-
mental results demonstrate that our proposed method achieves
better performance on expressive speech synthesis with the abil-
ity to predict both global-scale and local-scale speaking styles
from context accurately.

5. Acknowledgements
This work is supported by National Key R&D Program of
China (2020AAA0104500), National Natural Science Foun-
dation of China (62076144), National Social Science Foun-
dation of China (13&ZD189) and Shenzhen Key Laboratory
of next generation interactive media innovative technology
(ZDSYS20210623092001004).



6. References
[1] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,

Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural
tts synthesis by conditioning wavenet on mel spectrogram pre-
dictions,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 4779–
4783.

[2] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan,
S. Narang, J. Raiman, and J. Miller, “Deep voice 3: Scaling text-
to-speech with convolutional sequence learning,” in International
Conference on Learning Representations, 2018.

[3] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“Fastspeech 2: Fast and high-quality end-to-end text to speech,”
in International Conference on Learning Representations, 2020.

[4] R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stan-
ton, J. Shor, R. Weiss, R. Clark, and R. A. Saurous, “To-
wards end-to-end prosody transfer for expressive speech synthesis
with tacotron,” in international conference on machine learning.
PMLR, 2018, pp. 4693–4702.

[5] Y. Wang, D. Stanton, Y. Zhang, R.-S. Ryan, E. Battenberg, J. Shor,
Y. Xiao, Y. Jia, F. Ren, and R. A. Saurous, “Style tokens: Unsu-
pervised style modeling, control and transfer in end-to-end speech
synthesis,” in International Conference on Machine Learning.
PMLR, 2018, pp. 5180–5189.

[6] Y.-J. Zhang, S. Pan, L. He, and Z.-H. Ling, “Learning latent rep-
resentations for style control and transfer in end-to-end speech
synthesis,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 6945–6949.

[7] P. Wu, Z. Ling, L. Liu, Y. Jiang, H. Wu, and L. Dai, “End-
to-end emotional speech synthesis using style tokens and semi-
supervised training,” in 2019 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA
ASC). IEEE, 2019, pp. 623–627.

[8] D. Stanton, Y. Wang, and R. Skerry-Ryan, “Predicting expressive
speaking style from text in end-to-end speech synthesis,” in 2018
IEEE Spoken Language Technology Workshop (SLT). IEEE,
2018, pp. 595–602.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[10] T. Hayashi, S. Watanabe, T. Toda, K. Takeda, S. Toshniwal, and
K. Livescu, “Pre-trained text embeddings for enhanced text-to-
speech synthesis.” in INTERSPEECH, 2019, pp. 4430–4434.

[11] Y. Xiao, L. He, H. Ming, and F. K. Soong, “Improving prosody
with linguistic and bert derived features in multi-speaker based
mandarin chinese neural tts,” in ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 6704–6708.

[12] X. Tan, T. Qin, F. Soong, and T.-Y. Liu, “A survey on neural
speech synthesis,” arXiv preprint arXiv:2106.15561, 2021.

[13] R. Clark, H. Silen, T. Kenter, and R. Leith, “Evaluating long-
form text-to-speech: Comparing the ratings of sentences and para-
graphs,” in Proc. 10th ISCA Speech Synthesis Workshop, pp. 99–
104.

[14] G. Xu, W. Song, Z. Zhang, C. Zhang, X. He, and B. Zhou, “Im-
proving prosody modelling with cross-utterance bert embeddings
for end-to-end speech synthesis,” in ICASSP 2021-2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2021, pp. 6079–6083.

[15] S. Lei, Y. Zhou, L. Chen, Z. Wu, S. Kang, and H. Meng, “Towards
expressive speaking style modelling with hierarchical context in-
formation for mandarin speech synthesis,” in ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2022, pp. 7922–7926.

[16] Y.-J. Zhang and Z.-H. Ling, “Extracting and predicting word-level
style variations for speech synthesis,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 29, pp. 1582–1593,
2021.

[17] Y. Ren, M. Lei, Z. Huang, S. Zhang, Q. Chen, Z. Yan, and
Z. Zhao, “Prosospeech: Enhancing prosody with quantized vector
pre-training in text-to-speech,” in ICASSP 2022-2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022, pp. 7577–7581.

[18] D. Tan and T. Lee, “Fine-grained style modeling, transfer and pre-
diction in text-to-speech synthesis via phone-level content-style
disentanglement,” arXiv preprint arXiv:2011.03943, 2020.

[19] C. Du and K. Yu, “Mixture density network for phone-
level prosody modelling in speech synthesis,” arXiv preprint
arXiv:2102.00851, 2021.

[20] E. Selkirk, “On derived domains in sentence phonology,” Phonol-
ogy, vol. 3, pp. 371–405, 1986.

[21] M. Liberman and A. Prince, “On stress and linguistic rhythm,”
Linguistic inquiry, vol. 8, no. 2, pp. 249–336, 1977.

[22] X. Li, C. Song, J. Li, Z. Wu, J. Jia, and H. Meng, “Towards multi-
scale style control for expressive speech synthesis,” arXiv preprint
arXiv:2104.03521, 2021.

[23] C.-y. Tseng, S.-h. Pin, Y. Lee, H.-m. Wang, and Y.-c. Chen, “Flu-
ent speech prosody: Framework and modeling,” Speech commu-
nication, vol. 46, no. 3-4, pp. 284–309, 2005.

[24] Y. Lei, S. Yang, and L. Xie, “Fine-grained emotion strength
transfer, control and prediction for emotional speech synthesis,”
in 2021 IEEE Spoken Language Technology Workshop (SLT).
IEEE, 2021, pp. 423–430.

[25] Y. Lei, S. Yang, X. Wang, and L. Xie, “Msemotts: Multi-scale
emotion transfer, prediction, and control for emotional speech
synthesis,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 2022.

[26] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” in
NIPS 2014 Workshop on Deep Learning, December 2014, 2014.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp.
5998–6008.

[28] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal forced aligner: Trainable text-speech align-
ment using kaldi.” in Interspeech, vol. 2017, 2017, pp. 498–502.

[29] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial net-
works for efficient and high fidelity speech synthesis,” Advances
in Neural Information Processing Systems, vol. 33, pp. 17 022–
17 033, 2020.


	1  Introduction
	2  Methodology
	2.1  Multi-Scale Style Extractor
	2.2  Multi-Scale Style Predictor
	2.3  Acoustic Model
	2.4  Model Training

	3  Experiments
	3.1  Training Setup
	3.2  Compared Methods
	3.3  Subjective Evaluation
	3.4  Objective Evaluation
	3.5  Ablation Study
	3.6  Case Study

	4  Conclusions
	5  Acknowledgements
	6  References

