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Abstract
Although deep Neural Networks (DNNs) have achieved
tremendous success in audio classification tasks, their uncer-
tainty calibration are still under-explored. A well-calibrated
model should be accurate when it is certain about its predic-
tion and indicate high uncertainty when it is likely to be inac-
curate. In this work, we investigate the uncertainty calibration
for deep audio classifiers. In particular, we empirically study
the performance of popular calibration methods: (i) Monte
Carlo Dropout, (ii) ensemble, (iii) focal loss, and (iv) spectral-
normalized Gaussian process (SNGP), on audio classification
datasets. To this end, we evaluate (i–iv) for the tasks of envi-
ronment sound and music genre classification. Results indicate
that uncalibrated deep audio classifiers may be over-confident,
and SNGP performs the best and is very efficient on the two
datasets of this paper.
Index Terms: Model calibration, Audio classification, Deep
neural networks

1. Introduction
Modern deep neural networks (DNNs) [1, 2, 3, 4] have been
widely utilized in many audio classification tasks such as multi-
media search and retrieval, urban sound monitoring, bioacoustic
monitoring, and audio captioning. For example, [5] has shown
that fully connected multi-layered perceptron (MLP), AlexNet
[6], Inception [7], and ResNet [8] significantly outperforms raw
features on the Audio Set [9] for Acoustic Event Detection
(AED) classification task.

Despite their extraordinary performance, DNNs are often-
criticized as being poorly calibrated and prone to be over-
confident, thus leading to unsatisfied uncertainty estimation
[10, 11, 12]. The process of adapting deep learning’s output
to be consistent with the actual probability is called uncertainty
calibration, and has drawn a growing attention in recent years
[13]. In practical applications, miscalibrated probability esti-
mates can be misleading in the sense that the end user of these
estimates has an incentive to mistrust (and therefore potentially
misuse) them [14].

Many research have been devoted to calibrating deep mod-
els in machine learning, computer vision (CV) and natural lan-
guage processing (NLP). [11] explored with several classical
calibration fixes and found that simple post-hoc methods like
Temperature Scaling [15] and Histogram Binning [16] are sig-
nificantly effective for DNNs. [17, 18] proposed to learn lin-
ear and non-linear transformation functions to rescale the orig-
inal output logits respectively. [19] proposed a mutual infor-
mation maximization-based binning strategy to solve the severe
sample-inefficiency issue in Histogram Binning. [20] showed
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that training models using the standard CE loss with label
smoothing, instead of one-hot labels, has a very favourable ef-
fect on model calibration. [21] proposed to improve uncertainty
calibration by replacing the conventionally used CE loss with
the focal loss proposed in [22] when training DNNs.

However, model calibration for audio classifiers is still
under-explored. Our goal is not only to understand whether
deep audio classifiers are miscalibrated, but also to study what
methods can alleviate this problem. As shown in Fig. 1, through
an empirical study we find that audio classifiers using ResNet-
50 is over-confident. In the topleft plot, the average confidence
of all samples is about 0.91, but the accuracy is only 0.84. The
topright shows the performance of a classifier calibrated by fo-
cal loss. Though the accuracy decreases to around 0.75, the
model’s confidence is consistent to its accuracy. We argue that it
is not trivial to transfer expertise in CV and NLP areas to audio
classification, due to the difference between various modalities.
we compare various calibration methods on three popular net-
work architectures, Inception, ResNet and DenseNet, and ex-
amine their performances on two audio classification datasets.
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Figure 1: Confidence histograms (top) and reliability diagrams
(bottom) for a base ResNet-50 audio classifier (left) and a cali-
brated method (right) on the ESC-50 dataset.

Our contributions can be summarized as follows:

• We verify the existence of miscalibration of deep classi-
fiers for audio datasets, which can raise the community’s
awareness of this uncertainty calibration problem.

• We empirically examine the performance of various cal-
ibration methods for audio classifiers, with SNGP per-
forms the best and is efficient.
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2. Background
2.1. Definition

Here we present some basic concepts for model calibration. In
this paper, we consider the multi-classification problem for au-
dio data, where we observe an audio (or its features) X and
predict a categorical variable Y ∈ {1, 2, . . . ,K}. A pre-
dictor f as a function that maps every input instance X to
a categorical distribution over K labels, represented using a
vector f(X) belonging to the (K − 1)-dimensional simplex
∆ = {p ∈ [0, 1]K |

∑K
y=1 py = 1}.

Intuitively, a model f is well-calibrated if its output truth-
fully quantifies the predictive uncertainty. For example, if we
take all data points x for which the model predicts [f(x)]y =
0.4, we expect 40% of them to indeed have the label y. For-
mally, the model f is said to be calibrated if [23]

∀p ∈ ∆ : P (Y = y|f(X) = p) = py. (1)

The most common measure of the degree of miscalibration
is the Expected Calibration Error (ECE), which computes the
expected disagreement between confidence and accuracy. Typ-
ically we first bucket the predictions into m (usually m = 10)
bins B1, . . . , Bm based on their top predicted probability, and
then takes the expectation over these buckets. Namely, if we are
given a set of n i.i.d. samples (x1, y1), . . . , (xn, yn), then we
assign each j ∈ {1, . . . , n} to a bucketBi based on max f(xj).
Consequently, we compute in each bucket Bi the

confidence(Bi) =
1

|Bi|
∑

j∈ Bi

max f(xj), (2)

accuracy(Bi) =
1

|Bi|
∑

j∈ Bi

1[yj ∈ arg max f(xj)], (3)

where the 1[yj ∈ arg max f(xj)] is an indicator function, tak-
ing 1 if yj ∈ arg max f(xj) otherwise 0. Finally, ECE is eval-
uated by taking the expectation over the bins

ˆECE =

m∑
i=1

|Bi|
n
|accuracy(Bi)− confidence(Bi)|. (4)

2.2. Popular Calibration Methods

Here we summarize popular uncertainty calibration methods
widely used in the literature.
Monte Carlo Dropout [24] proposes a way to approximate
Bayesian inference by employing dropout and generates a pre-
dictive distribution after a number of forward passes. Monte
Carlo (MC) Dropout [25, 26] is easy to use, and has zero mem-
ory overhead compared to a single model. Unfortunately, it re-
quires multiple forward passes which also result in a substantial
obstacle given the prevalence of BERT and other large trans-
former architectures [27].
Ensemble method casts a set of models under the same archi-
tecture with different parameter initialization or other pertur-
bations, encouraging independent member predictions. At test
time, the ensemble prediction is the average of soft-max out-
puts of multiple individually trained models to evaluate the fi-
nal accuracy. Independent trained identical models create di-
versity in ensembles due to differences in model initialization
and mini-batch orderings [28], which results in different local
optimal solutions. [29] proposed the Mix-n-Match calibration
strategies which achieves remarkably better data-efficiency and
expressive power while provably maintaining the classification
accuracy of the original classifier. However, ensemble methods

are parameter-efficient but still require multiple forward passes
from the model, which consumes larger computing resources
than other methods.
Focal loss is originally proposed to address the class imbalance
problem in object detection [22]. It reshapes the standard CE
loss through weighting loss components of all samples accord-
ing to how well the model fits them. Therefore it focuses on
fitting hard samples and prevents the easy samples from over-
whelming the training procedure. [21] verified the effectiveness
of focal loss for uncertainty calibration. [30] studied how to re-
cover the true class-posterior probability from the outputs of the
focal risk minimizer.
Spectral-normalized Neural Gaussian Process (SNGP) This
method employs a Gaussian process, boosting the model’s abil-
ity to properly quantify the distance of a testing example from
the training data manifold and enable a DNN to achieve high-
quality uncertainty estimation [31]. Specifically, on top of mod-
ern DNNs, it adds a weight normalization step during training
and replacing the output layer with a Gaussian Process.

3. Experiments
We implement various calibration methods in Python. Our code
is publicly available at a github repository1.

3.1. Datasets

We conduct extensive experiments on two commonly used
datasets: ESC-50 and GTZAN. Details on these two datasets
are presented as follows.
ESC-50 is a collection of short environmental recordings avail-
able in a unified format (5-second-long clips, 44.1 kHz, single
channel, Ogg Vorbis compressed @ 192 kbit/s). It consists of
a labeled set of 2000 environmental recordings (50 classes, 40
clips per class). We split the whole dataset into training, vali-
dation and testing sets in the ratio of 8:1:1, while keeeping the
labels balanced.
GTZAN[32] The GTZAN dataset consists of 1000 music clips
each of length 30s. There are 10 distinct genre classes. The mu-
sic clips are sampled at a rate of 22.5 kHz. There is no official
training and validation split of the dataset. Therefore we split
the whole dataset into training, validation and testing sets in the
ratio of 6:2:2, while keeeping the labels balanced.

3.2. Preprocessing

The input audio signal is re-sampled to 22.5 kHz at the pre-
processing step. Re-sampling is applied to reduce dimensional-
ity of the input signal. In addition, every sample is padded with
zeros to guarantee uniformity in input data. Each audio is trans-
formed as a 2-dimensional feature map representing frequen-
cies with respect to time [33]. Since mel-spectrograms with
different window sizes and hop lengths in each channel yield
varied classification performance. The mel-spectrograms were
obtained using 128 mel bins and then log scaled. For ESC-50,
we use the input of size (128, 250), whereas, for GTZAN, we
use the input of size (128, 1500).

3.3. Experimental configuration

A well-calibrated deep learning model should: 1.) produce
confidence scores close to its accuracy; and 2.) exhibit higher

1https://github.com/shijing001/Unicertainty_
calibration_audio_classifiers
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uncertainty on inputs far away from training data. To empiri-
cally evaluate the performance of calibration methods, our ex-
periments are divided into two parts: in-distribution calibra-
tion and out-of-distribution detection. In-distribution calibra-
tion measures how well a model’s predicted confidence aligns
with observed accuracy. Out-of-distribution detection measures
the ability of a model to reject OOD inputs.

For the in-distribution calibration, we train classifiers with
various methods, and take the output of softmax as predicted
probabilities, and then evaluate the ECE scores. For evaluat-
ing out-of-distribution detection, we conduct our experiments
in the similar approach as introduced by [34]. In these ex-
periments, a neural network is first trained on some ESC-50
data, which represents the in-distribution examples. Out-of-
distribution examples are represented by music audio exam-
ples from GTZAN that contain classes different from those
found in the in-distribution dataset. For each sample in the
in-distribution test set, and each out-of-distribution example,
a confidence score is produced, which will be used to predict
which distribution the samples come from. Finally, several dif-
ferent evaluation metrics are used to measure and compare how
well different confidence estimation methods can separate the
two distributions.

3.4. Deep Learning models

We employ three popular CNN architectures as the backbone in
our experiments: Inception, ResNet and DenseNet.
Inception An Inception Layer [35] is a combination of all the
layers namely, 1 × 1 Convolutional layer, 3 × 3 Convolu-
tional layer, 5 × 5 Convolutional layers with their output filter
banks concatenated into a single output vector. Here we used
Inception-V3 backbone.
ResNet [8] The residual block has two 3× 3 convolutional lay-
ers with the same number of output channels. Each convolu-
tional layer is followed by a batch normalization layer and a
ReLU activation. A skip connection is added which skips these
two convolution operations and adds the input directly before
the final ReLU activation. Here we used ResNet-50 backbone.
DenseNet[36] Dense Convolutional Network (DenseNet), con-
nects each layer to every other layer in a feed-forward fashion.
For each layer, the feature-maps of all preceding layers are used
as inputs, and its own feature-maps are used as inputs into all
subsequent layers. Traditional convolutional networks with L
layers haveL connections one between each layer and its subse-
quent layer a dense network has L(L+1)/2 direct connections.
We used DenseNet-201 backbone for the experiments.

3.5. Calibration Methods

Here are some details on how we implement popular calibration
methods.
Focal loss makes the model focus on hard training examples,
paying less attention to easy examples. In this experiment, we
set the tuning parameters α = 0.25 and γ = 2 for focal loss.
MC Dropout: We implement the dropout with 10 dropout sam-
ples for all CNN layers with probability 0.1.
Ensemble We trained M = 5 independent models to predict
audio classification scores, using the same architecture, with
different initialization values. At test time, the ensemble predic-
tion is the average of soft-max outputs of these M individually
trained models to evaluate the final accuracy.
SNGP Following [31], we implement SNGP methods for three
network architectures, and employ Laplace approximation for
inference.

Table 1: Accuracy and ECE for In-distribution calibration
of the base architecture (no calibration) and four calibration
methods (focal loss, MC dropout, Ensemble and SNGP) on two
datasets

Archit. Method ESC-50 GTZAN
Acc↑ ECE↓ Acc↑ ECE↓

ResNet

+base 0.835 0.106 0.734 0.195
+focal 0.765 0.049 0.643 0.127
+Dropout 0.830 0.093 0.764 0.121
+Ensemble 0.831 0.091 0.738 0.184
+SNGP 0.845 0.048 0.784 0.069

DenseNet

+base 0.905 0.059 0.829 0.077
+focal 0.886 0.055 0.822 0.057
+Dropout 0.915 0.053 0.849 0.054
+Ensemble 0.895 0.051 0.844 0.071
+SNGP 0.930 0.034 0.839 0.075

Inception

+base 0.715 0.138 0.754 0.158
+focal 0.644 0.106 0.758 0.054
+Dropout 0.720 0.073 0.748 0.121
+Ensemble 0.728 0.122 0.750 0.149
+SNGP 0.785 0.054 0.779 0.086

3.6. Evaluation Metrics

ECE:[37] is used to evaluate calibration metric from in-
distribution classification. We group all samples into m = 10
equally interval bins with respect to their confidence scores,
then calculating the expected difference between the accuracy
and average confidence, shown in Eq. (4). Smaller ECE scores
means better performance.
AUROC: measures the Area Under the Receiver Operating
Characteristic curve. It can be interpreted as the probability that
a positive example (in-distribution) will have a higher detection
score than a negative example (out-of-distribution).
AUPR: measures the Area Under the Precision-Recall (PR)
curve. The PR curve is made by plotting precision =
TP/(TP + FP ) versus recall = TP/(TP + FN). In our
tests, AUPR indicates that out-of-distribution examples are used
as the positive class. Both AUROC and AUPR are used to eval-
uate the performance of out-of-distribution detection, and larger
values meaning better performance.

3.7. Results and Analysis

Here we present the results and analysis of our experiments.
In-distribution calibration We begin by considering ECE
on two datasets: ESC-50 and GTZAN. Table 1 shows in-
distribution ECE and accuracy of the three base architectures
(Inception-V3, ResNet-50, and DenseNet-201) and four cali-
bration methods. As shown in Table 1, for predictive accuracy,
SNGP consistently performs the best for both datasets across
three network architectures. For calibration error (ECE), SNGP
clearly outperforms the other approaches on ESC-50 dataset
and is also competitive on GTZAN dataset. The performance
of other methods vary significantly across different architec-
tures and datasets, but are significantly better than the uncali-
brated base model in terms of ECE. Among three architectures,
DenseNet-201 achieves better accuracy and ECE than ResNet-
50 and Inception-V3. This is mainly because it has much more
layers (201) than others. Therefore, network architecture also
affects the performance of calibration methods.

Figure 2 displays the reliability diagrams of the base
ResNet-50 (no calibration) and four calibration methods on the
two datasets: ESC-50 (top row) and GTZAN (bottom row). On
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Figure 2: Reliability diagrams of the ResNet-50 architecture and four calibration methods (focal loss, MC dropout, Ensemble and
SNGP) on two datasets: ESC-50 (top row) and GTZAN (bottom row). Less gap between the expected (pink bars) and the output (blue
bars) means better performance.

Table 2: Performance of the base architecture and four calibra-
tion methods (focal loss, MC dropout, Ensemble and SNGP) for
out-of-distribution (OOD) detection

Archit. Method AUROC↑ AUPR↑

ResNet

+base 0.828 0.848
+focal 0.756 0.788
+Dropout 0.834 0.858
+Ensemble 0.835 0.853
+SNGP 0.849 0.881

DenseNet

+base 0.879 0.894
+focal 0.885 0.906
+Dropout 0.878 0.893
+Ensemble 0.885 0.900
+SNGP 0.928 0.944

Inception

+base 0.713 0.763
+focal 0.643 0.661
+Dropout 0.724 0.760
+Ensemble 0.733 0.778
+SNGP 0.788 0.811

each plot, less gap between the output bars (blue) and the ex-
pected bars (pink) means better performance. From this figure,
both focal loss and SNGP yields less gap than other methods.
Out-of-distribution detection To evaluate how suitable the
learned confidence estimates are for separating in- and out-of-
distribution examples, we conduct out-of-distribution detection
and compare the performance of various calibration methods.
Table 2 exhibits the performance of three base architectures and
four methods on out-of-distribution detection. For this task,
SNGP performs the best across all datasets and architectures,
followed by the ensemble method. In general, calibration meth-
ods perform no worse than the uncalibrated base method, except
the focal loss, which performs the worst on ResNet-50 and In-
ception. This means that focal loss could lead to a classifier bad
at discriminating in- and out-of-distribution samples.
Computing Efficiency To compare the efficiency of calibra-
tion methods, Figure 3 shows the the number of parameters (by
millions) and inference time for one single sample (by milli-
seconds). This figure takes ResNet-50 as the base model. The
ensemble method has largest number of parameters, almost 5
times more than the others. In terms of inference time, ensem-

Figure 3: The number of parameters (by Million) and inference
time (by milli-seconds) in five methods.

ble consumes the most, followed by MC dropout. SNGP and
focal loss are very efficient, close to the uncalibrated baseline.

In summary, SNGP method performs the best on uncer-
tainty calibration and also very efficient to implement. Through
focal loss can produce good calibration, it performs bad at out-
of-distribution detection. Ensemble performs well at out-of-
distribution detection, but it is not efficient.

4. Conclusion
Audio classification has witnessed rapid improvement as an in-
creasing number of deep learning models are deployed. How-
ever, calibration for audio classifiers is still under-explored. In
this work, we investigate the performance of calibration meth-
ods for deep audio classifiers, verifying the effectiveness of
SNGP and ensemble to audio classifiers. This will raise this
community’s awareness to the uncertainty calibration issue.
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