
Accelerating Inference and Language Model Fusion of Recurrent Neural
Network Transducers via End-to-End 4-bit Quantization

Andrea Fasoli, Chia-Yu Chen, Mauricio Serrano, Swagath Venkataramani,
George Saon, Xiaodong Cui, Brian Kingsbury, Kailash Gopalakrishnan

IBM Research, USA
{andrea.fasoli,swagath.venkataramani}@ibm.com

{cchen,mserrano,gsaon,cuix,bedk,kailash}@us.ibm.com

Abstract
We report on aggressive quantization strategies that greatly

accelerate inference of Recurrent Neural Network Transducers
(RNN-T). We use a 4 bit integer representation for both weights
and activations and apply Quantization Aware Training (QAT)
to retrain the full model (acoustic encoder and language model)
and achieve near-iso-accuracy. We show that customized quan-
tization schemes that are tailored to the local properties of the
network are essential to achieve good performance while limiting
the computational overhead of QAT.

Density ratio Language Model fusion has shown remarkable
accuracy gains on RNN-T workloads but it severely increases the
computational cost of inference. We show that our quantization
strategies enable using large beam widths for hypothesis search
while achieving streaming-compatible runtimes and a full model
compression ratio of 7.6× compared to the full precision model.

Via hardware simulations, we estimate a 3.4× acceleration
from FP16 to INT4 for the end-to-end quantized RNN-T inclu-
sive of LM fusion, resulting in a Real Time Factor (RTF) of 0.06.
On the NIST Hub5 2000, Hub5 2001, and RT-03 test sets, we
retain most of the gains associated with LM fusion, improving
the average WER by >1.5%.
Index Terms: RNN-T, quantization, reduced precision, INT4,
density ratio language model fusion

1. Introduction
End-to-end (E2E) models such as the Recurrent Neural Net-
work Transducer (RNN-T) [1] map an acoustic feature sequence
x to a sequence of characters, sub-words, or words y, directly
defining the posterior probability P (y|x) without additional con-
ditional independence assumptions. They dramatically simplify
both training and decoding pipelines compared to competing ap-
proaches for Automatic Speech Recognition (ASR) and demon-
strated excellent performance on standard benchmarks [2–6].

RNN-T models have several properties that make them at-
tractive for ASR, such as the lack of a need for pre-existing
alignments in training, the incorporation of a recurrent network
Language Model (LM) (which is jointly trained with the acoustic
encoder), and a computation which is monotonic in time suitable
for streaming recognition [7, 8].

In order to boost accuracy, separate LMs, which provide
an estimate of P (y), can be trained on larger text-only corpora
and combined with the RNN-T outputs using shallow fusion.
In particular, Density Ratio fusion [9, 10] is an inference-only
method which extends popular shallow fusion methods. Yet,
shallow fusion can result in a dramatic increase in model size
and computational time.

In this work, we examine mixed-precision quantization
strategies, primarily at 4 bits, based on Quantization Aware

Training (QAT) to alleviate the challenges posed by LM fusion
approaches. With QAT, the network is retrained while simulating
low-precision operations, allowing it to learn to compensate for
the error introduced by the quantization process. The resulting
model can be efficiently compressed and accelerated at inference
time, ideally with minimal or no loss in accuracy.

Previous works on the acceleration of E2E ASR models
for inference tasks demonstrated minimal degradation with 8-
bit quantization of the matrix multiplications (both weights and
activations), applied to both the acoustic encoder and the LM [11–
14]. In addition, ultra low precision (1 or 2 bits) representation of
the LMs weights alone has been extensively investigated [15–18].
To the best of our knowledge, only [19] has reported on 4 bit
quantization of weights and activations of an E2E ASR model
(RNN-T), showing a 1.3% average WER degradation on the
Hub5 2000 test set.

Our main contributions are summarized as follows:
• We carefully assign quantizers and precisions to both weights

and activations of the RNN-T. We stress that while weight
quantization is sufficient for model compression, in order to
achieve a significant acceleration, quantization of the activa-
tions is also a requirement. Our selections are driven by the
minimization of WER and by the need to keep the process
practical by limiting the retraining time imposed by QAT. Our
scheme achieves near-iso-accuracy at 4 bits.

• In the context of Density Ratio LM fusion, we fully quantize
the separate LMs and demonstrate that the accuracy gains due
to fusion translate well to the E2E-quantized RNN-T with
quantized additional LMs.

• Via hardware (HW) runtime simulations, we show that the
workload can be effectively accelerated, enabling hypothesis
search at beam width 16 to achieve a Real Time Factor (RTF,
defined as processing time over audio duration) competitive
with small beam width search using non-quantized models
without LM fusion.

2. RNN-T with LM fusion
The base RNN-T (Fig. 1) consists of an acoustic encoder, a
prediction network, and a joint network. The encoder comprises
6 bi-directional LSTM layers (input size 340 - including 100-dim
i-vectors) and a linear layer that generates the latent acoustic
representation henct , of dimension 256. The prediction network
is a single unidirectional LSTM layer (hidden size 768), preceded
by a small embedding layer, and followed by a linear layer with
output hdecu also of size 256. Encoder and prediction network
outputs are combined multiplicatively in a joint network [5],
with an additional linear layer and log-Softmax over 46 output
characters. In this configuration, the RNN-T comprises 57.2 M
parameters (54.6 M in the encoder, 2.6 M in the prediction
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network). We train for 20 epochs with 64-utterance batches
on audio and character-level transcripts from the SWB-1 data
collection, augmented with speed and tempo perturbation [20],
SpecAugment [21], and Sequence Noise Injection [22]. We
use the AdamW optimizer and the OneCycleLR learning rate
scheduler.

For density ratio LM fusion, we train an external LM
(LMEXT) on the 2000 hours Switchboard + Fisher acoustic tran-
scripts and a source LM (LMSRC) on the 300 hours Switchboard
transcripts. LMEXT consists of an embedding layer, two unidi-
rectional LSTM layers (hidden size = 2048), a bottleneck layer
of size 256, and an output layer of size 46 (see Fig. 1). The
total number of parameters is 51.0 M, almost 20× larger than
the original prediction network. LMEXT is trained with Nesterov
SGD for 40 epochs, at a constant learning rate (LR) = 0.03 for
20 epochs, then exponentially decreased by 1/

√
2/epoch. LMSRC

has the same building blocks and size as the RNN-T prediction
network (2.6 M parameters) and is trained for 40 epochs.

At inference, the symbol predicted at the previous step yu−1

is fed back into the prediction network, LMEXT, and LMSRC,
generating 3 prediction scores that are combined as [9]:

S = logP (y|x) + µ logPext(y)− λ logPsrc(y) + ρ|y| (1)

where S is the combined score, P , Pext, and Psrc the probability
of the original RNN-T network, LMEXT, LMSRC, respectively,
and µ, λ, and ρ are the LM weights and character insertion
reward, set to 0.7, 0.5, 0.2, respectively.

We use alignment-length synchronous beam search [23] with
variable beam width (1 to 16), corresponding to the maximum
number of hypotheses that are retained and evaluated at each
iteration of the decoding loop. Decoding is performed on the
Hub5 2000, Hub5 2001, and RT-03 test sets and Kaldi scoring is
used for measuring WER.

3. Quantization strategies
3.1. Background

Quantization is the process of mapping high-precision float-
ing point numbers into a lower bit representation. In particular,
low-precision arithmetic, which expresses values as integers mul-
tiplied by a scaling factor, is well suited for AI-accelerating HW
and enables faster and highly energy efficient execution of Mul-
tiply Accumulate (MAC) operations and data transfer. Linear
Quantization (LQ) is the most widely adopted approach in QAT,
as it allows for a direct implementation of integer arithmetic.
Asymmetric LQ computes:

xint = clamp(bx
s
e+ z; 0; 2b − 1) (2)

xq = s(xint − z) (3)

where x is the input to be quantized, xint its integer version,
xq the discrete representation on the same scale of x, b the
number of bits, be the rounding operator, s =

α+−α−
2b−1

a ”scale”
that is function of the boundaries α±, and z = −α−/s is the
”zero point”, that aligns xint to zero for x = α−. The clamp
function restricts xint range to [0, 2b − 1].

Symmetric LQ, which relies on a single boundary α and no
zero point, is a less flexible representation but naturally maps
zero inputs exactly to an integer in xint and, from a HW perspec-
tive, avoids the overhead incurred by performing MAC opera-
tions between values solely quantized with asymmetric LQ [24].

The quantization process establishes an inherent trade-off
between clipping error and rounding error. The former arises
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Figure 1: Architecture and main quantization scheme of RNN-T
with LMs. Red cell: 8 bits; blue cell: 4 bits. Layers are labelled
with their respective quantizers (Linear: weight/activation;
LSTM weight/input/hidden state). Abbreviations: F = FIX, M
= MAX, P = PACT, S = SAWB, b-LSTM = bidirectional LSTM.
Inset: Inner vs. Outer quantization scheme of inputs and hidden
states of LSTM cell

by the approximation of the input values x that lay outside the
range [α−, α+]. The latter relates to the residual between each
input x and its rounded form xq . For inputs within the clipping
range, the residual is upper bounded by s/2, which increases as
the [α−, α+] range widens.

Different quantizers can be chosen to determine the most
appropriate α± for a given weight or activation tensor. The
simplest, herein named FIX, relies on a predetermined choice for
α± which remain fixed during QAT and inference. This is the
fastest quantizer for QAT as it does not utilize any analysis of the
distribution statistics nor gradient propagation on α±. However,
it does not adapt to the input distribution and the choice of
α± may not be well motivated and sub-optimal. FIX is only
applicable in specific cases, as discussed later.

A more common strategy, herein called MAX, is to set α±
to the extremes (min and max) of the distribution. MAX captures
the whole range of values with no clipping error but suffers in
the presence of outliers that increase the rounding error.

Statistics Aware Weight Binning (SAWB) [25] is a symmet-
ric quantizer for weights that leverages the distribution statistics
to identify the boundary α that most closely approximates the
optimal α∗ that minimizes the mean square error (a combination
of clipping and rounding error).

With Parameterized Clipping Activation (PACT) [25], the
boundaries α± are independently learned during QAT. Learned
quantizers require tracking the quantization operations, com-
puting the corresponding gradients, and updating α±. Conse-
quently, they are more computationally expensive compared to
non-learned quantizers like FIX, MAX, or SAWB. The gap in



(a) (b)

Figure 2: Real Time Factor (RTF) of quantized RNN-T decoding
with density ratio LM fusion on simulated custom HW: (a) im-
pact of reduced precision, at beam width 16 (BW64 = 64 Gbps
bandwidth); (b) beam width-dependence of 4-bit model, at 32
and 64 Gbps. Legend applies to both figures.

computation time may be onerous in the QAT of large ASR
models, due to the repeated calls to the activation quantizers.

3.2. Model quantization

Fig. 1 presents our main quantization scheme, as applied to
an RNN-T model inclusive of LM fusion (LMEXT and LMSRC).
Weights (without biases) and activations are quantized across the
whole network. INT4 quantization is shown in blue, INT8 in red.
The quantizers are indicated by the abbreviations within each
cell (F = FIX, M = MAX, P = PACT, S = SAWB). For LSTM
layers, 3 quantizers are used, for weights, inputs, and hidden
states. The LSTM cell states are not quantized as they only
participate in element-wise computations and their contribution
to the total operations is minimal. In the linear layers, weights
and the inputs are quantized. To limit HW overhead during MAC
operations [24], symmetric quantizers are used for the weights
across the whole network. Re-training the RNN-T with QAT is
computationally expensive. Quantization of activations is critical
because RNN models require quantizers at every time step. This
is not the case for the weights, which can be quantized just
once per utterance. Therefore, practical considerations drive the
selection towards less expensive activation quantizers, provided
that accuracy is not impacted.

With reference to Fig. 1, all the bidirectional LSTM layers
of the RNN-T acoustic encoder except the first are quantized at 4
bits. We use SAWB to determine an optimal α boundary for the
weights, as the rounding error introduced by the MAX quantizer
at 4 bits is detrimental to accuracy. For inputs and hidden states
we use the FIX quantizer in a shared configuration across time
steps. In the LSTM layers, inputs and hidden states are the results
of the computation taking place at the previous layer or time step,
respectively, and in particular of the Hadamard product of two
activation functions: tanh()� σ(). Consequently, each tensor
element is in [-1,1] (before dropout scaling). Therefore, we
initialize the α± boundaries of these FIX quantizers to ±1. We
also note that the upper boundary obtained with a MAX quantizer
when utilized in this scenario typically falls in the interval [0.9,1],
which further supports the selection of the chosen boundaries of
the FIX quantizer.

The first layer of the network has major impact on the accu-
racy, while accounting for < 10% of parameters and computa-

tions of the encoder. Therefore, we use 8-bit quantization on this
layer, with a MAX quantizer for both weights and inputs. 8-bit
MAX provides sufficient granularity to limit the rounding error
in the presence of outliers, while not restricting the range to an
arbitrary value. On the other hand, 8-bit FIX with α± = ±1
remains appropriate for the hidden states. On the prediction side,
we quantize the LSTM layer to 4 bits using SAWB for weights,
and FIX for inputs (α± = ±1.25) and hidden states (α± = ±1).
The remaining linear layers are quantized at 8 bits using MAX
for both weights and activations. At 4 bits, they bring substantial
degradation while accounting for a small fraction of parameters
and computations (< 1%).

The re-training of the LM models is less computationally
expensive and affords for more flexibility in the choice of quan-
tizers. Therefore, we fully quantize both LMEXT and LMSRC

at 4 bits, using SAWB for weights and PACT for inputs. With
this configuration, we achieve a 7.6× reduction in model size
compared to the FP32 model, with 94.9% of parameters at 4-bits.

3.3. Quantization Aware Training

The RNN-T, LMEXT, and LMSRC are re-trained separately. The
QAT process mirrors the non-quantized training, with a few
important differences. First, we adjust the initial LR and LR
schedule to ensure the model can properly learn to compensate
for the error introduced by the quantization. Following [19], we
lower the initial RNN-T LR to 4 · 10−4 and decrease it linearly
to a lower bound of 10−5. Then, we shorten the QAT to <15
epochs and train with batch size 768. For QAT of the LMs we
retain the same LR schedule but lower the initial LR to 8 · 10−4.

3.4. Inner vs. Outer quantization

It is common to conceptualize the quantization as ”per layer”,
where the quantizers convert both the weights and the input ten-
sors into their discretized form. In RNNs, the time dependence
also requires activation quantization within layers, across time
steps. One option is to quantize the inputs xt and the hidden
states st−1 as they “enter” the RNN cell, before performing
the MAC with the corresponding weights Wih and Whh. We
refer to this approach as “Inner” quantization (fig. 1 inset). The
number of quantization calls throughout a network is 2 ∗ T ∗ L
for 2 input tensors, with T the number of time steps and L the
number of layers (counted twice for bi-dir RNNs).

This approach is inefficient. For each cell, the same output
tensor st is provided to both the next time step and layer. There-
fore, we quantize it once, at the cell output (fig. 1 inset). We
call this process “Outer” quantization. Assuming st−1 is zero at
t = 1, the number of quantization calls that Outer quantization
requires is reduced to T + T ∗ L. The ratio between Outer and
Inner quantizer calls is (L + 1)/(2 ∗ L), independent of the
sequence length. Outer quantization reduces the number of calls
to activation quantizers in the RNN-T encoder by 45%.

4. Experimental results
4.1. Runtime performance and acceleration

We perform a comparative evaluation of the runtime perfor-
mance of the RNN-T with LM fusion. Following [19, 26, 27],
we simulate the workload on a custom accelerator consisting
of a coprocessor and attached CPU [28]. The compute-heavy
data-parallel operations are executed on the coprocessor, while
control-heavy operations such as hypothesis sorting are mapped
to the CPU. We evaluate accelerations against an FP16 baseline



Table 1: Network acceleration (vs. FP16), compression ratio (vs. FP32), and WER at various quantization stages of RNN-T and LMs.
Quantization is expressed as bits of weights/activations. Beam width (bm) is 16 unless otherwise stated. ∆ is WER gap against a model
with equal RNN-T quantization and no LM fusion. All networks are initialized with FP32 pre-trained weights

Hub5 2000 Hub5 2001 RT 2003

RNN-T LMEXT LMSRC accel.
(v. FP16)

size
(MB)

compr.
(v. FP32)

SWB CH avg ∆ avg
bm8

avg
bm4

SWB S2P3 S2P4 avg ∆ SWB FSH avg ∆

32/32 - - 223.3 8.1 15.5 11.8 11.8 11.9 8.5 11.7 15.9 12.1 18.5 11.8 15.3
32/32 32/32 32/32 432.5 6.3 13.1 9.8 -2.0 10.0 10.6 7.1 9.4 13.6 10.1 -2.0 15.4 9.5 12.5 -2.8

4/4 - - 3.4 30.9 7.2 8.4 16.4 12.4 12.6 12.6 8.9 12.3 16.7 12.8 19.9 12.9 16.5
4/4 32/32 32/32 1.4 240.1 1.8 6.8 14.3 10.6 -1.8 10.8 11.2 7.6 10.2 14.2 10.8 -2.0 17.0 10.5 13.8 -2.7
4/4 8/8 32/32 2.2 90.9 4.8 6.8 14.3 10.6 -1.8 10.8 11.3 7.6 10.5 14.3 10.9 -1.9 17.1 10.6 14.0 -2.5
4/4 4/4 32/32 3.1 66.0 6.6 6.9 14.5 10.7 -1.7 10.9 11.4 8.0 10.7 14.8 11.2 -1.6 17.6 10.9 14.4 -2.1
4/4 4/4 4/4 3.4 57.2 7.6 7.0 14.4 10.7 -1.7 11.0 11.3 8.1 10.6 14.9 11.3 -1.5 17.4 10.9 14.3 -2.2

2/4 - - 18.3 12.2 9.0 17.4 13.2 13.3 13.3 9.6 13.1 17.5 13.5 21.0 13.7 17.5
2/4 4/4 4/4 44.6 9.7 7.4 15.2 11.4 -1.8 11.5 11.9 9.8 12.5 17.1 13.2 -0.3 19.7 12.8 16.3 -1.2

(instead of FP32) due to restrictions in our HW simulator.
Fig. 2 compares the estimated RTF at different precisions,

for a single 152-frame sequence with beam width 16. In the
absence of additional LMs, the FP16 inference workload is
dominated by the acoustic encoder, which accounts for 87% of
the RTF (fig. 2(a)). Smaller beam widths would only improve
the decoding portion. Conversely, the model with LM fusion
shows a strong contribution of the decoding loop, with the large
LMEXT accounting for 56% of the total RTF.

The quantization of the RNN-T with LM fusion brings about
remarkable speedup in both the encoder and the decoder. RTF
drops from 0.221 at FP16, to 0.116 on a full INT8 model, and
further down to 0.065 with full INT4 quantization, improving
the RTF of the original RNN-T without extra LMs (fig. 2(a)). At
4 bits, we estimate an acceleration of 3.8× for the encoder, 3.6×
for the decoder (inclusive of prediction and LMs), and 3.4×
for the E2E model. The non-accelerable operations account for
12% of the total 4-bit workload. Our simulations also reveal sub-
optimal coprocessor occupancy, indicating a CPU-coprocessor
communication bottleneck which would be mitigated by a higher
bandwidth (BW) connection. The last column of fig. 2(a) shows
the RTF when modeling a BW increase, from 32 to 64 Gbps.
The higher BW is highly beneficial, yielding a 6.8× acceleration
of the decoding loop, 5.8× for the whole network and an RTF
of 0.038.

Due to the BW bottleneck, the computation favors large
beam widths. As shown in fig. 2(b), the decoding RTF de-
creases sub-linearly at small beams, primarily as a result of the
increased reuse of cached hypotheses. More remarkable is the
improvement in non-accelerable operations runtime, which be-
comes negligible at beam = 1 (greedy decoding). The higher
BW improves RTF across all beam widths, allowing for a more
considerable reduction in the decoder contribution, down from
0.038 at beam 16 to 0.022 at beam 1. However, as discussed in
section 4.2, lower beam widths reduce transcription accuracy.

4.2. Accuracy and compression

Table 1 shows the WER results at different stages of the quan-
tization. At beam width 16, the fusion process improves the
non-quantized model WER by 2.0% while almost doubling the
model size. As discussed in section 4.1, LM fusion also increases
inference runtime dramatically.

INT4 quantization of the RNN-T alone (following the
scheme shown in fig. 1 but without LMEXT and LMSRC) shows
a small WER degradation across datasets (0.6% on average for

Hub5 2000) with a compression factor of 7.2× (vs. FP32) and a
3.4× acceleration (vs. FP16). Although implementation of the
Density Ratio LM Fusion approach shows a remarkable WER
improvement on the INT4 quantized RNN-T, it is apparent that
it also calls for quantization of LMEXT and LMSRC to retain the
gains in model size and acceleration.

We initialize the INT8 and INT4 LMEXT with pre-trained
FP32 weights, which we found helpful to minimize WER degra-
dation. The 4-bit LMEXT quantized as per Fig. 1, achieves com-
parable WER to the FP32 counterpart across benchmarks. To
further boost compression and acceleration, we use an equivalent
strategy to quantize the LMSRC at 4 bits, with no change in per-
formance. With both LMs fully quantized at 4 bits, we obtain a
1.7% WER improvement on Hub5 2000 compared to the model
without LM fusion, while benefiting from a close-to-ideal 7.6×
compression ratio of the full model and a 3.4× acceleration.

In the beam width comparison, the INT4 model with LM
fusion achieves at beam width 16 better WER than the full preci-
sion model without LMs at any beam widths, while providing
a substantial reduction in model size and comparable RTF (as
discussed in sec. 4.1).

More aggressive quantization of the RNN-T weights (INT2)
shows increased but limited WER degradation in the model with-
out LMs, ≤1% across benchmarks compared to INT4 weights.
On Hub5 2000, LM fusion has a similar impact on WER as in
the 4-bit scenario (∆=-1.8%). Here, we observe a trade off be-
tween WER, degraded from 10.7% to 11.4%, and compression
ratio, improved from 7.6× to 9.7×. The favorable impact of LM
fusion on other benchmarks is less pronounced, showing that
the error introduced by the 2-bit representation of the RNN-T
weights can negatively affect the whole decoding process.

5. Conclusions
We presented a QAT approach at 4 bits which enables model
compression and inference acceleration of RNN-T networks
combined with external LM fusion methods with minimal WER
degradation. We showed that an appropriate choice of quantizers
that leverages the inherent boundaries of the LSTM activation
functions and the connections between LSTM cells limits QAT
model retraining time while maintaining excellent WER perfor-
mance. The 4-bit quantized model with LM fusion improves the
WER of the full precision model without LMs, while achieving
comparable RTF (and vastly improved RTF compared to the
full precision model with LMs) making it a viable option for
real-time inference workloads.



6. References
[1] A. Graves, “Sequence transduction with recurrent neural networks,”

arXiv preprint arXiv:1211.3711, 2012.
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