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Abstract
Emotion classification of speech and assessment of the emotion
strength are required in applications such as emotional text-to-
speech and voice conversion. The emotion attribute ranking
function based on Support Vector Machine (SVM) was pro-
posed to predict emotion strength for emotional speech corpus.
However, the trained ranking function doesn’t generalize to new
domains, which limits the scope of applications, especially for
out-of-domain or unseen speech. In this paper, we propose a
data-driven deep learning model, i.e. StrengthNet, to improve
the generalization of emotion strength assessment for seen and
unseen speech. This is achieved by the fusion of emotional data
from various domains. We follow a multi-task learning net-
work architecture that includes an acoustic encoder, a strength
predictor, and an auxiliary emotion predictor. Experiments
show that the predicted emotion strength of the proposed
StrengthNet is highly correlated with ground truth scores for
both seen and unseen speech. We release the source codes at:
https://github.com/ttslr/StrengthNet.
Index Terms: Emotion strength, deep learning, data-driven

1. Introduction
Accurate emotion classification of speech and assessment of
its strength are essential to profile human behaviors, which
has many potential applications, such as human-robot interface,
human-machine dialogue, and social media. In recent years,
there is an increasing interest in emotion control in expressive
speech synthesis, such as emotional text-to-speech, emotional
voice conversion, where accurate control of emotional strength
in speech becomes critically important.

The simplest emotion strength control method is to linearly
scale the emotion representation vector [1]. The effect of such
a linear scale is hardly interpretable. To obtain a meaningful
strength descriptor, some followed the idea of “relative at-
tributes” [2–4] and quantify the emotion strength by learning
from the <neutral, emotional> speech pairs. Support-Vector-
Machine (SVM) based attribute ranking [4] learns the differ-
ence between two samples that are significantly different in a
particular attribute, that has been widely studied in computer
vision [5, 6].

In speech processing, Zhu et al. [2] proposed to learn an
emotion attribute ranking function R(·) from the <neutral,
emotional> paired speech features, then weight the emotional
feature with a learnable weighting vector and return a weighted
sum as the indicator of the emotion strength of one specific
emotional speech. Lei et al. [3] further extended the utterance
level emotion attribute ranking function to phoneme level and
obtain a fine-grained ranking function. In this way, we can

obtain a meaningful strength score for emotional speech on a
specific dataset, which correlates with human perception.

We note that a trained ranking function R(·) on specific
data is not easily generalized to new domains. In other
words, R(·) is not able to calculate an accurate or appropriate
strength score for unseen or out-of-domain speech. To extend
to a new data, we need to retrain a new ranking function
on the <neutral, emotional> paired samples from the new
data. Furthermore, the learning of ranking functions for new
data requires parallel samples. All these limit the scope of
applications. Recently, it was shown that deep learning has the
ability to learn a mapping function effectively [7,8]. The neural
solution learns complex non-linear mapping relationships, and
exhibits good generalization ability with the support of a large
number of model parameters [9]. Most importantly, the data-
driven training strategy appears to be more powerful and have
the potential to achieve good performance for out-of-domain
data [10].

In this paper, we propose a novel neural solution to emotion
strength assessment, termed StrengthNet. To improve the
model generalization, we employ a data-driven strategy, named
“domain fusion”, to mix emotional data from various domains
for model training. StrengthNet is a multi-task framework that
includes a convolutional neural network (CNN) based acoustic
encoder, a bidirectional long short-term memory (BiLSTM)
based strength predictor and an auxiliary BiLSTM based emo-
tion predictor. The acoustic encoder extracts the high-level
features from the input mel-spectrum. The strength predictor
aims to predict the strength score for the input mel-spectrum.
The emotion predictor is used to predict the emotion category,
which serves as an auxiliary task.

The main contributions of this paper include, 1) We pro-
pose a novel data-driven deep learning based speech emotion
strength assessment model, i.e., StrengthNet; 2) We show that
the predicted emotion strength of seen and unseen speech is
highly correlated with the ground truth; To our best knowledge,
this is the first deep learning model for accurate emotion
strength assessment for seen and unseen speech.

This paper is organized as follows: In Section 2, we
formulate the proposed StrengthNet and the domain fusion
training strategy. Section 3 report the experimental results.
Finally, Section 4 concludes the study.

2. StrengthNet
We first describe the overall StrengthNet architecture, then
explain the domain fusion training details. Lastly, we describe
the model inference.
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Figure 1: The proposed StrengthNet that consists of Acoustic Encoder, Strength Predictor and Emotion Predictor.

2.1. Model Overview

We formulate StrengthNet under the multi-task framework,
which consists of an acoustic encoder, a strength predictor and
an emotion predictor as in Fig. 1.

To improve the model generalization ability, we adopt a
domain fusion training strategy. During training, the Mel-
Spectrum features come from multiple emotional domains. The
ground-truth strength scores, which is normalized to (0,1), are
derived from a ranking function learned separately. The details
will be described in Section 2.2. We employ a multi-task
framework with an auxiliary emotion category prediction task.
Next we will describe the model architecture first.

2.1.1. Acoustic Encoder

The acoustic encoder takes the acoustic feature sequence, that
is mel-spectrum in this work, as input to extract a high-
level feature representation. The acoustic encoder consists
of 12 convolution layers. The strategy of stacking more
convolutional layers to expand the receptive field of a CNN
has been widely used to model time series data and yield
satisfactory performance [7]. Given an input mel-spectrum
sequence X , the CNN based acoustic encoder aims to extract a
high-level featureH. The high-level featureH is then fed to two
predictors to predict the emotion strength score and emotion
category, respectively.

2.1.2. Strength Predictor

The strength predictor then reads the high-level feature repre-
sentation to predict the emotion strength. Recent studies have
confirmed the effectiveness of combining CNN and BiLSTM
for classification [7], and recognition [11] tasks.

The strength predictor consists of a BiLSTM layer, two FC
layers, followed by an average pooling layer. The BiLSTM
layer takes the high-level featureH as input to output the hidden
states S for each time step. We then use two FC layers to
convert the frame-wise hidden states S into the frame level
scalar αf to indicate the strength score of each frame. Finally,
an average pooling layer is applied to the frame-level scores to
obtain the utterance-level strength score α.

To supervise the training of the strength predictor, we define
a mean absolute error (MAE) loss Lu str behind the average
pooling layer to force the predicted utterance-level strength
score α close to the ground-truth value.

To improve the convergence of StrengthNet, we further
define another MAE loss [7] Lf str , denoted as frame-wise
constraint, behind the last FC layer to minimize the difference

between the predicted frame-level strength score αf and the
ground-truth strength.

2.1.3. Emotion Predictor

The auxiliary emotion predictor is devised to predict the emo-
tion category. Similar to the strength predictor, the emotion
predictor also consists of a BiLSTM layer and an additional
softmax layer. The BiLSTM summarizes the temporal infor-
mation of high-level feature H into another latent states Ŝ.
Finally, the softmax layer converts the latent states Ŝ to the
output probability for all emotion categories. Accordingly, we
can obtain the predicted emotion category θ. We define a
“categorical cross entropy” loss Lcat to restrain the emotion
predictor. We formulate the total objective function Ltotal for
training the StrengthNet as:

Ltotal = Lf str + Lu str + Lcat. (1)

2.2. Domain Fusion

As shown in Fig. 2, to improve the model generalization, we
employ a domain fusion strategy [12, 13], which mix multiple
emotional speech datasets from various domains to train our
StrengthNet. The fused data mixed from various domains
will represent a more comprehensive set, thus minimizing the
distance between the training and validation set, as well as any
future testing sets.

Let us denote D1, D2, ..., DK as the K emotional speech
datasets. We train the emotion attribute ranking function R(·)
for all datasets, since they all provide <neutral, emotional>
pairwise speech samples.

To achieve this, we first build two sets, that are O and S,
which contain ordered and similar paired samples, respectively.
Specifically, for each dataset Dk (k ∈ [1,K]), we pick up
one sample from neutral speech and another sample from
emotional speech to build the ordered set O. We expect that
the emotion strength of the emotional sample is higher than
that of the neutral sample. For the similar set S, we pick up
two samples from ‘neutral’ speech or emotional speech (such as
‘happy’). We assume that two samples from the same emotion
category have more similar emotion strength than two others
from different categories.

We follow [2] and build a support vector machine (SVM)
[14] to learn the ranking function R(·) for the emotion strength
attribute. Finally, we derive the strength scores across all
datasets to serve as the ground-truth in the training objective
of StrengthNet. Note that the strength score is normalized to
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Figure 2: The shown domain fusion strategy is utilized to
improve the model generalization.

(0,1) with 1 having the strongest emotion. We prepare mel-
spectrum features for all datasets as the input of StrengthNet.
The StrengthNet can be seen as the aggregation of multiple
domain experts.

2.3. Run-time Inference

During inference, the StrengthNet takes a mel-spectrum ex-
tracted by any emotional speech as the input feature to predict
its emotion strength score, as well as its emotion category.
Furthermore, our StrengthNet can be used directly to predict
emotion strength for a new emotional speech dataset without
retraining, that is a clear advantage.

3. Experiments
3.1. Datasets

We use the ESD dataset [15] to validate the performance
of StrengthNet in terms of strength prediction. The English
corpus with a total of nearly 13 hours of speech is used in our
experiments. In addition, we use two additional English SER
datasets: the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) [16] and the Surrey Audio-
Visual Expressed Emotion (SAVEE) database [17] to achieve
domain fusion and test the model generalization.

The datasets are summarized as follows:

• ESD [15]: ESD is a multilingual emotional speech
dataset and has 350 parallel utterances spoken by 10
native English and 10 native Mandarin speakers. We use
the English corpora with a total of nearly 13 hours of
speech by 5 male and 5 female speakers in five emotions,
namely happy, angry, neutral, sad and surprise. All
speech samples are sampled at 16 kHz and coded in 16
bits.

• RAVDESS [16]: The RAVDESS dataset contains two
emotional parts: a speech part and a song part. We
mainly focus on its speech part, which has 1440 utter-
ances acted by 24 professional actors (12 female, 12
male). There are 8 classes of emotion contained in
the speech part (calm, happy, sad, angry, fear, surprise,
disgust, and neutral state). In the process of collecting
data, actors are asked to speak two fixed sentences with
different classes of emotion.

• SAVEE [17]: The SAVEE database consists of record-
ings from four male actors in seven different emotions,
480 British English utterances in total with seven emo-
tional states (i.e., surprise, happy, sad, angry, fear, dis-
gust, and neutral). And the sentences are selected from

the standard TIMIT corpus and phonetically-balanced
for each emotion.

Please note that the emotional speech databases can be
divided into two types: acted and improvised [18]. All above
three mentioned datasets belongs to acted family which widely
used in emotional TTS [19]. We believe that it is appropriate
to employ acted emotional speech dataset for our experiments,
due to the improvised speech is hard to induce strong and well-
differentiated emotions [20].

3.2. Experimental Setup

For all datasets, we take 5 emotion classes, that are happy, sad,
angry, surprise, and neutral, to build the <neutral, emotional>
paired speech to train the ranking function. During training of
StrengthNet, we take 4 emotion classes, that are happy, sad,
angry and surprise, into account.

We extract 80-channel mel-spectrum features with a frame
size of 50ms and 12.5ms frame shift, that are further normalized
to zero-mean and unit-variance, to serve as the model input.
We employ openSMILE [21] to extract 384-d features for each
utterance and follow the relative attributes algorithm 1 to train
the ranking function. The utterance level strength scores for
all datasets are obtained using their ranking function and serve
as the ground truth score, or training target, for the strength
predictor in our StrengthNet. To calculate the frame level MAE
Lf str , the ground-truth strength score is used for all the frames
in the speech utterance. The emotion predictor of StrengthNet
aims to predict 4 emotion categories, including happy, sad,
angry and surprise.

The acoustic encoder consists of 4 Conv2D blocks with
filters size [16, 32, 64, 128], respectively. Each block includes
3 Conv2D layers with strides shape {[1,1], [1,1], [1,3]}, respec-
tively. All layers share the same kernel size [3 × 3] and ReLU
activation function. For BiLSTM layers in two predictors, each
direction contains 128 cells.

All speech samples are resampled to 16 kHz. We train the
models using the Adam optimizer with a learning rate=0.0001
and β1 = 0.9, β2 = 0.98. We set the batch size to 64. The dropout
rate is set to 0.3. For each dataset, we partition the speech data
into training, validation, and test set at a ratio of 8:1:1. We apply
early stopping based on the MAE of the validation set with 30
epochs patience.

3.3. Experimental Results

3.3.1. Architecture Comparison Results

First, we intend to validate the effectiveness of the multi-task
framework and frame constraint in our StrengthNet, in terms
of strength prediction performance on the ESD dataset. We
develop StrengthNet and two variants for an ablation study,
reported as follows: 1) StrengthNet (proposed), which is our
proposed model that consists of an acoustic encoder, strength
predictor and auxiliary emotion predictor; 2) StrengthNet w/o
Lcat, which is the proposed model without an auxiliary emotion
predictor; and 3) StrengthNet w/o Lf str , which is the proposed
model without a frame strength constraint term Lf str within
the strength predictor.

We report the performance in terms of MAE values. Note
that the MAE can range from 0 to ∞. It is negatively-
oriented scores and lower values are better. Fig. 3 shows the

1https://github.com/chaitanya100100/Relative-Attributes-Zero-
Shot-Learning



(a) StrengthNet (b) StrengthNet w/o Lcat (c) StrengthNet w/o Lf str

Figure 3: Histogram of the utterance level strength predictions for (a) StrengthNet; (b) StrengthNet w/o Lcat; (c) StrengthNet w/o
Lf str . The X-axis and Y-axis of subfigures represent the strength scores and the utterance number, respectively.

Table 1: MAE results for the RAVDESS and SAVEE datasets in
the comparison.

Method MAE
RAVDESS SAVEE

RRAVDESS(·) NA 0.304
RSAVEE(·) 0.283 NA
RESD(·) 0.266 0.272
StrengthNetESD 0.238 0.243
StrengthNetESD+RAVDESS NA 0.173
StrengthNetESD+SAVEE 0.102 NA

overall performance of these systems at the utterance level.
We report the MAE value of emotion strength prediction and
the accuracy of emotion category prediction on test data. We
observe in Fig. 3 that our proposed StrengthNet outperforms
Strength w/o Lcat and Strength w/o Lf str and achieves the
best performance, that is attributed to the multi-task and frame
constraint strategy. Specifically, we find that StrengthNet
achieves the lowest MAE score of 0.072 and highest emotion
recognition accuracy (denoted as SER Acc as shown in the axis
titles of Fig. 3) of 0.874. To sum up, the above results indicate
that the combination of multi-task learning and frame constraint
can effectively learn emotion strength cues from the input mel-
spectrum to perform emotion strength prediction well, along
with category prediction.

3.3.2. Domain Fusion Results
We further verify the effectiveness of the proposed domain
fusion for model generalization in terms of emotion strength
prediction.

We train StrengthNet on three dataset settings, that are
ESD, ESD+RAVDESS, ESD+SAVEE. StrengthNetESD,
StrengthNetESD+RAVDESS and StrengthNetESD+SAVEE

are used to represent three trained models, respectively.
RRAVDESS(·), RSAVEE(·) and RESD(·) refer to the three
trained ranking functions for three datasets, respectively. We
adopt all trained ranking functions and models to predict the
emotion strength score on unseen test data from RAVDESS or
SAVEE, and report the MAE results in Table 1.

As shown in Table 1, we observe that our StrengthNet
performs a lower MAE than ranking functions on both, the
RAVDESS and SVAEE datasets. More importantly, in the case
of StrengthNetESD+RAVDESS and StrengthNetESD+SAVEE,
the MAE achieves the lowest values of 0.173 and 0.102 on
SVAEE and RAVDESS respectively. As can be seen from the
results, our proposed strength method can reduce the overall
MAE on unseen data with the domain fusion strategy, which

Figure 4: Confusion matrices between predicted and perceived
emotion strength categories for unseen speech. The X-axis
and Y-axis of the figures represent the predicted and perceived
category, namely “normal” and “strong”.

performs better model generalization than the attribute ranking
function.

3.3.3. Human Perception Evaluation

We further evaluate how close the results of StrengthNet for
unseen speech can get to the emotional strength as perceived by
humans.

Since the RAVDESS dataset includes the manual emotion
intensity label, which each emotion is produced at two levels
of emotion intensity: normal and strong. Therefore, we adopt
RSAVEE(·), RESD(·) and StrengthNetESD+SAVEE to predict
the emotion intensity for the test set of RAVDESS. We consider
the predicted intensity scalars from 0 to 0.5 as ‘normal’ and 0.5
to 1.0 as ‘strong’ in two categories. We select 20 utterances
from the test set.

Fig. 4 presents the intensity confusion matrices. It is ob-
served that the StrengthNet shows a higher correlation between
the predicted and perceived emotion intensity categories, with
a correlation of over 85%, that is considered a competitive
result against the trained ranking function. The experiments
confirm the superiority of the proposed domain fusion based
StrengthNet for unseen speech in terms of human perception.

4. Conclusion
This paper presents a data-driven deep learning-based speech
emotion strength assessment model for the emotional speech
synthesis task, referred to as StrengthNet. Experimental results
demonstrate that our StrengthNet can achieve accurate emotion
strength prediction for both seen and unseen speech with the
help of domain fusion strategy. As per our knowledge, the
proposed StrengthNet is the first end-to-end speech emotion
strength assessment model. In future work, we intend to inte-
grate our StrengthNet as a front-end or back-end for emotional
speech synthesis models to enhance the emotion expressiveness
of output emotional speech.
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