
Avoid Overfitting User Specific Information in Federated Keyword Spotting

Xin-Chun Li1, Jin-Lin Tang1, Shaoming Song2, Bingshuai Li2, Yinchuan Li2, Yunfeng Shao2,
Le Gan1, De-Chuan Zhan1

1State Key Laboratory for Novel Software Technology, Nanjing University
2Huawei Noah’s Ark Lab

{lixc, tangjl}@lamda.nju.edu.cn, ganle@nju.edu.cn, zhandc@nju.edu.cn,
{shaoming.song, libingshuai, liyinchuan, shaoyunfeng}@huawei.com

Abstract
Keyword spotting (KWS) aims to discriminate a specific wake-
up word from other signals precisely and efficiently for different
users. Recent works utilize various deep networks to train KWS
models with all users’ speech data centralized without consid-
ering data privacy. Federated KWS (FedKWS) could serve as
a solution without directly sharing users’ data. However, the
small amount of data, different user habits, and various ac-
cents could lead to fatal problems, e.g., overfitting or weight
divergence. Hence, we propose several strategies to encourage
the model not to overfit user-specific information in FedKWS.
Specifically, we first propose an adversarial learning strategy,
which updates the downloaded global model against an overfit-
ted local model and explicitly encourages the global model to
capture user-invariant information. Furthermore, we propose an
adaptive local training strategy, letting clients with more train-
ing data and more uniform class distributions undertake more
local update steps. Equivalently, this strategy could weaken
the negative impacts of those users whose data is less quali-
fied. Our proposed FedKWS-UI could explicitly and implicitly
learn user-invariant information in FedKWS. Abundant exper-
imental results on federated Google Speech Commands verify
the effectiveness of FedKWS-UI.
Index Terms: keyword spotting, federated learning, data het-
erogeneity, user-invariant

1. Introduction
Deep learning has been successfully applied to automatic
speech recognition (ASR) [1, 2], facilitating the emergence of
intelligent voice assistants (e.g., Amazon Alexa). To wake up
the smart assistant, some predefined keywords (e.g., “Alexa”)
need to be identified precisely from users’ speech recordings,
i.e., keyword spotting (KWS) [3, 4]. This identification process
must be efficient to complete, and the utilized models should
have minimal memory footprint. Furthermore, the KWS pro-
cess should be robust to users with various accents or preferred
spoken words.

Recent works utilize various deep networks for KWS [4,
5, 6, 7, 8]. These methods take a data centralized training
style based on the publicly available benchmark such as Google
Speech Commands [9]. However, there may be significant pri-
vacy implications in sharing users’ audio recordings, which re-
quires a data decentralized training style for privacy protec-

Supported by National Natural Science Foundation of China (Grant
No. 41901270), NSFC-NRF Joint Research Project under Grant
61861146001, and Natural Science Foundation of Jiangsu Province
(Grant No. BK20190296). Thanks to Huawei Noah’s Ark Lab Net-
MIND Research Team for funding this research. De-Chuan Zhan is the
corresponding author. Email: zhandc@nju.edu.cn

tion. Federated learning (FL) [10, 11] has been effectively ap-
plied for communication efficient decentralized training with
basic privacy protection. Although FL could be directly ap-
plied to decentralized KWS training, the non-independent and
identically distributed data (non-i.i.d. data) poses many chal-
lenges [12, 13]. Non-i.i.d. in KWS refers to the fact that some
users only own a small amount of data (i.e., quantity skew),
users tend to use different spoken words (i.e., label distribution
skew), and users usually have accents (i.e., feature distribution
skew).

This paper investigates FedKWS on Google Speech Com-
mands [9] with several popular network architectures. Com-
pared with centralized training, we observe a significant per-
formance degradation in FedKWS due to non-i.i.d. data. In
fact, the small amount of data and the distribution skew problem
make the downloaded global model easily overfit user-specific
information. For example, the feature extractor mistakenly
takes a user’s accent as an important factor, or the classifica-
tion layer is biased towards a user’s commonly spoken words.
To solve these challenges and enhance the generalization per-
formance of the federated model, we propose several strategies
to avoid the local model overfitting user-specific information.

2. Related Works

Our work is closely related to keyword spotting (KWS) [4, 3]
and federated learning (FL) [10, 11, 14]. Current works for-
mulate KWS as a classification problem, aiming to identify
whether a short speech recording is a specific word, silence, or
unknown. Considering the success of deep learning, CNN has
been applied to KWS [4]. Depth-separable CNN (DSCNN) [5]
is applied to obtain the goal of small footprint memory, and
residual network (ResNet) [7] is utilized to enhance perfor-
mances. Recurrent neural networks with multi-head atten-
tion (MHAttRNN) [6, 8] and varieties of transformers (Trans-
former) [8, 15] have also been applied to KWS and obtain SOTA
results. Some other advanced techniques in deep learning have
also been verified helpful in KWS [16]. FL has also been ap-
plied to KWS for decentralized training [17, 18]. [17] conducts
extensive experiments of FedAvg [10] on “Hey Snips” dataset
and uses an adaptive averaging strategy for global model aggre-
gation as done in [19]. The work [18] investigates data aug-
mentation and distillation in FedKWS for overcoming resource
constraints and example labeling. FL studies have also been
presented in ASR [20, 21, 22]. Compared with these studies, we
primarily focus on the non-i.i.d. data challenge in FedKWS and
propose a novel method to focus on extracting user-invariant in-
formation. We investigate our methods with various network
architectures and show that our approach is universal.

ar
X

iv
:2

20
6.

08
86

4v
1

 [
cs

.L
G

]
 1

7
Ju

n
20

22

3. Background of Federated Learning
FedAvg [10]: Suppose we have K clients and each client owns
a data distribution Dk = Pk(x, y), k ∈ [K]. FL aims to op-
timize minψ

∑K
k=1 pkL(D

k;ψ), where ψ denotes the global
parameters, pk denotes the weight of each client. FedAvg [10]
solves this problem via multiple communication rounds of lo-
cal and global procedures. During local procedure, a partial
set of clients St download the global model ψt and update it
on their local data for multiple steps. During global proce-
dure, the server collects these updated local models (denoted as
ψ̂kt , k ∈ St) and aggregates them via parameter averaging, i.e.,
ψt+1 ← 1

|St|
∑
k∈St

ψ̂kt . t denotes the communication round.
These two procedures will iterate T rounds until convergence.
Non-I.I.D. Data: The users’ data in FL are often naturally
heterogeneous, e.g., the speech data in Google Speech Com-
mands [9] are collected from users with various accents. As de-
clared in [12], the local update direction will diverge a lot from
the global one due to non-i.i.d. data, making the model aggre-
gation inaccurate. FedOpt [19] utilizes an adaptive optimization
strategy on the server instead of a simple parameter averaging.
FedRS [23] specifies the challenge of label shift across clients
and proposes restricted softmax as the solution. FedProx [13]
and FedMMD [24] add regularization to prevent local models
from being updated too away, which could decrease the weight
divergence for better aggregation. Although some FL methods
(e.g., FedProx [13], FedDyn [25], MOON [26]) could also elab-
orate a regularization effect during local procedures, they only
stay on the parameter or the intermediate feature levels. By
contrast, we adversarially update the global model against an
overfitted local model and regularize the local procedure on the
functional level. Furthermore, we design an adaptive local train-
ing procedure from the system scheduling level.

4. Proposed Methods
This section proposes two strategies to prevent the global model
from overfitting user-specific information (e.g., accents or fa-
vorite spoken words) in FedKWS.
Adversarial Learning against Overfitted models (ALO):
Clients update the downloaded global model on their data dur-
ing the local procedure, which could overfit some user-specific
information. Specifically, the local data distribution Pk(x, y)
may diverge significantly from the global data distribution. Ac-
cording to some previous works [27, 28, 29], the lower/higher
layers of a neural network tend to be influenced significantly by
feature/label distribution skew, i.e., various Pk(x) or Pk(y).
FedKWS simultaneously faces these two kinds of distribution
skew (e.g., accents and favorite spoken words), making the
complete model biased towards a specific user during the lo-
cal procedure. Hence, we must regularize the local training
from the functional perspective instead of focusing on specific
neural network layers. We resort to private-shared models and
adversarially update the global model (shared among users)
against overfitted local models (private for each user). Private-
shared models are utilized in some recent FL solutions [30, 31].
Specifically, we build private models ψkp , k ∈ [K] for each
client. We first train private models with the cross-entropy loss
L(Dk;ψkp) = Exi,yi∼Dk [−

∑C
c=1 I{yi = c} log[fp(xi)]c],

where I{·} is the indicator function and fp(·) is the prediction
function based on private model ψkp that outputs a probability
distribution. After abundant training steps, we expect this pri-
vate model to overfit user-specific data information. Then, we

1 5 10 15 20

Sampled 20 Clients
34

30

25

20

15

10

5

0

C
la

ss
In

de
x

Client-Class Distribution (C=35)
0 20 40 60 80 100 120 141

Number of Samples

1.0

1.5

2.0

2.49

C
la

ss
D

is
tr

ib
ut

io
n

E
nt

ro
py

Statistics (C=12)

0.21

1.03

1.85

2.67

3.49

0 50 100 150 200 250 316

Number of Samples
1.0

1.5

2.0

2.5

3.0

3.56

C
la

ss
D

is
tr

ib
ut

io
n

E
nt

ro
py

Statistics (C=35)

0.15

1.29

2.43

3.56

4.70

Figure 1: Left: data heterogeneity in federated Google Speech
Commands. We only plot 20 clients (users) in task 35. Right:
number of samples and class distribution entropy of each client
(user) in task 12 and 35 (each point shows a client).

train the global model with the following loss:

Lls = Exi,yi

[
−

C∑
c=1

[(1− µ)I{yi = c}+ µ/C] log[f(xi)]c

]
,

(1)

Ladv = −︸︷︷︸
negative

Exi,yi

[
−

C∑
c=1

[fp(xi)]c log[f(xi)]c

]
, (2)

L(Dk;ψk) = Lls(Dk;ψk) + λLadv(Dk;ψk), (3)

where we omit the communication round index t and some
other symbols for simplification. fp(·) represents the func-
tion of the overfitted private model while f(·) for the down-
loaded global model. Eq. (2) could be seen as “negative distil-
lation”, which could push the global model’s prediction f(xi)
away from overfitted areas. Eq. (2) follows the formula of dis-
tillation [32, 33, 34] but works significantly different. Label
smoothing in Eq. (1) could also regularize the global model not
be too over-confident on a specific user’s data. We investigate
the hyperparameters of µ and λ in ablation studies.
Adaptive Local Training (ALT): Due to data heterogeneity,
both amount imbalance and class imbalance could occur in
clients’ data. The former implies that different clients may own
various numbers of training samples. The second one refers
to that label distributions may diverge across clients. These
two types of imbalance on Google Speech Commands [9] are
shown in Figure 1. Intuitively, few training samples could
lead to overfitting, and imbalanced data could bias the model
towards identifying a user’s favorite words. Hence, we en-
courage clients who own more training data and more uni-
form class distributions to undertake more local updates. For-
mally, in FedAvg [10], every selected client uniformly takes
E local training steps without considering the data quality.
Assume the kth client owns nk training samples and the
class distribution is qk ∈ RC with

∑C
c=1 qk,c = 1 and

qk,c ≥ 0, ∀c. C is the total number of classes. We cal-
culate the normalized amount of training samples as nk =
nk/maxKj=1 nj ∈ [0, 1], and the normalized class entropy as

Table 1: Detail information of federated Speech Commands.

C K N Avg.nk Max.nk M
12 2,234 45.6k 20.4 141 4.9k
35 2,434 105.5k 43.3 316 11.0k

Table 2: Detail of networks and centralized training results.

Num.of.Params Centralized Acc.
C = 12 C = 35 C = 12 C = 35

DSCNN [5] 169K 173K 97.19 96.95
MHAttRNN [6] 228K 232K 97.31 97.05
ResNet [7] 238K 239K 97.89 97.31
Transformer [8] 232K 234K 96.21 97.14

ek = (−
∑C
c=1 qk,c logqk,c)/ logC ∈ [0, 1]. Then we calcu-

late the harmonic mean of nk and ek, i.e., rk = 2nkek/(nk +
ek). We use rk ∈ [0, 1] to measure clients’ utility in FL, and
we heuristically let clients with larger rk contribute more to FL.
That is, we reallocate the computation resources among clients
via allowing the kth client take on r0 ∗ rk ∗ E gradient steps,
where the determination of r0 should satisfy

∑K
k=1 r0∗rk∗E ≈

K ∗ E for conservation. Easily, r0 = K/
∑K
k=1 rk. Although

the computation ability of clients should also be considered, we
focus on non-i.i.d. data in this work and leave it as future work.

5. Experiments
Datasets: We name the proposed method as “Federated KWS
with User-Invariant information” (FedKWS-UI), and investi-
gate it on Google Speech Commands [9]1 (recommended by
FedScale [35]) to identify whether a 1s-long speech recording is
a word, silence, or unknown. The benchmark contains two tasks
with 12 classes (10 words, silence, unknown) and 35 classes (35
words). The two tasks contain 2,234 and 2,434 users. We split
the data into corresponding clients with each user as a client.
The number of total training samples (N), the training samples
of each client on average (Avg.nk), the number of test samples
(M) are listed in Table 1. The class distributions of randomly
selected 20 clients in task C = 35 are shown in left of Fig-
ure 1. Larger circles correspond to more samples. The train
and test data is split via the provided lists in Google Speech
Commands. We extract 40 MFCC features for each 30ms win-
dow frame with a stride of 10ms. We also follow the settings
in Google Speech Commands: performing random time-shift
of Y ∼ [−100, 100] milliseconds and adding 0.1 volume back-
ground noise with a probability of 0.8.
Networks and Centralized Training: We investigate vari-
ous network architectures and moderately modify them to keep
nearly the same number of parameters. We use DSCNN [5]
with 172 channels, MHAttRNN [6, 8] with 4 heads and 80 hid-
den neurons, ResNet [7] with 15 layers and 45 channels in each
basic block, Transformer [8] with 4 layers and a model dimen-
sion of 96. We first use these networks for centralized train-
ing. For DSCNN, MHAttRNN and ResNet, we utilize SGD
optimizer with momentum 0.9, and we vary the learning rate
in {0.1, 0.05, 0.03, 0.01} and select the best result. For Trans-
former, we utilize AdamW optimizer and vary learning rate in

1https://pytorch.org/audio/stable/datasets.html

Table 3: Comparisons on FA and FR rate. The lower the better.

FedAvg [10, 18] FedOpt [19, 17] FedKWS-UI
FA 0.27 0.32 0.23
FR 5.03 3.19 2.78

{0.005, 0.002, 0.0008}. We set batch size as 128. The number
of network parameters and the accuracies on test data are shown
in Table 2. We do not obtain SOTA results via Transformer be-
cause we only use 4 layers with 0.23M parameters while [8]
uses a network with up to 5.4M parameters.
FedKWS: For FedKWS, we split the training data in Google
Speech Commands via the provided user IDs. The test data
is still used to evaluate the generalization ability of the aggre-
gated model. We plot the statistics of clients’ number of sam-
ples and class distribution entropy at the right of Figure 1. We
compare FedKWS-UI with FedAvg [10] (used in [18]), Fed-
Prox [13], FedMMD [24], FedOpt [19] (used in [17]). For
all methods, we use a batch size of 32, local training steps
E = 50 and run 300 rounds. We also vary the learning rate
as aforementioned and take the best one for comparison. Addi-
tionally, for FedProx and FedMMD, we vary the regularization
coefficient in {0.0001, 0.001, 0.01}. For FedOpt, we vary the
global optimizer in {SGD, Adam} and the global learning rate
in {1.0, 0.1} and {0.001, 0.0001}, respectively. For FedKWS-
UI, we use r0 = 3.5, 5.0 for C = 12, 35, and show r0 ∗ rk
values of all clients via the shades of color at the right of Fig-
ure 1. The max and min values are shown at the color bar, and
the top-right points (clients) tend to have larger r0 ∗ rk. We uti-
lize µ = 0.2 and λ = 0.001 in FedKWS-UI (Eq. (1), Eq. (3)).

We record the accuracy on the global test set every 3 rounds
and plot the convergence curves in Figure 2. First, we can
clearly observe that the decentralized performances drop a lot
compared with centralized training. For example, all of the
compared methods could only obtain accuracy as high as 86.39
on task 12, far away from the centralized training (97.89). Then,
comparing the network architectures, we could find that MHAt-
tRNN tends to obtain higher performances while Transformer
performs worst. We guess that MHAttRNN could be more ro-
bust to the random time-shift because it directly computes the
sequential information, and the attention mechanism could pre-
cisely capture the important signals. Furthermore, FedProx and
FedMMD add regularization during local training procedures
on the parameter and intermediate features, which perform not
so well. Overall, FedKWS-UI could lead to better results on
all of these architectures, particularly on ResNet and Trans-
former, verifying the versatility of our methods. Significantly,
FedKWS-UI surpasses all compared methods by a large margin
on task 12 with DSCNN, ResNet, and Transformer. For exam-
ple, FedKWS-UI could boost the Transformer performances on
task 12 from 72.71 to 79.06. We also evaluate the false accept
(FA) and false reject (FR) rate as done in [17, 18]. In task 12, we
take the 10 words as positive classes and average their FA rates,
while the silence and unknown as negative classes. We do not
adjust the prediction confidence threshold to control the FA and
directly report FA and FR with the predictions. We use DSCNN
and calculate the FA and FR rate of the final aggregated model.
We show the results in Table 3. We find that FedKWS-UI could
obtain fewer false alarms/rejections.
Ablation Studies: We investigate the effects of components
in FedKWS-UI. First, we set µ = 0 and λ = 0 to omit the
part of adversarial learning against overfitted models (ALO)

3 60 120 180 240 300

0.2

0.4

0.6

0.8

G
lo

ba
l

A
cc

ur
ac

y

C=12, DSCNN

FedAvg:82.85

FedProx:85.51

FedMMD:83.74

FedOpt:85.50

FedKWS-UI:87.29

3 60 120 180 240 300

0.5

0.6

0.7

0.8

C=12, MHAttRNN

FedAvg:86.20

FedProx:86.39

FedMMD:85.92

FedOpt:86.38

FedKWS-UI:86.57

3 60 120 180 240 300

0.4

0.6

0.8

C=12, ResNet

FedAvg:83.48

FedProx:83.93

FedMMD:83.90

FedOpt:81.30

FedKWS-UI:86.23

3 60 120 180 240 300

0.2

0.4

0.6

0.8
C=12, Transformer

FedAvg:71.17

FedProx:72.15

FedMMD:72.71

FedOpt:71.12

FedKWS-UI:79.06

3 60 120 180 240 300

Communication Round

0.4

0.6

0.8

G
lo

ba
l

A
cc

ur
ac

y

C=35, DSCNN

FedAvg:82.59

FedProx:81.44

FedMMD:82.79

FedOpt:84.23

FedKWS-UI:84.51

3 60 120 180 240 300

Communication Round

0.4

0.6

0.8

C=35, MHAttRNN

FedAvg:79.80

FedProx:83.10

FedMMD:83.64

FedOpt:82.83

FedKWS-UI:84.60

3 60 120 180 240 300

Communication Round

0.2

0.4

0.6

0.8

C=35, ResNet

FedAvg:79.05

FedProx:75.78

FedMMD:80.07

FedOpt:79.33

FedKWS-UI:80.50

3 60 120 180 240 300

Communication Round

0.2

0.4

0.6

C=35, Transformer

FedAvg:70.24

FedProx:70.07

FedMMD:66.78

FedOpt:54.56

FedKWS-UI:74.75

Figure 2: Comparison results on federated Google Speech Commands. Rows show the results on task 12 and 35, and columns show
results of four utilized networks. The legends also show the average accuracy of the final 5 communication rounds.

0 60 120 180 240 300

Communication Round

0.2

0.4

0.6

0.8

G
lo

ba
l

A
cc

ur
ac

y

Ablation of µ=0.0, λ = 0.0 (C=35)

FedKWS-UI: DSCNN:82.27

FedKWS-UI: MHAttRNN:84.73

FedKWS-UI: ResNet:74.10

FedKWS-UI: Transformer:70.57

0 60 120 180 240 300

Communication Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ablation of µ (C=12, DSCNN)

FedKWS-UI: µ=0.0:86.55

FedKWS-UI: µ=0.1:87.24

FedKWS-UI: µ=0.2:87.29

FedKWS-UI: µ=0.3:87.21

FedKWS-UI: µ=0.5:86.96

0 60 120 180 240 300

Communication Round

0.2

0.4

0.6

0.8

Ablation of λ (C=12, ResNet)

FedKWS-UI: λ=0.0:85.29

FedKWS-UI: λ=1e-4:86.07

FedKWS-UI: λ=1e-3:86.23

FedKWS-UI: λ=1e-2:82.79

FedKWS-UI: λ=1e-1:76.99

Figure 3: Ablation studies of only using ALT (left) and the
hyper-parameters in ALO (µ (middle), and λ (right)).

and only use adaptive local training (ALT). We record the re-
sults using four networks on task 35 at the left of Figure 3.
We find that only using adaptive local training could still per-
form well on MHAttRNN and Transformer, while it works
worse on DSCNN and especially on ResNet. Hence, it is still
necessary to utilize the adversarial learning to improve perfor-
mances further. Then, we vary µ ∈ {0.0, 0.1, 0.2, 0.3, 0.5} and
λ ∈ {0.0, 0.0001, 0.001, 0.01, 0.1} correspondingly, studying
the effects of label smoothing and adversarial loss in ALO. We
investigate the task C = 12 with DSCNN and ResNet. The
results are shown at the middle and right of Figure 3. Utilizing
label smoothing could almost lead to better performances, and
setting µ around 0.2 is a better choice. Similarly, λ = 0.001 is
recommended for the proposed adversarial loss, and a larger λ
(e.g., 0.1) could be harmful.

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Along Inferior User (γ1)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
lo

ng
Q

ua
lifi

ed
U

se
r

(γ
2
)

θ0 θ1

θ2

Without ALO

0.15

0.30

0.45

0.60

0.75

0.90

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Along Inferior User (γ1)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

θ0 θ̂1

θ2

With ALO

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
en

er
al

iz
at

io
n

(T
es

t
A

cc
ur

ac
y)

Figure 4: Visualization of the plausibility and advantage of the
proposed strategies.

Visualization Analysis: We then present some visualization re-

sults on task 35 to further show the plausibility and advantage
of the proposed strategies. Specifically, we first train a well-
performed KWS model (θ0) on the centralized training set (test
accuracy up to 93.0%). Then, we respectively update θ0 on
an inferior and qualified user’s data for 20 epochs. The infe-
rior user owns only 100 samples and the classes are imbalanced
(i.e., the bottom-left user shown in the right part of Figure 1),
while the qualified user owns about 250 samples and the classes
are more balanced (i.e., the top-right user shown in the right
part of Figure 1). The updated models are denoted as θ1 and θ2.
Then, we plot the performance landscape of the interpolation
θ0 + γ1(θ1 − θ0) + γ2(θ2 − θ0) within the grid space where
γ1 ∈ [−0.1, 1.1], γ2 ∈ [−0.1, 1.1]. The left part of Figure 4
shows that updating θ0 on the qualified user’s data keeps the
generalization ability of the global model while the result on the
inferior user’s data becomes worse. Hence, it is rational that our
proposed ALT encourages qualified users to contribute more to
FedKWS. Additionally, for the inferior user, we utilize the pro-
posed ALO to train another model θ̂1 against the overfitted θ1,
and θ̂1 performs better as shown on the right of Figure 4. The
interpolation landscape along the inferior user’s data becomes
smoother with ALO, benefiting the model aggregation proce-
dure in FL. This verifies the advantage of the proposed ALO.
Overall, FedKWS-UI could enhance the generalization ability
of the federated model even with few or skewed samples.

6. Conclusion
We investigate popular networks for FedKWS, where the
data heterogeneity leads to significant performance degradation
compared with centralized training. We propose to learn user-
invariant information via adversarial learning against overfitted
local models and a computation re-allocation strategy named
adaptive local training. These two strategies could avoid overfit-
ting user-specific information during local training and facilitate
model aggregation. Experimental results verify the superiori-
ties of our proposed FedKWS-UI. Future works will extend this
work to streaming KWS [6] and utilize differential privacy [36]
to satisfy stricter privacy requirements.

7. References
[1] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend

and spell: A neural network for large vocabulary conversational
speech recognition,” in ICASSP, 2016, pp. 4960–4964.

[2] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,
D. Yu, and G. Zweig, “The microsoft 2016 conversational speech
recognition system,” in ICASSP, 2017, pp. 5255–5259.

[3] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword
spotting using deep neural networks,” in ICASSP, 2014, pp. 4087–
4091.

[4] T. N. Sainath and C. Parada, “Convolutional neural networks for
small-footprint keyword spotting,” in INTERSPEECH, 2015, pp.
1478–1482.

[5] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” CoRR, vol. abs/1711.07128, 2017.

[6] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and
S. Laurenzo, “Streaming keyword spotting on mobile devices,” in
INTERSPEECH, 2020, pp. 2277–2281.

[7] R. Tang and J. Lin, “Deep residual learning for small-footprint
keyword spotting,” in ICASSP, 2018, pp. 5484–5488.

[8] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword trans-
former: A self-attention model for keyword spotting,” CoRR, vol.
abs/2104.00769, 2021.

[9] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” CoRR, vol. abs/1804.03209, 2018.

[10] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in AISTATS, 2017, pp. 1273–1282.

[11] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM TIST, vol. 10, no. 2, pp.
12:1–12:19, 2019.

[12] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Fed-
erated learning with non-iid data,” CoRR, vol. abs/1806.00582,
2018.

[13] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,”
in MLSys, 2020.

[14] X. Li, Y. Xu, S. Song, B. Li, Y. Li, Y. Shao, and D. Zhan,
“Federated learning with position-aware neurons,” CoRR, vol.
abs/2203.14666, 2022.

[15] Y. Gong, Y. Chung, and J. R. Glass, “AST: audio spectrogram
transformer,” CoRR, vol. abs/2104.01778, 2021.

[16] S. Chang, H. Park, J. Cho, H. Park, S. Yun, and K. Hwang,
“Subspectral normalization for neural audio data processing,” in
ICASSP, 2021, pp. 850–854.

[17] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau,
“Federated learning for keyword spotting,” in ICASSP, 2019, pp.
6341–6345.

[18] A. Hard, K. Partridge, C. Nguyen, N. Subrahmanya, A. Shah,
P. Zhu, I. Lopez-Moreno, and R. Mathews, “Training keyword
spotting models on non-iid data with federated learning,” in IN-
TERSPEECH, 2020, pp. 4343–4347.

[19] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush,
J. Konečný, S. Kumar, and H. B. McMahan, “Adaptive federated
optimization,” in ICLR, 2021.

[20] X. Cui, S. Lu, and B. Kingsbury, “Federated acoustic modeling for
automatic speech recognition,” in ICASSP, 2021, pp. 6748–6752.

[21] K. Nandury, A. Mohan, and F. Weber, “Cross-silo federated train-
ing in the cloud with diversity scaling and semi-supervised learn-
ing,” in ICASSP, 2021, pp. 3085–3089.

[22] D. Guliani, F. Beaufays, and G. Motta, “Training speech recogni-
tion models with federated learning: A quality/cost framework,”
in ICASSP, 2021, pp. 3080–3084.

[23] X. Li and D. Zhan, “FedRS: Federated learning with restricted
softmax for label distribution non-iid data,” in KDD, 2021, pp.
995–1005.

[24] X. Yao, C. Huang, and L. Sun, “Two-stream federated learning:
Reduce the communication costs,” in VCIP, 2018, pp. 1–4.

[25] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. What-
mough, and V. Saligrama, “Federated learning based on dynamic
regularization,” in ICLR, 2021.

[26] Q. Li, B. He, and D. Song, “Model-contrastive federated learn-
ing,” in CVPR, 2021, pp. 10 713–10 722.

[27] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transfer-
able are features in deep neural networks?” in NeurIPS, 2014, pp.
3320–3328.

[28] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploit-
ing shared representations for personalized federated learning,” in
ICML, 2021, pp. 2089–2099.

[29] P. P. Liang, T. Liu, Z. Liu, R. Salakhutdinov, and L. Morency,
“Think locally, act globally: Federated learning with local and
global representations,” CoRR, vol. abs/2001.01523, 2020.

[30] X. Li, D. Zhan, Y. Shao, B. Li, and S. Song, “FedPHP: Federated
personalization with inherited private models,” in ECML/PKDD,
2021, pp. 587–602.

[31] X. Li, L. Gan, D. Zhan, Y. Shao, B. Li, and S. Song, “Aggregate or
not? exploring where to privatize in DNN based federated learn-
ing under different non-iid scenes,” CoRR, vol. abs/2107.11954,
2021.

[32] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” CoRR, vol. abs/1503.02531, 2015.

[33] T. Shen, J. Zhang, X. Jia, F. Zhang, G. Huang, P. Zhou, F. Wu, and
C. Wu, “Federated mutual learning,” CoRR, vol. abs/2006.16765,
2020.

[34] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge
transfer: Federated learning of large cnns at the edge,” in NeurIPS,
2020.

[35] F. Lai, Y. Dai, X. Zhu, H. V. Madhyastha, and M. Chowdhury,
“Fedscale: Benchmarking model and system performance of fed-
erated learning,” in ResilientFL, 2021, pp. 1–3.

[36] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential pri-
vacy,” in CCS, 2016, pp. 308–318.

	1 Introduction
	2 Related Works
	3 Background of Federated Learning
	4 Proposed Methods
	5 Experiments
	6 Conclusion
	7 References

