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Abstract

While a streaming voice assistant system has been used in
many applications, this system typically focuses on unnatural,
one-shot interactions assuming input from a single voice
query without hesitation or disfluency. However, a common
conversational utterance often involves multiple queries with
turn-taking, in addition to disfluencies. These disfluencies
include pausing to think, hesitations, word lengthening, filled
pauses and repeated phrases. This makes doing speech recog-
nition with conversational speech, including one with multiple
queries, a challenging task. To better model the conversational
interaction, it is critical to discriminate disfluencies and end of
query in order to allow the user to hold the floor for disfluencies
while having the system respond as quickly as possible when
the user has finished speaking. In this paper, we present a turn-
taking predictor built on top of the end-to-end (E2E) speech
recognizer. Our best system is obtained by jointly optimizing
for ASR task and detecting when the user is paused to think
or finished speaking. The proposed approach demonstrates
over 97% recall rate and 85% precision rate on predicting true
turn-taking with only 100 ms latency on a test set designed with
4 types of disfluencies inserted in conversational utterances.

Index Terms: end-to-end models, conversational speech

1. Introduction

Streaming speech recognition systems have been widely used
in many voice interaction applications e.g. voice assistant and
dialog systems. To achieve a human-level conversational expe-
rience, it is essential to learn interaction patterns that resemble
human conversational turn-taking. One of the problems is de-
termining when the user has finished speaking, which is typi-
cally referred as endpointing [[1} 2| 3} 4} 5} 6]. A typical end-
pointer model makes a series of binary decisions: to wait fur-
ther for more speech, or to stop listening. While it has been
used in many voice systems, these systems often assume “flu-
ent” one-shot voice commands or search queries, where users
know exactly what they want to say beforehand. However, a
natural conversational utterance commonly involves disfluen-
cies including pauses to think, hesitations, word lengthening,
filled pauses (e.g., ‘uh’, 'um’), and repeated phrases. The dis-
fluencies introduce long pauses in the utterances which could
easily cause ambiguity to the E2E model that the user is done
speaking. Thus, modeling disfluencies is critical to ensure nat-
ural conversational interaction.

To better model the natural conversational interaction, we
propose to build a turn-taking model detecting both when the
user pauses to think or when they finish speaking under disflu-
ent natural conversation. It is desirable to respond to users im-
mediately when users have done speaking while allowing users
to hold the floor if users are pausing to think. As illustrated Fig-
ure[T] the conventional endpointer does not allow users to speak

with long pauses or filler words, but instead cuts off the user
with an inappropriate response. On the other hand, the pro-
posed turn-taking model generates extra cues of pausing that
allows the user speak with disfluencies to achieve a conversa-
tional interaction experience.

Where canluh ......... DONE Where can luh ... PAUSING

Sorry, | didn't get that Mhm

Where can | order Thai food DONE «wesseens OFder Thai food DONE

Here are Thai restaurants nearby Here are Thai restaurants nearby

Call the Old ......... DONE Call the OId ...... PAUSING

R

Sorry, | cannot find contact of the O\d) ......... the Old Siam DONE

Okay, calling the Old Siam

Figure 1: Conventional endpointer (left) and conversational
turn taking model (right)

Past studies about turn-taking models [7, |8, [9] exploit both
acoustic and language model information to predict turn-taking
related classes including wait, done speaking or backchannel-
ing e.g. “uh-huh”, “yes”. In [10l [11]], fillers detection is also
explored to assist the turn-taking model. The acoustic features
e.g., prosody, are investigated in [8, [10] to detect the pauses or
a pitch reset at strong phrase boundaries.

The recent development of end-to-end (E2E) models [12}
131 141 1150 [16] has already shown that having one neural net-
work to do acoustic, pronunciation and language modeling is far
better then a modular-based conventional ASR model[17]. Fur-
thermore, we have seen that folding additional detectors into
the E2E model, for example the endpointer [4} 5] is far better
then having separate modules. Building on this, we propose to
build an E2E model that incorporates the turn-taking detector
into the E2E model that already folds different components of
the speech recognition pipeline into one neural network. This
is unlike the previous systems that build an external turn-taking
model. The proposed E2E turn-taking detector sees both acous-
tic representations and intonation patterns from the encoder, as
well as grammatically unfinished or finished sentences by de-
coder, to help aid its performance.

Our best system is obtained by sharing the encoder and
the prediction network from the E2E speech recognizer while
adapting the joint layers to optimize both the recognition and
turn-taking detection. The proposed E2E approach provides
97% recall rate and 85% precision rate on predicting true turn-
taking with only 100 ms latency over a test set including 4 types
of disfluencies inserted in conversational utterances. The exper-
iments also investigates the acoustic based approach, text based
approach and the E2E model on pausing and finishing detection.



Table 1: Rules and exceptions for inserting </s> or <pause>
annotations.

Therefore,
When this happens... It’s likely because...  insert...
Long silence between words Speaker finished <eos>
Silence following last word Speaker finished <eos>

Short silence between words Speaker not finished <pause>
Silence following lengthened words ~ Speaker not finished <pause>
Silence following filler words Speaker not finished <pause>
Silence following phrases

identified by disfulency detector Speaker not finished <pause>

2. Training Data Annotation

To model the conversational turn-taking, the first step is to anno-
tate ground-truth disfluencies in the training data. Specifically,
we look to label “user hesitation” as <pause> and “user done
speaking” as </ s> as an example shown in Fig. |Zl

Our training data consists of (1) short-form voice search
queries from Google’s voice search product, actions on various
platforms and (2) long-form data from YouTube, which consists
of multiple spontaneous speech sentences including more natu-
ral and free voice inputs which include disfluencies. All the ut-
terances are anonymized and hand-transcribed. However, label-
ing the ground-truth with <pause> and </s> is not straight-
forward as these labels are not annotated. To address the prob-
lem, we performs labeling based on acoustic clues and a text-
based disfluency detector as summarized in Tablem

Specifically, we first insert an </ s> when there is a long si-
lence or at the end of the utterance and a <pause> for short si-
lences where the silence segments are obtained by forced align-
ment. However, disfluenies may also lead to long silence suffix
that could be incorrectly labeled as </s> .

To eliminate common mis-insertions, we relabel the silence
suffix of word lengthening, filled pauses and other disfluency
words as <pause> . To do this, we approximate word length-
ening by looking at phoneme duration. The means and standard
deviations of phonemes are computed based on the training set.
If the phoneme of the word end exceeds 10 standard deviation
away, we mark it as word lengthening and the silence following
it as <pause> . For the filled pause, we simply relabel the si-
lence following predefined filler words as <pause> . Finally,
we exploit the disfluency detector [18] based on small vocabu-
lary BERT to identify reparandum and interregnum (e.g. “you
know”, “well”, “I mean”) of disfluencies. The silence following
the identified phrases are labeled as <pause> .

sil after lengthening long sil short sil

=) = @

end-of-audio

A
[ } and little Timmy eos :|
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sil after filler final sil

Figure 2: An example of annotation
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3. Models

After finishing expanding the transcript with </s> and
<pause> as described in[2] we look to train the E2E model
with these extra tokens to do both ASR and turn-taking in this
Section. To model conversation turn-taking, we explore mod-
els that share different components of an E2E Recurrent Neural
Network Transducer (RNN-T) [19] based ASR system. RNN-T
consists of an encoder, a prediction network and a joint layer.
The encoder consists of multiple Conformer layers [20]. The
prediction network summarizes a history of previous predic-
tions into a hidden representation. The joint layer then com-
bines the encoder and the prediction network outputs to predict
a wordpiece token given the speech inputs. In the following sec-
tion, we describe different approaches to build the turn-taking
detector, specifically on top of the encoder, prediction network
and joint layer respectively.

3.1. Acoustic Detector

In this section, we build a frame-level turn-taking detector based
on acoustic observations as illustrated in Figure J] To build
the architecture, we simply add a projection layer on top of
the encoders to output the turn-taking targets, talking, pausing
(<pause>) and finishing (</s>). As the encoders are shared,
the architecture can achieve a better synchronization between
the ASR model and the turn-taking detector, which is important
to ensure correct interaction for natural conversational input.
We convert all the wordpiece symbols to the talking class
and obtain the frame-level targets based on silence alignment.
For each input speech frame x; at timestamp #, the encoder de-
tector computes the probability distribution of talking, pausing
and finishing based on observations X, ...x¢—j where k repre-
sents total context window received by the conformer encoder.



We can express the probability of <pause> and </s> as:
P(<pause>|x¢, -, Xi—k), P(</s>[x¢, ,xe—k) (1)

where the probabilities are thresholded to obtain the pausing or
finishing decision.

3.2. Text Predictor

In this section, we investigate a turn-taking detector that is
purely driven by the wordpiece sequence history while discard-
ing the acoustic clues. Figure[]illustrates the additional predic-
tor consisting of a fully connected network built on top of the
prediction network. As the acoustic observations are skipped,
the text based detector is basically a language model predicting
probability of the next word being <pause> or </s> given
the sequence of word pieces already present.

To train the model, we first optimize the encoder, prediction
network and joint network to predict conventional wordpiece la-
bel sequences. Next, we train the additional predictor with all
the other parameters frozen. The additional predictor receives
the prediction network output conditioned on N previous (non-
blank) label predictions [21] and directly output the label se-
quences including wordpieces as well as <pause> and </ s>
tokens. Thus, the additional predictor is essentially a next word
predictor running over the space of wordpieces plus <pause>
and </s>.

During inference, we pass top hypothesis to the additional
predictor to compute a probability distribution over expanded
labels while only take the posterior of <pause> and </ s> for
turn-taking decisions, which could be expressed as:

P(<pause>|Yu—nN, .-, Yu), P(</S>|Yu=nN, - Yu) 2)

3.3. E2E Detectors

Both acoustic clues and spoken words provide useful features
for turn-taking decisions. To exploit both features, a straightfor-
ward approach is to build an E2E RNN-T optimizing for word-
pieces, <pause> and </ s> prediction as illustrated in Figure
E}a, referred as E2E detector. At each time step ¢, the model
receives a new acoustic frame x; and outputs a probability dis-
tribution over y¢ C {V U <pause> U </s>}, V being the
wordpiece vocabulary and a blank symbol.

However, the E2E model could degrade ASR quality as the
<pause> and </ s> tokens do not provide informative features
for wordpiece prediction, thus decrease the effective context
window instead. To ensure that recognition quality is consistent
with the conventional ASR, we adapt the model architecture by
introducing separate joint networks for ASR joint network and
conversation turn joint network as illustrated in Figure E}), re-
ferred as E2E additional joint. The conversation turn joint net-
work is responsible for the turn-taking decisions while the ASR
joint layer decodes the wordpieces.

We perform two stages training strategy similar to text pre-
dictor in Sec. Specifically, we first optimize the encoder,
prediction network and the ASR joint layer to predict word-
piece label sequence. Next, we initialize the conversation turn
joint network with the ASR joint network. The conversation
turn joint network is then fine-tuned with the expanded label
sequence including wordpieces, <pause> and </s> to adapt
the parameters with respect to the additional loss due to extra to-
kens insertion. Thus, the conversation turn joint network is able
to predict distributions of <pause> and </ s> given the exist-
ing encoder and prediction network outputs. During inference,

we rely on the ASR joint network for beam search decoding
over wordpiece space:

y*k = arg max 1og Posr (Y|Xt—k, " s Xty YueNy -5 Yu)  (3)
y

At each time step, the conversation turn joint network computes
the the probability of the <pause> and </s> given the de-
coding paths obtained by ASR joint network using Eq. 3] and
acoustic observations. The posterior of <pause> and </s>
can be expressed as:

Pcom,o(<pause>|xt_k, oy Xty Yu—Ny - 7yu),

Pconvo(</5>‘xt—k7 s Xty Yu—Ny - - 'ayu)

“

Unlike Eq. [T] or Eq. 2] that predicts decisions based on either
the acoustic observations or the word sequences alone, Eq. [
learns the turn-taking objectives from both. The sequence-to-
sequence training is performed without alignment, thus we use
the FastEmit [22] regularization to encourage paths that outputs
tokens earlier.

4. Experimental Setup
4.1. Data

The training data covers utterances from short-form voice query
and long-form voice transcription data. The short-form voice
query data consists of around 15M utterances collected from
Google’s voice search product and actions on various platforms
while long-form voice transcription includes 10M of utterances
obtained from YouTube. The utterances are anonymized and
hand-transcribed. In addition to the diverse training sets, multi-
condition training (MTR) [23] are also used to further increase
data diversity.

To create an evaluation set with disfluency, we first design
the scripts based on common voice queries. Each script con-
tains multiple continued queries as an example shown in Fig. [
For each script, the speakers insert 4 different types of disflu-
ency including random pauses, filled pauses, word lengthening
and repeating phrase. Finally, the speakers manually annotate
pausing or finishing labels and the corresponding timestamps.
Totally, the evaluation set consists of 200 utterances recorded
by 10 speakers, called natural conversation set. We also include
14K voice queries from anonymized Google’s voice search set
to ensure the recognition quality on a large set.

4.2. RNN-T Model Architecture

The RNN-T models use 128D log-Mel features. The encoder
network architecture consists of 12 Conformer layers where
each layer is of 512 dimension following [24]. The Conformer
layers consist of causal convolution and left-context attention
layers where 8-head attention is used in the self-attention layer
and the convolution kernel size used is 15. The RNN-T de-
coder consists of a prediction network and a joint network with
a single feed-forward layer with 640 units. The embedding pre-
diction network [21]] uses an embedding dimension of 320, and
has 1.96M parameters. E2E models are trained to predict 4,096
word pieces [25] plus <pause> and </s> . We also add the
FastEmit [22] regularization with a weight of 5e-3 to improve
the model’s prediction latency. There is no 2nd-pass used for
these experiments.

4.3. Evaluation metrics

To evaluate the quality, of detectors we compute the recall and
precision rate for both pausing and finishing. We first align the



hypothesized transcription and pausing/finishing to the refer-
ence to pair the predictions with true labels. Then, we could
easily calculate the precision, recall and latency based on the
alignment. A good recall rate of </s> is critical to ensure
the queries are detected and responded. The precision rate of
</ s> affects if the system could interrupt user as false emission
causes low precision rate. To evaluate latency, we measure the
time difference between the system predicted pausing or finish-
ing and the true labels. We only calculate the latency from the
detected pausing or finishing. We also evaluate the WERs while
only to ensure that adding the turn-taking detectors doesn’t hurt
recognition quality. The WERs of ASR without turn-taking de-
tectors are 6.3% for the 14k voice search test set and 10.1 % for
the natural conversation test set.

5. Results

In this section we present the experimental results comparing
the turn-taking detectors as described in [3] We first investi-
gate the WERs of each model on typical voice-search set and
natural conversation set. Table [2] demonstrates that E2E detec-
tor could increase the WERs by 6% relatively, which implies
that directly optimizing the conventional RNN-T to both tasks
would hurt recognition quality as suggested in Section[3.3]while
the recognition quality could be fixed by introducing additional
joint network i.e. E2E add. joint in Table[2] Hence, we only
compare the acoustic detector, text predictor and E2E with addi-
tional joint for the following experiments on detection accuracy
and latency.

Table 2: WER of each model. VS is the typical voice-search set;
Convo is the natural conversation set.

WER Acoustic Text E2E E2E
(%) detector | predictor | detector | add. joint

VS set 6.3 6.3 6.7 6.3

Convo set 10.1 10.1 10.6 10.1

Figure [] reports the PR (Precision-Recall) curves for both
</s> and <pause> . Upper curves are better. The curve is
obtained by sweeping the thresholds of posterior of </s> and
<pause> obtained by Eq. [T} 2]and ] Figure [f] demonstrates
that the system based on the E2E with additional joint is bet-
ter than acoustic and text based detector, both of which degrade
rapidly for the region where precision rate is over 70%. Table
[lis the optimal operating point obtained in Figure [§] Table 3]
shows that although both the acoustic and text detector could
achieve a good recall rate covering over 97% true </s> with
a small median latency of around 100 ms, both systems have a
precision rate below 70% which indicates that pausing are mis-
classified as finishing. The problem has been largely improved
using the E2E with additional joint where precision rate has
been improved by roughly 18%. The results reveal that while
either acoustic observations or word sequences alone could eas-
ily identify pausing of disfluency as finishing, and combined
modeling can significantly remedy the problem.

In Figure |/} we compare the 3 systems for pausing detec-
tion. Figure [7] reveals that text predictor is much worse than
the other two systems on predicting pausing. This indicates that
it is difficult to predict pausing based on only word sequences
history. The system based on E2E with additional joint still
performance best over the 3 systems where both recall and pre-
cision are over 10% better than the acoustic detector as shown
in Table[d

Table 3: Precision, recall and latency for finishing speaking.

model recall | precision 50th 90th
(%) (%) latency | latency

Acoustic detector | 97.3 67.3 90 ms | 330 ms

Text predictor 97.2 66.5 90ms | 200 ms

E2E add. joint 97.5 84.7 100 ms | 240 ms

Table 4: Precision, recall and latency for pausing.

model recall | precision 50th 90th
(%) (%) latency | latency

Acoustic detector | 72.5 60.0 270 ms | 790 ms

Text predictor 29.8 69.7 70ms | 930 ms

E2E add. joint 84.8 71.5 300 ms | 840 ms

@ E2E add. joint Acoustic detector @ Text predictor
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Figure 6: Precision-Recall curve of finishing speaking.
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Figure 7: Precision-Recall curve of pausing.

6. Conclusion

In this work, we incorporate a turn-taking detector into an uni-
fied E2E RNN-Transducer by sharing the encoder and the pre-
diction network while adapting the joint layers to optimize both
the recognition and turn-taking detection. The proposed ap-
proach demonstrates over 97% recall rate and 85% precision
rate on predicting true turn-taking with only 100 ms latency
on difficult continued queries with 4 types of disfluencies. The
analyses reveal that pure acoustic or text based predictor achieve
comparable performance on detecting finishing while acoustic
observations are much more useful for pausing detection.
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