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Abstract

The estimation of speaker characteristics such as age and height
is a challenging task, having numerous applications in voice
forensic analysis. In this work, we propose a bi-encoder trans-
former mixture model for speaker age and height estimation.
Considering the wide differences in male and female voice char-
acteristics such as differences in formant and fundamental fre-
quencies, we propose the use of two separate transformer en-
coders for the extraction of specific voice features in the male
and female gender, using wav2vec 2.0 as a common-level fea-
ture extractor. This architecture reduces the interference effects
during backpropagation and improves the generalizability of the
model. We perform our experiments on the TIMIT dataset and
significantly outperform the current state-of-the-art results on
age estimation. Specifically, we achieve root mean squared er-
ror (RMSE) of 5.54 years and 6.49 years for male and female
age estimation, respectively. Further experiment to evaluate
the relative importance of different phonetic types for our task
demonstrate that vowel sounds are the most distinguishing for
age estimation.1

Index Terms: speaker profiling, age estimation, height estima-
tion, mixture of experts.

1. Introduction
Speech is an acoustic output produced by precisely coordinated
movement of different human body parts. Therefore, there have
been suggestions that acoustic features of speech can convey
information about the physical characteristics of the speaker.
Among various physical characteristics, scientific studies have
investigated the correlation between voice characteristics and a
speaker’s age and height. Authors of [1, 2] reported that the vo-
cal tract length, sub-glottal resonance frequencies, and formant
frequencies are correlated with the individual’s height. Other
voice characteristics of speech such as speech rate, sound pres-
sure level, fundamental frequency, etc. vary according to the
speaker’s age [2, 3]. The age-related glottis deterioration of the
speaker also impacts the speech characteristics like jitter, shim-
mer [4], and speech harmonics [5].

Automatic speaker profiling systems could be applied to a
variety of different fields. For example, in criminal investiga-
tion, evidence could be in the form of voice recordings, e.g. a
hoax bomb threat or ransom demand over a phone call [6, 7].
In such cases, estimating the age and height of speakers in
the audio evidence could save investigating agencies’ time by
narrowing down the number of suspects. Similarly, predicting
the age and gender of a speaker from the speech data can aid
marketing campaigns by targeting suitable gender/age customer

1Code and models are available at github/tarun360/SpeakerProfiling

groups [7]. In addition, the speaker profiling system can bene-
fit other speech fields, namely, speaker diarization and speech-
based verification as well.

Contribution: In this work, we study the use of self-
supervised speech representation, specifically wav2vec 2.0 [8],
for speaker age and height estimation. We also compare
wav2vec 2.0 to other famous feature representations: MFCC,
filter bank, and x-vectors [9]. To our best knowledge, our
work is the first in the literature to demonstrate the potential
of wav2vec 2.0 in predicting speaker age and height. For the
downstream architecture, we present a novel Mixture of Ex-
perts (MoE) based bi-encoder transformer model that utilizes
wav2vec 2.0 as a common-level speech feature extractor fol-
lowed by a bi-encoder architecture. The bi-encoder architec-
ture is motivated from the differences in male and female voice
characteristics such as differences in formant and fundamen-
tal frequencies [10, 11]. The two encoders act as ‘experts’ for
providing distinctive features for male and female voice. We
further make use of homoscedastic uncertainty [12] to define
the multi-task loss function and mixup [13] as a regularization
technique. The proposed network achieve new state-of-the-art
results in age estimation on the TIMIT dataset.

The rest of our paper is organized as follows. Section 2
briefly describes the speaker profiling literature. Section 3 illus-
trates our proposed model architecture and techniques. Section
4 describes the experiments conducted to estimate the age and
height of a speaker in a monolingual setting using the TIMIT
dataset. Also, this section discusses the impact of the different
phones on the estimation result in Section 4.3. Finally, conclu-
sions are presented in Section 5.

2. Related works
There is a wide choice of speech feature extractors for auto-
matic height and age estimation available in the literature. How-
ever, most of the previous studies used conventional techniques
of extracting features from raw speech signals. In the ear-
lier years, authors of [15, 16] used the Open-Smile toolkit to
convert the short-term spectral features into various statistics
like mean, median, percentiles, etc. for height and age estima-
tion. A similar statistical approach for age and height predic-
tion applied i-vector (dimension reduced version of Gaussian
mixture model universal background model) [17, 18] to convert
a variable-length utterance into a fixed-size embedding vector.
Another embedding approach of speaker profiling is obtaining
spectral characterizations of the speech signal. For example,
the speaker’s resonance frequencies of sub-glottal are used for
height estimation [19]. Singh et al. [2] applied a bag of words
representation to capture short-term cepstral features with dif-
ferent time resolutions. Other common-level short term features
are Mel Frequency Cepstral Coefficients (MFCC) [20, 21], cep-
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Figure 1: wav2vec 2.0 bi-encoder model architecture. Transformer encoder [14] with 6 layers and 8 attention heads is used. Statistical
pooling refers to taking mean and standard deviation along frame dimension and concatenating them to obtain utterance level repre-
sentation. ‘FC-L’ denotes a fully connected layer with L neurons. ⊕ denotes the concatenation operation. a, h and g denote the age,
height and gender prediction.

stral and pitch features [4, 22], etc.

In this era of deep learning, deep neural networks (DNN)
have shown the outstanding ability to discover descriptive and
distinctive representations from raw speech audio. Therefore,
recent studies have applied DNN-based speech representation
learning to improve the accuracy of the speaker’s height and
age prediction. Abumallouh et al. [23] presented a speaker age
and gender classifier that based on top of an unsupervised DNN
bottleneck feature extractor can achieve better performance than
its original MFCCs feature set, especially for female speaker.
By applying DNN discriminative embedding called x-vector
[24], authors of [25, 26] gained better results in height and
age estimation in TIMIT dataset compared to previous stud-
ies. Shangeth et al. [27] employed semi-supervised learning
approach to learn speaker representation and achieve the state-
of-the-art result on age estimation on the TIMIT Test dataset
with Mean Absolute Error (MAE) of 4.8 and 5.0 years for male
and female speakers respectively. Recently, Baevski et al. [8]
presented the wav2vec 2.0 framework for self-supervised learn-
ing of discrete speech units. In the field of speaker recognition,
wav2vec 2.0 have increased the classification accuracy consid-
erably since it can capture much more phonetics information
than it’s conventional counterpart. To the best of our knowl-
edge, there is no work in the literature which studies the use of
wav2vec 2.0 for speaker height and age estimation.

Literature also showed that there are differences between
male and female voices. The average female formant and fun-
damental frequencies are higher than that of the male speaking
voice [10, 11]. Therefore, the extraction of height and age in-
formation in the speech signal is also affected by the gender of
the speaker [28]. Most of the previous speaker profiling stud-
ies considered gender classification and height/age estimation
as a joint problem [26, 27]. The only work to use gender in-
formation and get a slight improvement in speaker’s height and
age prediction is by [22, 29]. Nevertheless, these works adapted
ground truth gender information which is fed to their model just
as a binary value. In order to capture distinctive representations
of male and female speech, we use two experts, one for each
gender. Mixture of Experts (MoE) [30] is a supervised learning
system in which separate networks are designed to handle dif-
ferent subsets of the training samples. Recently, the MoE archi-
tecture has been studied for various tasks in the speech domain
such as multi-accent speech recognition [31], code-switching
speech recognition [32], etc.

3. Method
3.1. Self supervised representation

Motivated by the success of self-supervised learning in the
field of speech recognition, we explore an SSL model, namely
wav2vec 2.0 [8] in speaker profiling. The wav2vec 2.0 model
learns speech representations by solving contrastive tasks in la-
tent space. Specifically, wav2vec 2.0 is composed of 1D con-
volution features extractor f : X → Z which expects raw au-
dio input X and outputs latent representations Z, followed by
transformer encoders e : Z → C, which provides contextual
information. The feature extractor outputs are quantised by a
quantisation module.

3.2. Mixture of Experts

The Mixture of Experts (MoE) [30] concept is based on divide-
and-conquer principle. If the training dataset is known in ad-
vance to be divided naturally into certain subspaces, then sep-
arated experts of these subspaces can be trained. A gating net-
work decides the weights to be assigned to each of the expert
views and then a weighted sum of all the expert views is taken.
The MoE architecture leads to less interference during back-
propagation and can provide faster training and better general-
izability.

3.3. Model architecture

The model architecture has been described in Fig.1. First,
wav2vec 2.0 is used to extract features from the raw audio
waveform. Then, utilising the MoE concept, a bi-encoder trans-
former network is built on top of the extracted features. For the
two genders present in the TIMIT dataset, male and female, we
consider separate experts, MaleExpert and FemaleExpert.
These two experts have identical architectures as illustrated in
Fig. 1, having 6 layers of self-attention based transformer en-
coder with 8 attention heads in each layer [14]. We take an
average and standard deviation of the output of the transformer
encoder along the frame dimension and concatenate them to get
utterance level representations. These utterance level represen-
tations are then fed to dropout and fully connected layers to
complete the expert architecture. The two separate experts can
focus on gender-based audio characteristics important for esti-
mating height and age, while the fine-tuned wav2vec 2.0 can
learn common-level features for both genders.



Table 1: Comparison of the proposed wav2vec 2.0 bi-encoder model with the existing work.

Method Height RMSE Height MAE Age RMSE Age MAE
Male Female Male Female Male Female Male Female

Singh et al. [2] 6.7 6.1 5.0 5.0 7.8 8.9 5.5 6.5
Kalluri et al. [21] 6.85 6.29 - - 7.60 8.63 - -
Kwasny et al. [25] - - - - 7.24 8.12 5.12 5.29
Williams et al. [33] - - 5.37 5.49 - - - -
Mporas et al. [15] 6.8 6.3 5.3 5.1 - - - -

Shangeth et al. (single-task model) [27] 8.1 6.0 5.9 4.9 6.96 7.6 4.8 5.1
Shangeth et al. (multi-task model) [27] 7.5 6.5 5.8 5.1 6.8 7.4 4.8 5.0
Manav et al. (single-task model) [29] 6.92 6.24 5.20 4.95 7.20 7.10 5.04 5.02
Manav et al. (multi-task model) [29] 6.95 6.44 5.26 5.15 7.81 8.60 5.50 5.89

wav2vec 2.0 bi-encoder (ours) 7.3 6.43 5.58 5.07 5.54 6.49 3.96 4.48

Table 2: Comparison of wav2vec 2.0 bi-encoder model with wav2vec 2.0 single-encoder model.

Method Height RMSE Height MAE Age RMSE Age MAE
Male Female Male Female Male Female Male Female

wav2vec 2.0 single-encoder 7.17 6.39 5.35 5.08 5.71 6.98 4.05 4.90
wav2vec 2.0 bi-encoder 7.3 6.43 5.58 5.07 5.54 6.49 3.96 4.48

The two experts, MaleExpert and FemaleExpert pro-
vide two expert views em and ef :

em =MaleExpert(x) (1)

ef = FemaleExpert(x) (2)
where x is the feature representation extracted from fine tuned
wav2vec 2.0. ef and em are concatenated and fed to a fully
connected layer with sigmoid activation to predict the gender
g ∈ [0, 1]. Male gender is encoded as 0 and female as 1. Gender
prediction acts as a gating network to combine the output of the
two experts as follows:

e = (1− g)× em + g × ef (3)

e is then fed to fully connected layers to perform age and height
regression.

3.4. Loss function

In our multi-task model, three losses are factored into the
training process, namely height, age and gender. Prior ap-
proaches for building a multi-task model for speaker profiling
have used a weighted sum of these losses [27, 29], where the
loss weights are manually fine-tuned. Instead, we use uncer-
tainty loss [12], which uses homoscedastic uncertainty to com-
bine multiple losses. Using this, we define our multi-task loss
function as:

L =
Lheight

2σ2
height

+
Lage

2σ2
age

+
Lgender

2σ2
gender

+log(σheightσageσgender)

(4)
where σheight, σage and σgender are learnable parameters. As
suggested in their paper, we make the substitution sheight =
log(σ2

height), sage = log(σ2
age) and sgender = log(σ2

gender)
in equation 4 for numerical stability.

3.5. Mixup

We use mixup as a regularization technique to encourage the
model to learn linear inference from the input audio. Mixup

augmentation has been used previously in text-independent
speaker verification [34].

Given two audio samples xi, xj , with hi, hj , ai, aj and
gi, gj as the corresponding height, age, and gender values, the
mixup augmented sample is defined as:

xmixup = λxi + (1− λ)xj (5)

hmixup = λhi + (1− λ)hj (6)

amixup = λai + (1− λ)aj (7)

gmixup = λgi + (1− λ)gj (8)

where λ ∼ U(0, 1). To deal with audios of different lengths,
we repeat the audio of a shorter length to make it of the same
length as the longer audio.

4. Experiments
4.1. Dataset

In this work, we use TIMIT dataset [35] for our experiments.
It consists of audio samples from 630 speakers, having eight
different dialects of American English. The height varies in
the range of 145cm to 204cm, and age varies in the range of
21 years to 76 years. TIMIT dataset comes pre-divided into
train and test sets and we randomly select 15% of train set for
validation.

4.2. Experimental Setup

For the proposed bi-encoder transformer model, apart from
wav2vec 2.0, we also consider other features for comparison:
MFCC, filter bank and x-vectors. For filter bank, we consider
80 mel bins along with first and second order delta features. For
MFCC, we consider 16 cepstral coefficients, along with first and
second order delta features. For both filter bank and MFCC, we
use apply Cepstral Mean and Variance Normalization (CMVN)



Table 3: Comparison of different feature extractors: MFCC, filter bank, x-vectors and wav2vec 2.0.

Method Height RMSE Height MAE Age RMSE Age MAE
Male Female Male Female Male Female Male Female

MFCC bi-encoder 7.63 6.69 5.79 5.33 8.15 8.65 5.86 6.02
filter bank bi-encoder 7.86 6.68 6.13 5.36 8.51 8.42 6.19 5.86
x-vectors bi-encoder 8.02 6.79 6.11 5.46 7.66 8.89 5.5 5.82

wav2vec 2.0 bi-encoder 7.3 6.43 5.58 5.07 5.54 6.49 3.96 4.48

Table 4: Percentage change in RMSE values due to phoneme
masking

Mask Height RMSE Age RMSE
Male Female Male Female

Vowels 2.04% 0.07% 38.9% 20.46%
Nasals -0.52% 0.08% 2.51% -0.27%

Semivowels 0.45% -0.32% 12.2% -0.68%
Affricates 0.0% 0.0% 0.0% 0.0%
Fricatives 1.28% 2.87% 6.08% -2.41%

Stops 0.6% 2.9% 4.14% 3.05%
Others 1.07% -2.9% 5.84% 12.17%

and use frame length of 25ms and frame shift of 10ms. For x-
vectors, we extract the frame-level features before it’s statistical
pooling layer, which is then fed to downstream bi-encoder ar-
chitecture. The x-vectors were pre-trained on VoxCeleb1 [36]
and VoxCeleb2 [37] training data.

In another experiment, to show the efficacy of bi-encoder
architecture, we compare the wav2vec 2.0 bi-encoder model
with wav2vec 2.0 single-encoder model. The wav2vec 2.0
single-encoder model has the same layers as the wav2vec 2.0
bi-encoder model, except for the fact that there’s only a sin-
gle expert for both genders and there’s no gating network. The
output of the single expert is fed to fully connected layers to
perform age, height, and gender estimation.

For models using wav2vec 2.0, we unfreeze the entire
wav2vec 2.0 architecture except for the first five convolution
layers of the convolutional feature extractor and use Adam op-
timizer [38] with learning rate 10−6. When using MFCC, filter
bank and x-vectors, we use Adam optimiser with learning rate
10−5. Mixup was proposed as regularization technique for deep
neural network architectures to favour simple linear behaviour,
and as such, cannot be applied directly at audio-level for tradi-
tional feature extraction techniques like MFCC and filter bank.
As a result, we use mixup only when utilising x-vectors and
wav2vec 2.0 as common feature extractor.

4.3. Experimental Results

In Table 1, we compare the results of the wav2vec 2.0 bi-
encoder model with previous works. While many previous
works built separate models for age and height, or separate
models for male and female, we compare our multi-task model
with all of them. We report our results both in root mean
squared error (RMSE) and mean absolute error (MAE). It can
be observed that the model achieves significant improvement in
the age estimation task. Specifically, we achieve RMSE error
5.54 years and 6.49 years, which corresponds to relative im-
provement of 18.5% in male age estimation and 8.6% in female
age estimation over the current state-of-the-art.

The comparison of wav2vec 2.0 bi-encoder vs wav2vec
2.0 single encoder model has been illustrated in Table 2. The
wav2vec 2.0 bi-encoder model achieves a relative improvement
of 2.9% for male age estimation and 7.0% for female age es-
timation over wav2vec 2.0 single-encoder model in terms of
RMSE error, testifying our hypothesis of using separate en-
coders for the two genders. However, the same pattern is not
observed in height estimation results, indicating that the bi-
encoder architecture is not as useful for height estimation as
it is for age estimation.

In Table 3 we tabulate the results of different feature extrac-
tors: MFCC, filter bank, x-vectors and wav2vec 2.0. It can be
observed that wav2vec 2.0 feature representation is superior to
other feature extraction techniques.

4.4. Phonetic importance analysis

In order to understand the relative importance of the different
types of phones in speaker profiling, we analyse the results of
wav2vec 2.0 bi-encoder model after masking all utterances of
a particular phone type. TIMIT dataset provides time-aligned
phonetic transcriptions for each audio sample. Phones used in
TIMIT corpus are divided into the following classes: ‘Stops’,
‘Affricates’, ‘Fricatives’, ‘Nasals’, ‘Semivowels and Glides’,
‘Vowels’ and ‘Others’. For each of these phone types, we mask
all the phones in audio samples in TIMIT’s test set, and then
calculate the height and age RMSE scores. The relative per-
centage change due to these phone masking, as compared to
when no masking was done, are tabulated in Table 4. We notice
the largest increase in age RMSE value due to ‘Vowel’ mask-
ing, implying vowel sounds are the most important phoneme
type for age estimation. Surprisingly, we notice no significant
change in height RMSE values, indicating that height estima-
tion is not dependent on any particular phoneme type.

5. Conclusions
In this work, we presented a Mixture of Experts (MoE) based
bi-encoder transformer model, that uses self-supervised repre-
sentation, specifically wav2vec 2.0, for speaker age and height
estimation. The experimental results demonstrate that having
separate experts for male and female voices can reduce inter-
ference during training process and can achieve state-of-the-art
results for age estimation. We employed the homoscedastic un-
certainty principle to combine multiple losses of our multi-task
model. As part of future work, we plan to explore different fea-
ture extractors and self-supervised learning to further improve
age and height estimation results.
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