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TALP Research Center, Universitat Politecnica de Catalunya, Barcelona
{ioannis.tsiamas,gerard.ion.gallego,jose.fonollosa,marta.ruiz}@upc.edu

Abstract
Speech translation models are unable to directly process long
audios, like TED talks, which have to be split into shorter seg-
ments. Speech translation datasets provide manual segmenta-
tions of the audios, which are not available in real-world sce-
narios, and existing segmentation methods usually significantly
reduce translation quality at inference time. To bridge the gap
between the manual segmentation of training and the automatic
one at inference, we propose Supervised Hybrid Audio Seg-
mentation (SHAS), a method that can effectively learn the opti-
mal segmentation from any manually segmented speech corpus.
First, we train a classifier to identify the included frames in a
segmentation, using speech representations from a pre-trained
wav2vec 2.0. The optimal splitting points are then found by a
probabilistic Divide-and-Conquer algorithm that progressively
splits at the frame of lowest probability until all segments are
below a pre-specified length. Experiments on MuST-C and mT-
EDx show that the translation of the segments produced by our
method approaches the quality of the manual segmentation on
5 languages pairs. Namely, SHAS retains 95-98% of the man-
ual segmentation’s BLEU score, compared to the 87-93% of the
best existing methods. Our method is additionally generalizable
to different domains and achieves high zero-shot performance
in unseen languages.
Index Terms: speech translation, audio segmentation

1. Introduction
The traditional approach to speech translation (ST) has been to
combine an automatic speech recognition (ASR) module, with
a machine translation (MT) module, which is known in the lit-
erature as cascaded. Recent advances in deep learning (e.g.
Transformer [1]), coupled with an increased availability of ST
corpora (e.g. MuST-C [2], mTEDx [3]), have enabled ST sys-
tems to be trained end-to-end, thus bypassing shortcomings of
the cascaded approach (e.g. error propagation, slow inference)
and achieving very competitive results [4].

For MT, a document can be segmented by splitting on strong
punctuation and for ASR, segmentation is of lower importance
due to the more local context that is required for the task, and
thus overlapping windows are usually sufficient. Segmentation
for cascaded ST can be achieved by generating the ASR tran-
script, monolingual translation to restore punctuation, and then
splitting on punctuation before applying MT [5, 6]. On the con-
trary, for end-to-end ST, proper segmentation is both important
due to the significance of context, and non-trivial due to the
absence of linguistic features. ST corpora provide a manual
segmentation (for both training and testing sets), derived from
punctuation in the transcripts, and thus the task of audio seg-
mentation is usually neglected in most research settings. But in
real-world scenarios, the manual segmentation is not available,
and an automatic segmentation has to be derived from the au-
dio. Recent evaluation campaigns of IWSLT [7, 8] simulate this

setting and have shown light on the importance of segmentation
in ST, where top-performing submissions used their own seg-
mentation algorithms and achieved significantly better results.

Segmentation methods for end-to-end ST are either length-
based, where the audio is split at fixed points, pause-based,
where the audio is split at pauses detected usually by Voice Ac-
tivity Detection (VAD) tools [9], or hybrid [10], where the seg-
ments are created by taking into account both the length of the
resulting segments and the audio content. [11] compared differ-
ent segmentation methods and proposed a hybrid method that
provides more control over the resulting segment’s length. They
show that the proposed method provides improvements over the
traditional length- and pause-based approaches, but the gap be-
tween automatic and manual segmentation still remains consid-
erably large. Namely at 3-4 BLEU points behind the manual
segmentation and retaining only 88.5% of its score [11].

In this research, we aim to bridge this gap, by propos-
ing Supervised Hybrid Audio Segmentation (SHAS), a new
method that learns the manual segmentation from a labeled
speech corpus. First, our method trains a classifier that pre-
dicts whether a frame should be included in the segmentation,
utilizing contextual speech representations extracted from a pre-
trained wav2vec 2.0 [12]. At inference, a probabilistic version
of the Divide-and-Conquer (pDAC) algorithm [10], uses the
predictions of the classifier, and progressively splits the audio
at the frames of lowest probability until all segments are below
a pre-specified length. We carry out experiments on 5 language
directions of MuST-C and mTEDx, and show that the SHAS re-
tains on average 95.7% of the original BLEU. A version of our
method with a multilingual classifier can achieve further im-
provements, retaining on average 96.3% of the original BLEU,
while even decreasing the gap with manual segmentation down
to 0.5 BLEU for a specific language pair. Furthermore, we find
that SHAS can be transferred to different domains and has very
high zero-shot performance in languages not seen during the
training of the classifier. Our code and models are publicly
available1.

2. Background
wav2vec 2.0 models. This is a family of speech encoders, pre-
trained by self-supervision on unlabeled speech, and are com-
posed of two main blocks. A convolutional feature extractor
that processes the raw audio waveform and a Transformer en-
coder that extracts contextualized representations. After self-
supervision, it can be fine-tuned to downstream tasks like ASR.
Its multilingual version, XLS-R [13] has been pre-trained on
128 languages using 436k hours of speech data.
Audio Segmentation methods. Length-based methods split
the audio into fixed-length segments and their advantage is that
no external system is required for segmentation, but segments
will probably not resemble proper sentences, since the acoustic

1https://github.com/mt-upc/SHAS
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properties of the audio are disregarded. On the contrary, pause-
based methods split the audio using only its acoustic features,
usually by applying VAD tools. They classify a frame of au-
dio as speech or non-speech and split when enough consecutive
frames are classified as non-speech, essentially performing si-
lence removal. The absence of syntactic information usually
leads to performance drops [14]. Finally, hybrid methods take
into account both the resulting segment’s length and the acous-
tic features of the audio. Two different algorithms can be used
for hybrid segmentation, the Divide-and-Conquer (DAC) [10]
and the Streaming (STRM) [11]. DAC progressively splits the
audio on the longest detected pauses, until all segments are be-
low a max-segment-length (max) parameter. STRM addition-
ally utilizes a min-segment-length (min) parameter to split on
the longest detected pause between the min and max seconds in
an audio stream of max seconds. If a pause does not exist in that
range, the whole stream is used as a segment. STRM will pro-
duce longer segments and has the advantage that the full audio
is not required in advance. [15] used a pre-trained wav2vec 2.0
instead of VAD, as a pause detector, where a frame is classified
as non-speech if wav2vec 2.0 predicts a padding token.

3. Methodology
Our proposed method, SHAS (Figure 1), generates a segmen-
tation by applying a probabilistic Divide-and-Conquer (pDAC)
algorithm on the predictions of a learned Segmentation Frame
Classifier (SFC).
Segmentation Frame Classifier. This module is trained in a
supervised manner and can effectively learn the splitting frames
of the manual segmentation. To train the classifier we use data
from ASR or ST corpora that have been manually segmented.
Specifically, given a speech corpus, we ignore the transcrip-
tions/translations and use only their segment boundaries to la-
bel each frame of audio as positive or negative, on whether it is
included in a segment. For the cases where the end-frame of a
segment coincides with the start-frame of the next, we explicitly
label it as negative, to indicate a split. We create training exam-
ples of length N , by randomly segmenting each waveform. The
random segmentation differs at each training epoch. The wave-
form x ∈ RN of a random segment is normalized and passed
through a pre-trained wav2vec 2.0 speech encoder that extracts
contextualized representations H ∈ Rn×d, where n = N/320,
due to the convolutional feature extractor of wav2vec 2.0. We
keep the parameters of wav2vec 2.0 fixed during training, and
thus we found it beneficial to further process the representation
with a Transformer encoder layer, before passing them through
a linear sigmoid layer that maps them to a sequence of binary
probabilities pi ∈ [0, 1], where i = 1, . . . , n. The parame-
ters of the Transformer and the linear layer are trained using the
binary cross-entropy loss, weighted towards the negative exam-
ples, to account for class imbalance. At inference time, given an
unlabeled audio waveform, we obtain the probabilities for each
frame with a non-overlapping fixed rolling window of length N .
To minimize context loss, we perform rolling inference with 2
different offsets and then average the resulting probabilities of
each frame.
Probabilistic DAC. After obtaining the probabilities for each
frame of the audio, we use the pDAC segmentation algorithm
(Alg.1) to obtain a segmentation. Instead of splitting at long
pauses, as in [10], pDAC splits at the points of lowest proba-
bility. The algorithm is parameterized by a max-segment-length
(max) to control the resulting segments length, min-segment-
length (min) to avoid very small noisy segments, and a thresh-

Figure 1: Supervised Hybrid Audio Segmentation (SHAS).
Left: Training procedure. Right: Segmentation at inference.

Algorithm 1 Probabilistic DAC
1: procedure RECURSIVE SPLIT(sgm)
2: if len(sgm) < max then
3: append sgm to segments
4: else
5: j ← 0
6: indices← argsort probs[sgm]
7: while True do
8: sgm a, sgm b← split sgm at indices[j]
9: sgm a← trim(probs[sgm a], thr)

10: sgm b← trim(probs[sgm b], thr)
11: if len(sgm a) > min and len(sgm b) > min then
12: RECURSIVE SPLIT(sgm a)
13: RECURSIVE SPLIT(sgm b)
14: break
15: j ← j + 1

16: procedure PROBABILISTIC DAC(probs,max,min, thr)
17: segments← empty List
18: sgm← Tuple[0, len(probs)] ▷ init single segment
19: RECURSIVE SPLIT(sgm)
20: return segments

old (thr) to trim the ends of a segment that are classified as ex-
cluded. pDAC progressively splits at the frame of lowest prob-
ability, until all segments are shorter than max. After a split, the
resulting segments are trimmed to the first and last frames i, j
with pi, pj > thr. The split will not take place unless the length
of the resulting segments is above min, and the frame of the next
lowest probability will be selected. Although not included for
simplicity in Alg.1, the split will happen at the frame of lowest
probability if none of the frames satisfy the min conditions.

4. Experimental Setup
Data. We conducted experiments on five language pairs: from
English to German (en-de) and to English from Spanish (es-
en), French (fr-en), Italian (it-en), Portuguese (pt-en). We used
MuST-C en-de for training an English SFC, while Europarl-ST
en-de [16] was used only for testing purposes. For the non-
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English source languages, we trained the classifiers with the
ASR data of mTEDx (es-es, fr-fr, it-it, pt-pt), and used the
ST valid and test splits for development and testing purposes.
MuST-C and mTEDx are based on TED talks, while Europarl-
ST is based on talks from the European Parliament. All audio
data were converted to mono and sampled at 16kHz.
Segmentation Frame Classifiers. We trained five monolingual
SFC models on English (en), Spanish (es), French (fr), Italian
(it), and Portuguese (pt), and a multilingual one, on all source
languages. All models were trained with random segments of
N = 320k audio samples (20 secs). We used the 300m parame-
ter version of the XLS-R model2 from the Transformers library
[17], which has 24 layers and dimensionality 1024. We used
the representations of the 14th layer of XLS-R as inputs to the
SFC, which was found in preliminary experiments to increase
the translation quality in the development set of MuST-C en-
de by 1.5 BLEU. The Transformer encoder of the classifier has
a single layer, 1024 model dimension, feed-forward dimension
of 2048, 8 heads, pre-layer normalization [18], GELU activa-
tion [19], and 0.1 dropout. Another layer normalization and 0.1
dropout were used before mapping to probabilities with a linear
sigmoid layer. All models were trained for 8 epochs with Adam
[20] and an initial learning rate of 2.5 ·10−4, which decays with
cosine annealing. The batch size was set at 14 examples and
the update frequency at 20. After training, we chose the best
checkpoint according to the quality of the translations produced
by the segmentation on the development sets. For evaluation,
we perform 2 rolling window inferences with different fixed-
length segmentations of an audio, both with the training length
N of 320k samples, and average them to obtain the segmenta-
tion frame probabilities of the whole audio.
Segmentation methods and algorithms. The development
sets were used to find the optimal parameters of each segmen-
tation method. For the pDAC of our the SHAS method, we
tuned the max parameter in the range of (4, 40) seconds. For all
language directions, the parameter min was set to 0.2 seconds,
and the thr parameter to 0.5. For pause-based segmentation,
we used WebRTC’s VAD3, which splits the audio when 90% of
consecutive frames do not include speech, and tuned the frame-
length parameter in (10, 20, 30) ms and the aggressiveness pa-
rameter in (1, 2, 3), where higher values mean more aggressive
splits. For the length-based and hybrid-DAC methods, we tuned
the max in range of (4, 40), while for the hybrid-STRM ones,
we tuned the min in the range of (0, max), where max is the
optimal parameter for the corresponding hybrid-DAC method.
For the hybrid-W2V, we do inference with fine-tuned wav2vec
2.0 models from the Transformers library4, and then apply the
DAC, as in [15], or, similarly, the STRM algorithm.
Speech Translation Models. For ST we used the Joint Speech-
to-Text [21] models from fairseq [22]. These are Transformer
encoder-decoders that can take both speech (ST) and text (MT)
as inputs, and have the top layers of the encoder shared between
the two modalities. Apart from the negative log-likelihood, on-
line knowledge distillation from the MT task is used to guide
the ST task, and cross-attentive regularization is applied to the
representations of the encoder to bridge the gap between the
two modalities. For en-de translations we used the model5

trained on MuST-C en-de, that has 12 encoder and 6 decoder
layers, dimensionality of 512, and feed-forward dimension of

2https://huggingface.co/facebook/wav2vec2-xls-r-300m
3https://github.com/wiseman/py-webrtcvad
4wav2vec2-large-960h-lv60-self, wav2vec2-large-xlsr-53-es,

wav2vec2-large-xlsr-53-fr, wav2vec2-large-xlsr-53-it, wav2vec2-large-xlsr-53-pt
5fairseq/blob/main/examples/speech text joint to text/docs/ende-mustc.md

2048. The inputs to the model during inference are 80d log
mel-filterbank features computed every 10ms with a 25ms win-
dow, while global channel mean and variance normalization is
also applied. For the x-en translations we used the multilingual
model6, which is trained on the es-en, es-es, fr-en, fr-es, fr-fr,
it-it, pt-en and pt-pt pairs of mTEDx, has 24 encoder and 12
decoder layers, dimensionality of 768 and feed-forward dimen-
sion of 3076. The inputs to the model during inference are audio
waves sampled at 16kHz. The target vocabularies are learned by
SentencePiece [23], with a size of 10,000 for the en-de model
and 64,000 (shared) for the multilingual one. For both these
models, only speech is used during inference, and decoding is
done with a beam search of size 5.
Evaluation. After creating a new segmentation of a test set,
with either SHAS or other segmentation methods, we translate
the segments using an ST model, align the translations with the
references using mwerSegmenter [24], and then compute the
BLEU scores [25] with SacreBLEU [26].

5. Results
In the left part of Table 1, we compare the BLEU scores ob-
tained from translating the segmentation of SHAS, to those of
other existing methods. The BLEU scores of the manual seg-
mentation’s translations7 serve as an upper bound to the quality
of the segmentation. We compute the average BLEU of each
method across the five tested language pairs.

We observe that the SHAS is producing high-quality seg-
mentations, allowing the ST models to retain more than 95% of
the manual BLEU in all language directions, and 95.7% on av-
erage. With respect to the other segmentation methods, we ob-
tain improvements of 4.5 BLEU from the classical pause-based
approach and 2 BLEU from the hybrid approaches of [10] and
[11]. Compared to the hybrid method of [15], which also em-
ploys pre-trained wav2vec 2.0 models, SHAS achieves an in-
crease of 1.2 in BLEU or 3.8% closer to the BLEU of the man-
ual segmentation. Additional improvements can be observed for
all the language pairs, apart from the most high-resourced en-
de, by using a multilingual SFC. Especially, for it-en SHAS re-
duces the gap with the manual segmentation to only 0.5 BLEU.

We find that the pause-based method is under-performing,
retaining on average 81.3% of the manual BLEU, and that even
the simpler length-based approach can achieve better results
(85.3%). This is likely caused by the less accurate VAD pre-
dictions on non-English audio, since the picture is different for
the en-de pair, where pause-based works better. For the hy-
brid methods, we confirm the relative performance of the Hy-
brid VAD-STRM method, which, for MuST-C en-de, retains
88.5% BLEU in [11] and 88% in Table 1. We find on average
no difference between the DAC and STRM methods, although
the latter one should be preferable for its applicability since it
does not require the full audio to perform the segmentation. Fi-
nally, wav2vec 2.0 models (W2V) are better pause predictors
compared to VAD, aiding the hybrid algorithms to produce bet-
ter segments, with improvements of 0.8 BLEU on average.

To investigate the generalizability of SHAS, we performed
experiments on cross-domain applicability to Europarl-ST and
zero-shot performance to other languages. We applied SHAS,
with a classifier trained on MuST-C en-de, to the test set of
Europarl-ST en-de. No hyperparameter is fine-tuned on this
specific domain, and all segmentation methods are applied with

6fairseq/blob/main/examples/speech text joint to text/docs/iwslt21.md
7minor differences due to fairseq version used for generation
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Table 1: BLEU scores of SHAS, manual segmentation, and other methods. In parenthesis is the percentage of manual BLEU score
retained. (i): Main results on MuST-C en-de tst-COMMON and mTEDx x-en test. (ii): Cross-domain results on Europarl-ST test.

Segm. Methods en-de es-en fr-en it-en pt-en Average Europarl en-de

Manual 26.99 (100.) 31.94 (100.) 36.69 (100.) 27.15 (100.) 34.88 (100.) 31.53 (100.) 28.83 (100.)

Length-based (fixed) 22.34 (82.8) 27.71 (86.8) 30.57 (83.3) 23.66 (87.1) 30.21 (86.6) 26.90 (85.3) 22.35 (80.3)
Pause-based (VAD) 22.78 (84.4) 27.03 (84.6) 30.01 (81.8) 21.77 (80.2) 26.58 (76.2) 25.63 (81.3) 18.58 (66.8)
Hybrid VAD-DAC 24.19 (89.6) 29.38 (92.0) 31.85 (86.8) 24.35 (89.7) 30.92 (88.6) 28.14 (89.2) 25.06 (90.1)
Hybrid VAD-STRM 23.75 (88.0) 29.54 (92.5) 31.79 (86.6) 24.72 (91.0) 31.15 (89.3) 28.19 (89.4) 24.08 (86.5)
Hybrid W2V-DAC 24.49 (90.7) 29.69 (93.0) 33.48 (91.3) 24.82 (91.4) 32.48 (93.1) 28.99 (91.9) 24.92 (89.5)
Hybrid W2V-STRM 24.47 (90.7) 29.50 (92.4) 33.40 (91.0) 25.24 (93.0) 32.35 (92.7) 28.99 (91.9) 23.27 (83.6)

SHAS 25.67 (95.1) 30.50 (95.5) 35.08 (95.6) 26.38 (97.2) 33.20 (95.2) 30.17 (95.7) 26.40 (94.9)
↪→ Multilingual 25.61 (94.9) 30.82 (96.5) 35.28 (96.2) 26.56 (97.8) 33.53 (96.1) 30.36 (96.3) 26.24 (94.3)

Table 2: Zero-shot BLEU of SHAS, with classifiers (SFC)
trained on the language of the index. With bold are the best
and underlined are the supervised ones. Avg-zs is the average
BLEU of the non-supervised scores.

SFC en-de es-en fr-en it-en pt-en Avg-zs

en 25.67 22.26 33.62 14.34 26.12 24.08
es 21.73 30.50 32.78 25.78 33.01 28.32
fr 23.71 30.28 35.08 26.41 32.64 28.26
it 22.22 30.37 34.43 26.38 32.82 29.96
pt 23.02 30.84 34.11 26.16 33.20 28.53

Figure 2: SHAS with English SFC for the supervised and zero-
shot directions. x-axis: training epochs. y-axis: percentage of
manual BLEU.

exactly the same configurations that were used for MuST-C en-
de. In the right part of Table 1, we observe that the SHAS
can be applied successfully to an unseen domain, where it
achieves 26.4 BLEU or 94.9% of the manual segmentation’s
BLEU, compared to the 25.06 (90.1%) of the best existing ap-
proach. Following, in Table 2 we apply the proposed method
with monolingual SFC models trained on the five source lan-
guages, to the test sets of the other language pairs. The zero-
shot BLEU scores are very high and comparable to the ones of
the supervised directions in most cases. This is a direct conse-
quence of the XLS-R backbone of the models, which has been
pre-trained on all five languages. Training a classifier, with only
a single Transformer encoder, on the representations of XLS-
R does not result in loss of generalization, and all the mod-
els, apart from the English one, achieve on average very high
zero-shot performance. These results indicate that we can ob-
tain high-quality segmentations on many languages, by having
manually segmented speech data on only one. Further research
will investigate this effect on low-resource languages included
in the XLS-R pre-training. The lower zero-shot performance
of SHAS with an English classifier is likely explained by the
larger corpus that was used (450h vs 100-200h), which eventu-
ally causes the model to become really specialized. In Figure

2, we observe the trade-off between specialization in the super-
vised direction and loss of generalization in the zero-shot ones.
In the early stages of training, SHAS is still generalizable but is
not optimal yet for the supervised one.

In Table 3 we investigate the importance of different compo-
nents of SHAS on MuST-C en-de. Our method can also work
on streams of audio, where a probabilistic version of the STRM
algorithm [11] is 0.1 BLEU worse than the pDAC. A more com-
pact version of SHAS, where we used the output of the feature
extractor of XLS-R (and fine-tuned its parameters) instead of
using the output of the (frozen) 14th layer, can also achieve
competitive results, lagging 0.4 BLEU behind. Furthermore,
we observe that not using a Transformer layer in the SFC has a
negative impact of 1.2 BLEU and that increasing the number of
Transformer layers to 2 does not bring further improvements.
In general, these results show that the configuration of SHAS
is optimal for an offline setting, but faster and more compact
versions still produce better results than existing segmentation
methods, and could thus be applied in online settings, where
latency and model size are more important.

Table 3: Ablations on MuST-C en-de. Params are in millions.

Segm. Methods Full
Audio

Train
params

Infer
params BLEU

SHAS ✓ 8.4 208.5 25.67 (95.1)

↪→ pSTRM × 8.4 208.5 25.57 (94.7)
↪→ FT XLS-R Feat. Extr. ✓ 25.7 25.7 25.26 (93.6)
↪→ 0 Transf. in SFC ✓ 0.003 202.1 24.88 (92.2)
↪→ 2 Transf. in SFC ✓ 16.8 218.9 25.69 (95.2)

6. Conclusions
We have presented SHAS, a new audio segmentation method
for end-to-end ST that surpasses existing methods by a large
margin in five language directions and significantly reduces the
gap with manual segmentation at inference time. The proposed
method is also applicable to different domains and languages.
We showed that lighter versions of SHAS are still better than
existing methods, hinting at potentially effective application to
online settings. Future research will focus on SHAS for online
ST, and on zero-shot segmentation of low-resource languages.
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