
Class-Aware Distribution Alignment based Unsupervised Domain Adaptation
for Speaker Verification

Hang-Rui Hu1, Yan Song1, Li-Rong Dai1, Ian McLoughlin1,2, Lin Liu3

1National Engineering Research Center of Speech and Language Information Processing,
University of Science and Technology of China, Hefei, China.
2ICT Cluster, Singapore Institute of Technology, Singapore.
3iFLYTEK Research, iFLYTEK CO. LTD., Hefei, China.

hhr@mail.ustc.edu.cn, {songy, ivm, lrdai}@ustc.edu.cn, liulin@iflytek.com

Abstract
Existing speaker verification (SV) systems usually suffer from
significant performance degradation when applied to a new do-
main that lies outside the training distribution. Given the unla-
beled target-domain dataset, most Unsupervised Domain Adap-
tation (UDA) methods aim to minimize the distribution di-
vergence between different domains. However, global distri-
bution alignment strategies fail to consider latent speaker la-
bel information and can hardly guarantee the feature discrim-
inative capability in target domain. In this paper, we pro-
pose a novel UDA approach called WBDA (Within-class and
Between-class Distribution Alignment), which aims to transfer
the class-aware information (i.e., within- and between-class dis-
tributions) learned from the well-labeled source-domain, to the
unlabeled target-domain. Motivated by the recent progress of
self-supervised contrastive learning, positive and negative pairs
are constructed separately for source and target domains, from
which the within- and between-class distribution can be esti-
mated. And the SV system can then be learned by jointly
optimizing the cross-domain class-aware distribution discrep-
ancy loss and source-domain classification loss in an end-to-end
manner. Evaluations on NIST SRE16 and SRE18 achieve a rel-
ative performance improvement of about 43.7% and 26.2% over
the baseline in terms of Equal Error Rate (EER) separately, sig-
nificantly outperforming the previous adaption methods based
on global distribution alignment.
Index Terms: Speaker Verification, Unsupervised Domain
Adaptation, End-to-End, Distribution Alignment

1. Introduction
Speaker verification (SV) aims to determine whether a speech
utterance belongs to a given speaker or not. In recent years,
a profusion of deep neural network (DNN) methods have
achieved great success on SV tasks. To improve the compact-
ness and discriminative capability of speaker embeddings, ex-
isting works mainly focus on designing different network archi-
tectures, pooling methods and optimizing objectives [1, 2, 3, 4,
5, 6, 7, 8, 9, 10].

Despite the success of SV using deep embedding learning,
it is well known that such methods are generally sensitive to
the domain shift issue, i.e., performance degrades significantly
when applied to a target-domain whose distribution lies outside
the source-domain, (as shown in Fig. 1a). Since collecting and
labeling target domain data is time-consuming and expensive,
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Figure 1: Motivation for the proposed approach. (a) Domain
distribution mismatch before adaptation. (b) Existing UDA
methods only achieve global distribution alignment which can-
not ensure discriminative improvement in target domain. (c)
Using our within- and between-class distribution alignment
(WBDA) methods, we further transfer the class-aware distri-
bution information from well-labeled source-domain to target-
domain.

it is necessary to find an effective method to adapt an exist-
ing model trained on a well-labeled source-domain dataset to
a target-domain where only weakly-labeled or even unlabeled
data is available.

Given the unlabeled target-domain dataset, most exist-
ing Unsupervised Domain Adaptation (UDA) methods rely on
global distribution alignment including adversarial learning [11,
12, 13, 14, 15] or discrepancy based methods [16, 17, 18, 19, 20]
to address the domain shift issue. Adversarial learning meth-
ods [11, 12, 13, 14, 15] encourage learning of embeddings
that are domain-invariant by utilizing an additional adversar-
ial domain discriminator. Discrepancy-based methods aim to
minimize feature distributions discrepancy between different
domains, which is usually based on maximum mean discrep-
ancy (MMD) [21] or correlation alignment (CORAL) [22].
However, such global distribution based methods fail to take
into account the latent speaker information of the target do-
main and fail to guarantee speaker discrimination of learned
features (as shown in Fig. 1b). In [23], unsupervised cluster-
ing based domain adaptation was proposed to estimate pseudo-
labels of target-domain data, and then perform self-supervised
adaptation. More recently, the self-supervised learning based
domain adaptation (SSDA) method leveraged potential label in-
formation from the target domain and adapted the discrimina-
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Figure 2: Framework of the proposed Within-Class and Between-Class Distribution Alignment (WBDA) method. The network is jointly
trained via optimizing the source domain classification loss and cross-domain discrepancy loss. Data is fed into the network in the
form of positive and negative pairs to estimate class-aware statistics without target domain labels. Sample pairs from source domain
are randomly selected according to the speaker ids, while those from target domain are constructed similar as unsupervised contrastive
learning. Note that we don’t share the parameters of utterance-level part to extract domain-specific knowledge and align distribution
of target domain.

tion ability from the source domain simultaneously [24]. How-
ever, noisy estimated label information in the target domain may
hinder any performance improvement.

In this paper, we propose a novel unsupervised domain
adaptation approach, called Within-class and Between-class
Distribution Alignment (WBDA), as illustrated in Figs. 1c and
as a block diagram in Fig. 2. WBDA aims to transfer class-
aware information learned from the well-labeled source-domain
to the unlabeled target-domain. Specifically, we construct
within-class and between-class pairs for source and target do-
mains separately. These positive and negative pairs are ran-
domly selected according to the speaker identities. Then, for
the unlabeled target domain, we construct positive pairs via data
augmentation, motivated by the progress of recent contrastive
learning. The main aim for WBDA is to focus on transferring
the within-class and between-class distribution information, es-
timated from the source domain, to the target domain. Com-
pared with existing global distribution alignment based UDA
methods, WBDA is class-aware, which can effectively learn
discriminative speaker embeddings for the unlabeled target do-
main. The network can be learned by jointly optimizing both
cross-domain class-aware distribution discrepancy loss and the
cross-entropy loss in an end-to-end manner. Evaluations on
NIST SRE16 and SRE18 can achieve a relative performance im-
provement of 43.7% and 26.2% EER over the baseline, which
is significantly better than the previous unsupervised adaption
methods based on global distribution alignment.

2. Overview of the proposed framework
The structure of the proposed within-class and between-class
distribution alignment (WBDA) adaption method is shown in
Fig. 2. The entire network is trained in an end-to-end manner,
aiming to learn discriminative deep representations in the well-
labeled source domain, while transferring the compact class
structure knowledge to the unlabeled target domain. The overall
loss has two parts;

L = LCE + λLWBDA (1)

where LCE denotes the standard cross-entropy loss for clas-
sification training in the source domain. LWBDA denotes a

proposed cross-domain discrepancy loss where λ is the hyper-
parameter to weight LCE and LWBDA. This aligns the second-
order statistics of within-class and between-class distributions.

To calculate class-relevant statistics without touching the
target domain labels, data is fed into the network in the form of
positive and negative pairs. In the source domain, pairs can be
directly constructed based on ground-truth labels. In the target
domain, positive pairs are obtained by two data augmentations
(such as RandomCrop, SpecAug [25], adding noise, etc.) from
the same utterance, while samples from different utterances are
treated as negative pairs, which is similar to the assumption of
unsupervised contrastive learning. The difference is that these
sample pairs are used for domain-knowledge transfer instead of
direct metric learning. We will show that, when sample pairs
are properly constructed, the within- and between-class statis-
tics can be efficiently and accurately estimated in each mini-
batch, allowing the entire network to be trained in an end-to-end
manner.

The network structure is similar to previous works, with
parameters of shallow layers being domain-shared since they
can extract general frame-level local representations. However,
sharing the statistics of Batch Normalization (BN) layers is in-
appropriate when the domain shift is significant, we thus replace
all the BNs with DABNs [26] to separate the statistics of each
domain, while sharing the affine transformation. Likewise, we
do not share the parameters of deep layers, and incorporate two
utterance-level branches with weight regularization in [15], to
better seek domain-specific knowledge and adjust the distribu-
tion of the target domain.

3. Method
We utilize commonly used second-order statistics in domain
adaptation such as covariance or correlation, to ascertain or
measure cross-domain distributional discrepancy. In this sec-
tion, we will first briefly introduce the covariance matrix,
which can actually be divided into two parts: within-class and
between-class. Then, we will derive the equivalent forms of
these statistics based on positive and negative pairs. Finally,
we will present the WBDA loss, which is designed to align
the within- and between-class distributions of different domains
within each batch.
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3.1. Definition of Covariance Matrix

Consider a training data set X containing N examples, where
each example is a column vector of length d and belongs to one
of K classes. The d × d global covariance matrix is computed
as follows:

Σcov =
1

N

∑

x

(x− µ)(x− µ)T (2)

where µ = 1
N

∑
x∈X x is the global mean vector. The to-

tal covariance matrix can actually be divided into two parts:
Within-class covariance ΣW

cov indicates the degree of disper-
sion between samples and the corresponding class center, and
between-class covariance ΣB

cov represents the separability of
different class centers:

Σcov = ΣW
cov +ΣB

cov

ΣW
cov =

1

N

∑

k

∑

x

(x(k) − µ(k))(x(k) − µ(k))T

ΣB
cov =

1

N

∑

k

nk(µ
(k) − µ)(µ(k) − µ)T

(3)

where x(k) are examples of class k, nk is the number of samples
in this class, and µ(k) = 1

nk

∑
x x

(k) is the class center.

3.2. Covariance in Pairwise Form

We can see from the definition in Eqn. (3) that ΣW
cov and ΣB

cov

depend on the speaker label and class center, both of which
are difficult to compute in the unlabeled target domain. Even
though we could find pseudo-labels by clustering, the number
of speakers is difficult to determine, and the clustering results
may not be accurate enough in practice. We therefore look for
solutions through easily-achievable pairwise difference compu-
tation – and will show that the Gram matrices of residuals for
positive and negative pairs, denoted by Σ+ and Σ−, are equiv-
alent to twice the within-class and between-class covariance.

3.2.1. Within-Class Covariance

Each element of within-class covariance ΣW
ij represents the co-

variance between i-th and j-th dimensions of features within
the same class:

ΣW
ij = E

k,x

[(
x
(k)
i −m

(k)
i

)(
x
(k)
j −m

(k)
j

)]
(4)

where m(k) = Ex[x
(k)] is the expectation for the k-th class. If

we replace m(k) with another independent sampling p(k) from
the same class, we can find it is equivalent to 2ΣW

ij as follows

Σ+
ij = E

k,x,p

[(
x
(k)
i − p

(k)
i

)(
x
(k)
j − p

(k)
j

)]

= E
k,x,p

[(
(x

(k)
i −m

(k)
i )− (p

(k)
i −m

(k)
i )

)

(
(x

(k)
j −m

(k)
j )− (p

(k)
j −m

(k)
j )

)]

=ΣW
ij − 0− 0 + ΣW

ij = 2ΣW
ij

(5)

where

E
k,x,p

[
(x

(k)
i −m

(k)
i )(p

(k)
j −m

(k)
j )

]
= 0 (6)

In this form, we do not explicitly use class centers. Only the
residuals of positive pairs x− p are needed to equivalently cal-
culate the within-class covariance matrix.

3.2.2. Between-Class Covariance

Similarly, we can compute ΣB
cov from the negative pairs. By

definition, we can obtain:

ΣB
ij =E

k

[(
m

(k)
i −mi

)(
m

(k)
j −mj

)]
(7)

where m = Ex[x] is the expectations of all the samples. Sup-
pose x(k) and n(l) are two independent samples from different
classes k and l, then we have

Σ−
ij = E

k ̸=l,x,n

[(
x
(k)
i − n

(l)
i

)(
x
(k)
j − n

(l)
j

)]
= 2ΣB

ij (8)

thus between-class covariance is obtainable from negative pairs.

3.2.3. WBDA loss

Assuming that each batch contains Np positive pairs and Nn

negative pairs in each domain, we first compute the residuals be-
tween sample pairs, denoted as Rp and Rn respectively. Then,
the actual within- and between-class covariance matrices for
each domain are calculated from Σ+ and Σ−, the Gram ma-
trices of positive and negative residuals:

ΣW
cov =

1

2
Σ+ =

1

2Np
RpR

T
p

ΣB
cov =

1

2
Σ− =

1

2Nn
RnR

T
n

(9)

Note that if we only focus on the direction of the distribu-
tion, we can normalize the covariance matrix of both domains to
compute the correlation matrix. In this work, we use the corre-
lation matrix for the within-class part because it performs better
in practice:

ΣW
corr = ΣW

cov

/√
Diag (ΣW

cov)Diag (ΣW
cov)

T

ΣB
corr = ΣB

cov

/√
Diag (ΣB

cov)Diag (ΣB
cov)

T

(10)

where Diag(·) extracts the diagonal elements of the input ma-
trix as a column vector, and

√· gets the square root of the matrix
elements.

The proposed WBDA loss aims to minimize the discrep-
ancy in second-order statistics for within-class and between-
class distributions respectively between different domains.

LWBDA = λW ∥ΣW
S − ΣW

T ∥2F + λB∥ΣB
S − ΣB

T ∥2F (11)

where ∥ · ∥2F denotes the squared matrix Frobenius norm. ΣS

and ΣT denote the statistics (i.e. correlation or covariance ma-
trices computed in eqns (9),(10)) of the source and target do-
main, respectively, while λW and λB are the corresponding loss
weight hyper-parameters.

4. Experiments
4.1. Experimental Settings

Datasets: Experiments are conducted on the NIST SRE16 and
SRE18 CMN2. Training data primarily consists of telephone
speech from past issues of NIST-SRE (2004-2010) plus Switch-
board. The SRE16 task incorporates Tagalog and Cantonese
telephone speech, and the SRE18 CMN2 task contains speech
in Tunisian Arabic. In addition, a small development dataset
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Table 1: Cosine EER (%) results of the comparison systems on
NIST-SRE 2016 and 2018 evaluation.

System SRE16 SRE18
Pooled Tagalog Cantonese CMN2

Baseline 12.74 17.75 7.85 12.16
CORAL [22] 9.77 13.92 5.81 10.44
MK-MMD [21] 10.01 13.68 6.06 10.59
WBDA 7.16 10.28 4.11 8.92

from the unlabeled target domain, with roughly 2k samples, is
used to adapt systems. The Kaldi toolkit [27] is used to extract
41-dimensional FBank from 25ms windows with 10ms shift be-
tween frames. We apply mean-normalization over a 3s slid-
ing window, and use voice activity detection (VAD) to remove
silent segments. Training set features are randomly truncated
into short slices ranging in length from 2 to 4s.
Model configuration: The baseline model uses the ResNet-34
backbone as in [6]. The number of heads in the attentive bilin-
ear pooling (ABP) layer is set to 8 and the scaling factor after
L2-norm is set to 30. The weight regularization [15] of domain-
specific parameters is set to 0.01. The batchsize is 512, with
each batch consisting of 128 positive pairs from the source and
target domains. The networks are optimized using stochastic
gradient descent (SGD), with momentum of 0.9 and weight de-
cay of 5e-4. An initial learning rate of 0.1 is used to train the
first 20 epochs, gradually declining to 0.0001 for the remaining
40 epochs. The loss weights λW and λB are set to 0 for the
first 30 epochs, and their final value are selected by grid search,
empirically making each loss comparable.

4.2. Main Results

Since the proposed WBDA is a DNN-based adaption method,
we examine its effectiveness using a cosine distance measure, in
terms of Equal Error Rate (EER). The main results are reported
in Table 1, which compares against previously published do-
main discrepancy loss methods Deep CORAL [22] and Multi-
Kernel MMD [21] applied to our baseline system. From the re-
sults, it can be seen that the WBDA loss performs significantly
better than either Deep CORAL or MK-MMD loss for the same
conditions. WBDA achieves a large relative EER reduction of
43.7% and 26.2% on SRE16 and SRE18, respectively. We be-
lieve the primary reason is that WBDA loss is able to achieve a
finer class-level distribution alignment rather than just domain-
level. This can transfer compact and discriminative class struc-
ture knowledge learned from a well-labeled source domain to
the target domain, thus benefitting the adaptation.
Ablation Results: We conduct ablation experiments in which
only one component of WBDA loss is involved, either within-
class (or “W-”) or between-class (or “B-”). We also study the
effect of matching different second-order statics, i.e., Covari-
ance matrix (or “Cov”), and Correlation matrix (or “Corr”), in
eqns (9),(10). The results are shown in Table 2.

First, we can see that EER on SRE16 improves from
12.73% to 7.7% with W-Corr. This indicates the important role
of within-class distribution alignment which may improve the
compactness of features in the target domain. It’s interesting
that the improvement achieved by W-Cov is much smaller than
W-Corr, maybe because the magnitude of within-class perturba-
tion can vary with the domain, and of course the positive pairs
we construct in the target domain may not fully represent the
true within-class distribution. Therefore, we find it more appro-

Table 2: Cosine EER (%) results of ablation experiments with
within- and between-class distribution loss

System SRE16 SRE18
Pooled Tagalog Cantonese CMN2

Baseline 12.74 17.75 7.85 12.16
W-Cov 11.76 16.43 7.17 11.91
W-Corr 7.70 10.86 4.33 9.24
B-Cov 9.81 13.90 5.77 10.51
B-Corr 11.57 15.56 7.26 11.48
WBDA 7.16 10.28 4.11 8.92

priate to focus on the direction of within-class distribution.
When matching between-class Covariance only, the perfor-

mance of B-Cov is also better than the baseline, illustrating that
between-class alignment may help to learn more discriminative
features in the target domain. As expected, when combining
both W-Corr and B-Cov, the performance of WBDA further im-
proves, as it enables us to achieve a more comprehensive class-
level distribution alignment.
Comparison with existing systems: In addition to the above
evaluations, we compare the EER results with previous end-
to-end adaptation systems using the same dataset in Table 3,
where DANSE adopted an adversarial training strategy with
a gradient reverse layer (GRL), LSGAN and FuseGan were
two GAN-based systems, PSN performed adversarial training
with partially shared network parameters, Mul-MMD mini-
mized domain-wise MK-MMD loss on multiple layers, and
APLDA refers to Kaldi’s adaptive PLDA [27]. Thanks to the
class-level alignment strategy in WBDA, our system achieves
the best front-end performance, further demonstrating the ef-
fectiveness of our proposed method.

Table 3: Comparison with other end-to-end UDA methods

System Metric SRE16 Pooled SRE18 CMN2
DANSE [12] cosine 13.29 N/A
LSGAN [13] cosine 11.74 N/A
FuseGAN [13] cosine 10.88 N/A
PSN [15] PLDA 8.98 N/A

WGAN [11]
PLDA 13.25 10.35

APLDA 9.42 9.7

Mul-MMD[19]
PLDA 9.03 8.33

APLDA 8.29 8.09
Baseline cosine 12.74 12.16
WBDA cosine 7.16 8.92

5. Conclusion
This paper has proposed a novel method to transfer class-
aware information (i.e., within- and between-class distribu-
tions), learned from a well-labeled source domain, to the un-
labeled target domain. By separately constructing positive and
negative pairs for source and target domain respectively, WBDA
is able to effectively estimate the within- and between-class dis-
tributions. A deep domain-invariant embedding architecture can
be learned in an end-to-end manner by jointly optimizing the
cross-domain class-aware distribution discrepancy loss besides
source-domain classification loss. Experimental results have
demonstrated the superiority of the proposed WBDA method.
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