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Abstract

Cross-speaker emotion transfer speech synthesis aims to syn-
thesize emotional speech for a target speaker by transferring the
emotion from reference speech recorded by another (source)
speaker. In this task, extracting speaker-independent emo-
tion embedding from reference speech plays an important role.
However, the emotional information conveyed by such emo-
tion embedding tends to be weakened in the process to squeeze
out the source speaker’s timbre information. In response to
this problem, a prosody compensation module (PCM) is pro-
posed in this paper to compensate for the emotional information
loss. Specifically, the PCM tries to obtain speaker-independent
emotional information from the intermediate feature of a pre-
trained ASR model. To this end, a prosody compensation en-
coder with global context (GC) blocks is introduced to obtain
global emotional information from the ASR model’s interme-
diate feature. Experiments demonstrate that the proposed PCM
can effectively compensate the emotion embedding for the emo-
tional information loss, and meanwhile maintain the timbre of
the target speaker. Comparisons with state-of-the-art models
show that our proposed method presents obvious superiority on
the cross-speaker emotion transfer task.

Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction

While the development of attention-based sequence-to-
sequence (seq2seq) neural models [1, 2] has brought dramatic
improvement for the naturalness of synthetic speech [3, 4, 5],
there is still a big gap between synthetic speech and real human
speech. Specifically, beyond the naturalness, natural speech
produced by human beings is diverse in terms of emotions,
which is important paralinguistic information conveyed by hu-
man speech. Therefore, how to present appropriate emotions
in synthetic speech is vital in immersive human-computer in-
teraction systems, and thus has been drawn much attention re-
cently [6, 7, 8,9, 10, 11, 12].

A simple case of emotional speech synthesis is the same-
speaker [13, 14, 12] scenario, in which the speaker identity
of the training data is the same as that of synthesized speech.
The limitation of this scenario is obvious, i.e., it can only be
used for a specific target speaker that has enough desired emo-
tion recordings. Emotional voice conversion [15, 16, 17, 18]
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is one related task, which aims to convert the emotional state
of the utterance from one to another while preserving the
linguistic information and speaker identity. In contrast, the
cross-speaker emotional speech synthesis tries to transfer the
emotion from a source speaker who has recorded emotional
speech to another (target) speaker, enabling the TTS model
to produce emotional speech with the timbre of a speaker
who has no emotional speech recordings at all. Reference-
based style transfer is the most popular strategy for this cross-
speaker case [19, 20, 8, 9, 10]. Reference encoder [20], global
style tokens (GST) [8, 10, 21], and variational autoencoder
(VAE) [9, 22] are commonly used methods to extract the emo-
tion embedding from the reference with the desired emotion. In
these methods, disentangling the speaker information from the
emotion embedding [10, 23, 24] is important. Otherwise, the
speaker information retained in the embedding could contami-
nate the target timbre.

However, it is challenging to prevent emotional informa-
tion of the emotion embedding being weakened in the process
of removing speaker information, because both the emotion and
timbre are related to the prosody, making those reference-based
methods have to make a trade-off between the emotion transfer
quality and speaker similarity [25]. Specifically, the reference
embedding with enough emotion information tends to result in
the speaker leakage, while further disentangling the speaker
information for the embedding could make the emotional ex-
pressiveness become weaker in synthetic speech. To face this
challenge, in this paper we propose to compensate the emotion
embedding for the emotional information loss that caused by
the speaker information disentangling, to improve the emotional
expressiveness of synthetic speech.

Taking inspiration from [26, 27] that the hidden repre-
sentation produced by a pre-trained automatic speech recogni-
tion (ASR) model retains prosody information but no obvious
speaker information, a prosody compensation module (PCM),
which takes the ASR model’s intermediate feature (AIF) of
reference audio as input (as shown in the lower-left corner
of Fig. 1), is proposed to compensate the emotion informa-
tion. The proposed cross-speaker emotional speech synthesis
model with prosody compensation, referred to as CSPC, is a
Tacotron2 [28] based framework with extended speaker disen-
tangling module (SDM), speaker identity controller, and PCM.
To be specific, the SDM is to obtain disentangled speaker-
independent emotion embeddings from the reference spectrum,
and the PCM is to obtain extra emotion information from AIF
to compensate for the information loss in the emotion embed-
ding caused by the disentangling. To effectively extract global



prosody information from AIF, a prosody compensation en-
coder assisted by global context [29] (GC) blocks is introduced.
Extensive experiments have demonstrated the effectiveness of
this proposed prosody compensation method on improving the
emotional expressive and meanwhile maintaining the voice of
the target speaker, and also indicated the effectiveness of the
proposed prosody compensation encoder.

In addition to the reference-based method, the most recent
work [11] tried to synthesize diverse emotional speech with a
label-based approach. To this end, a content-aware prosody
prediction module is proposed to predict the prosody from in-
put text with the explicit emotion label. It has shown that this
label-based method with extra text-based prosody prediction
can achieve comparable performance to the reference-based
method. In this paper, in addition to several state-of-the-art
reference-based methods, this label-based method will also be

compared.
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Figure 1: General architecture of the proposed cross-speaker
model.

2. Proposed Model

The architecture of the proposed model is illustrated in Fig. 1,
which shares the skeleton of the modified Tacotron2 [30, 12]
while with proposed SDM to obtain speaker-independent emo-
tion embeddings by squeezing out the source timbre informa-
tion, and PCM to compensate emotion information. The target
speaker’s identity is provided by the speaker identity controller.

2.1. Speaker Disentangling Module (SDM)

In the reference-based cross-speaker emotion transfer speech
synthesis method, the emotion embedding obtained from ref-
erence audio should be emotionally salient and free of speaker
information. To this end, following the basic idea of the speaker
disentangling module in [24], the emotion encoder trained with
SDM is restrained by an emotion classification constraint to
make the obtained emotion embedding discriminative in terms
of emotion categories. The corresponding loss is referred to as
£Em0'

To keep source speaker information out of the emotion em-
bedding, the emotion embedding is made orthogonal to the
speaker embedding with an orthogonality loss L+ [24], which

is defined as
Eo'r't = Z ‘
i=1

where ||| » is the Frobenius norm and the e; is emotion em-
bedding. The speaker embedding s; is obtained by the speaker
encoder in SDM, which is trained with the speaker classifica-
tion loss Lspr and an emotion classification loss with gradient
inversion Lady_emo-

The emotion encoder and speaker encoder share the same
input and architecture that consist of six 2D convolutional layers
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and a GRU layer, and only the last GRU state is taken as the
global feature that works as the input of an FC layer to generate
the 256-dim embedding.

2.2. Prosody Compensation Module (PCM)

Due to the entanglement of emotional information and speaker
information in speech, the emotional information conveyed by
the emotion embedding would be weakened after disentan-
gling the speaker-related information, which could lead to in-
sipid expressiveness in synthetic speech. Inspired by the re-
search [26, 27] which shows that the ASR’s intermediate feature
(AIF) retains the speaker-independent emotional information,
PCM is proposed here to compensate the emotion embedding
for the emotional information loss using AIF. As illustrated in
Fig. 1, the AIF extracted by the encoder of a pre-trained ASR
model is used to obtain a global feature via the prosody com-
pensation encoder.
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Figure 2: The architecture of prosody compensation encoder

While the contextual information contained by the se-
quence is important for an ASR model, at a specific time step,
the prediction of a word or phone is more related to the lo-
cal context sequence rather than the entire sequence. In con-
trast, the emotion conveyed by an entire utterance is global
information in general. Therefore, how to extract this global
information from relatively scattered ASR model’s intermedi-
ate representations is important. To this end, the global con-
text [29] (GC) block, which shows promising ability on obtain-
ing global information, is used in the prosody compensation
encoder. As shown in Fig. 2, this prosody compensation en-
coder is similar to the emotion encoder in SDM. The difference
is that three GC blocks are introduced in this encoder. The GC
block [29] consists of global attention pooling, bottleneck trans-
form, and broadcast element-wise addition for context model-
ing, channel-wise dependency capturing, and feature fusion, re-
spectively, which help the encoder to capture long-range depen-
dency. The prosody compensation embedding produced by this
prosody compensation encoder is added to the emotion embed-
ding, which is then added with the tacotron encoder output to
work as the conditioning variable for providing emotion infor-
mation.

2.3. Training and Generation

Here, a Transformer-based ASR model, which is implemented
with the WENET' [31] toolkit and pre-trained on multi-Chinese
corpora containing 2825 hours, is utilized. The encoder of this
ASR model produces 256-dim AIF. Parameters of SDM and
prosody compensation encoder are optimized together with the
skeleton of Tacotron2. The loss function of this skeleton is the

IThe model is available at https://github.com/
wenet-e2e/wenet


https://github.com/wenet-e2e/wenet
https://github.com/wenet-e2e/wenet

same as the objective function of Tacotron2 [28], which is de-
noted as Liqco. The final objective function to train the pro-
posed model is given by:

L= Etaco + L‘fe"w + [rspk + [radviemo + aL"OT't7 (2)

where o = 0.1 is hyper-parameters of L.

For the speaker information, we specify the timbre for the
model by a trainable speaker look-up table [20] during the train-
ing and inference stage, which takes the speaker ID as input and
generates a 128-dimensional speaker representation to concate-
nate with the decoder’s input in frame-level. The emotion infor-
mation is provided by the emotion encoder and prosody com-
pensation module, both of which are with the source speaker’s
emotional speech as input.

3. EXPERIMENTS

3.1. Experimental Setup
To achieve emotion transfer across speakers, a database that
consists of at least two speakers is required, in which one is
the source speaker to provide reference emotional speech and
another one is the target speaker who only has neutral emotion
speech. In this work, the source speaker comes from an individ-
ual adult female emotional corpus, referred to as DB_6. DB_6
consists of 5,000 neutral utterances and 2,000 utterances for
each emotion category (surprise, happy, sadness, angry, disgust,
and fear). The corpus providing the target speaker is DB_2,
which is another individual adult female corpus that contains
about 5,000 samples recorded in a reading style with neutral
emotion. Timbres of the source speaker and the target speaker
are distinctly different.

During training, all speech samples are down-sampled to
16 kHz, and are then represented by Mel-spectrograms ob-
tained with 50 ms frame length and 12.5 ms frame-shift. Wa-
veRNN [32] is adopted as the neural vocoder to reconstruct
waveform from the predicted Mel-spectrograms during infer-
ence. Twenty sentences from the target speaker’s test set
were randomly selected to synthesize speech for each emotion
category, resulting in 120 testing samples for each evaluated
method.

3.1.1. Evaluation metrics

A good synthetic sample in the emotion transfer task should
present the emotion of the reference audio and meanwhile keep
the timbre of the target speaker. Here, typical MOS (Mean
Opinion Score) tests are conducted to evaluate the emotion sim-
ilarity and speaker similarity subjectively. In the emotion simi-
larity MOS test, participants are asked to rate synthetic speech
based on how well this synthetic speech conveys the same emo-
tion as that conveyed by reference audio, while the speaker sim-
ilarity MOS test is to ask participants to rate synthetic speech
based on how well the synthesized sample sound like uttered
by the target speaker. The rating score in both MOS test ranges
from / to 5 indicating the performance from bad to great. Be-
sides, another subjective test, named as AB preference test, is
adopted in the ablation study to compare samples synthesized
by two models. In this AB test, participants are asked to choose
one from two samples according to a certain requirement. For
each subjective evaluation test, twenty Chinese native speakers
participated.

4. Experimental Results
4.1. Comparison with other methods

To evaluate the performance of the proposed method on the
cross-speaker emotion transfer TTS task, we first compare

Table 1: Comparison with state-of-the-art methods in terms of
emotion similarity MOS with confidence intervals of 95%.

Method | Multi-R [10] CSET [24]  PB[11] CSPC

surprise | 3.524+0.06 | 3.734+0.05 | 3.631+0.04 | 3.92£0.06
happy |3.73+£0.05 |3.85+£0.06 | 3.76+0.05 | 4.01+0.05
sadness | 3.30+£0.04 | 4.014+0.04 | 3.35+0.06 | 4.07+0.05
angry | 3.27+0.06 | 3.69+0.05 | 3.394+0.04 | 3.85+0.05
disgust |3.21+£0.06 | 3.53£0.04 | 3.31+0.05 | 3.81+0.06
fear 3.2540.04 | 3.78+0.05 | 3.4740.05 | 3.98+0.05

average ‘ 3.38+0.5 ‘ 3.7610.05 ‘ 3.49+0.04 ‘ 3.8940.05

our method with several state-of-the-art methods [10, 24, 11].
Among those compared methods, multi-reference Tacotron
(Multi-R) [10] and cross-speaker emotion transfer (CSET) [24]
are reference-based method, and prosody bottleneck (PB) [11]
is a recently proposed label-based method.

Results of emotion similarity MOS test achieved by differ-
ent models are shown in Table 1, in which higher emotion sim-
ilarity MOS value means better emotion transfer performance.
As shown in this table, the proposed CSPC achieves the best
emotion similarity in terms of all emotion categories. Besides,
compared with other methods, the proposed CSPC presents a
more stable performance in terms of different emotion cate-
gories. Specifically, the relative difference between the high-
est and lowest scores achieved by CSPC in different emotions
is 6.8%, while this differences of Multi-R, CSET, and PB are
16.2%, 13.6%, and 13.5% respectively.

Table 2: Comparison with sate-of-the-art methods in terms of
speaker similarity MOS with confidence intervals of 95%.

Method | Multi-R [10] CSET [24]  PB[11] CSPC

surprise | 4.08£0.06 | 3.951+0.05 | 4.05+0.05 | 3.974+0.04
happy | 4.15+0.07 | 3.83+0.07 | 3.90+0.07 | 3.85+0.04
sadness | 4.02+0.05 | 3.8240.07 | 3.8640.08 | 3.84+0.05
angry | 4.12+0.05 | 3.8940.06 | 3.93+0.06 | 3.924+0.06
disgust | 4.04+0.06 4.03+£0.04 | 3.99+0.07 | 4.01+0.06
fear 4.154+0.07 | 3.98£0.06 | 4.06£0.04 | 4.05£0.05

average | 4.08£0.04 | 3.91+0.06 | 3.97+0.05 | 3.94:£0.05

In addition to transferring the emotion from reference to
synthesized speech, the timbre of the target speaker should be
kept in the synthesized speech. Table 2 shows the performance
of different models on keeping the target timbre in synthetic
speech, which is evaluated by the speaker similarity MOS test.
Higher speaker similarity means better timbre retention. As
shown in this table, Multi-R achieves the best speaker similarity
MOS in terms of most emotion categories except for disgust.
However, this good target timbre retention is accompanied by
unacceptably terrible emotion transfer as shown in Table 1. Ac-
tually, the speaker similarity MOS difference between Multi-R
and other methods could be partially caused by the fact that
emotional speech could affect participants on the rating of the
timbre similarity, because the reference is neutral rather than
emotional speech. As for the comparison among CSET, PB,
and the proposed CSPC, there is no obvious difference. Con-
sidering the obvious superiority of the proposed CSPC on the
emotion transfer, the proposed method achieves new state-of-
the-art performance on the cross-speaker emotion transfer TTS
task.



4.2. Ablation study

In the proposed CSPC, emotion information is provided by em-
beddings with the emotion encoder in SDM and the prosody
compensation encoder in PCM. In this section, we would like
to show the necessity of utilizing these two embeddings on
the emotion transfer. Furthermore, the performance of the GC
block in the prosody compensation encoder would also be ana-
lyzed in an ablation study.

Table 3: Performance of different variants of the proposed meth-
ods in terms of emotion similarity with confidence intervals of
95%.

Method |  w/o EE w/o PCE CSPC

surprise 3.684+0.04 3.77+0.04 3.921+0.06
happy 3.75+0.05 3.811+0.05 4.01+£0.05
sadness 3.4440.04 3.96+0.04 4.05+0.05
angry 3.3940.06 3.7240.04 3.85+0.07
disgust 3.4040.07 3.7640.05 3.81+0.06
fear 3.4240.04 3.71£0.06 3.98+0.05

average ‘ 3.5140.04 ‘ 3.78+£0.4 ‘ 3.89+0.05

Table 4: Performance of different variants of the proposed meth-
ods in terms of subjective speaker similarity with confidence in-
tervals of 95%.

Method |  w/o EE w/lo PCE CSPC
average ‘ 4.011+0.04 ‘ 3.96+0.061 ‘ 3.94+0.054

4.2.1. The necessity of emotion embedding and prosody com-
pensation

The verification of the necessity to use both emotion embedding
and prosody compensation embedding is performed in an abla-
tion study, in which the emotion embedding and prosody com-
pensation embedding are dropped respectively. The subjective
MOS test results are shown in Table 3 and Table 4, in which
“w/o EE" and “w/o PCE” means the emotion embedding and
prosody compensation embedding are dropped respectively.

As shown in Table 3, the drop of either emotion embed-
ding (w/o EE) or prosody compensation embedding (w/o PCE)
results in an obvious performance drop in terms of all emo-
tion categories. Specifically, the drop of emotion embedding
brings the biggest performance drop on the emotion transfer,
indicating that the emotion information is mainly conveyed by
the emotion embedding. Even if the obvious performance drop
appears when the emotion embedding is dropped, the perfor-
mance of “w/o EE" still outperforms Multi-R and PB (see Ta-
ble 1), demonstrating that the prosody compensation embed-
ding indeed can convey the emotion information. The perfor-
mance drop of “w/o PCE" demonstrates that the prosody com-
pensation embedding can provide extra emotion information
to the emotion embedding. As for the target timbre retention,
by comparing the speaker similarity MOS scores achieved by
“w/o PCE" and “CSPC" in Table 4, it can be found that no
obvious performance drop appears when the prosody compen-
sation embedding is added. All those results indicate that the
ASR model’s intermediate feature (AIF) can effectively provide
prosodic information to enable the proposed prosody compen-

sation method to further improve the emotion transfer perfor-
mance and meanwhile maintain the target speaker’s timbre.

4.2.2. The effectiveness of GC block

The effectiveness of the emotion compensation embedding has
been verified in Section 4.2.1. Here, we would like to show the
importance of the GC block in the proposed emotion compen-
sation encoder. To this end, an AB preference test between the
proposed method and a variant of the proposed method, named
as “w/o GC", in which the GC block is dropped from the emo-
tion compensation encoder (See Fig. 2) is conducted.

Speaker 032 +—— 0.38 —-

0 0.2 0.4 0.6 0.8 1
w/o GC No preference u CSPC

Figure 3: Emotion similarity and speaker similarity AB pref-
erence test for the ablation study of GC block with confidence
intervals of 95%.

The results are shown in Fig. 3, in which the global voting
percents over different emotion categories are presented on the
demo page® (Additional demos are also provided which transfer
emotion to the new target speaker who only has 200 sentences
through simple fine-tuning.). As can be seen from this figure, in
terms of the emotion similarity, CSPC significantly outperforms
the variant without the GC block (p-value = 0.042). As for the
speaker similarity, dropping the GC block brings a slight in-
crease which is not significant (p-value = 0.063). These results
demonstrate that the proposed prosody compensation encoder is
well designed, and benefits from the GC block on capturing the
long-range dependency emotion information, which can better
obtain the global emotion-related information from AIF.

5. Conclusion

In this paper, a prosody compensation method is proposed
to improve the emotion transfer in the cross-speaker emotion
transfer task. Inspired by the fact that the intermediate feature
obtained by a pre-trained ASR model could contain prosody in-
formation, the prosody embedding extracted by the proposed
prosody compensation module (PCM), which takes the ASR
model’s intermediate feature (AIF) as input, is used to provide
extra information to the disentangled emotion embedding pro-
duced by a speaker disentangling module (SDM). Extensive ex-
periments have demonstrated that the proposed prosody com-
pensation method can successfully provide extra emotion infor-
mation to the emotion embedding, for which the lost emotion
information due to the speaker-emotion disentangling process
could be well compensated. Furthermore, the ablation study
shows that the GC block plays an important role in obtaining
the prosody embedding, indicating the good design of the pro-
posed prosody embedding encoder in PCM.

2Audio samples and detailed results in terms of each emotion
category can be found on the project page https://silyfox.
github.io/cspc/
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