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Abstract
While transformers and their variant conformers show promis-
ing performance in speech recognition, the parameterized prop-
erty leads to much memory cost during training and inference.
Some works use cross-layer weight-sharing to reduce the pa-
rameters of the model. However, the inevitable loss of ca-
pacity harms the model performance. To address this issue,
this paper proposes a parameter-efficient conformer via shar-
ing sparsely-gated experts. Specifically, we use sparsely-gated
mixture-of-experts (MoE) to extend the capacity of a conformer
block without increasing computation. Then, the parameters of
the grouped conformer blocks are shared so that the number of
parameters is reduced. Next, to ensure the shared blocks with
the flexibility of adapting representations at different levels, we
design the MoE routers and normalization individually. More-
over, we use knowledge distillation to further improve the per-
formance. Experimental results show that the proposed model
achieves competitive performance with 1/3 of the parameters of
the encoder, compared with the full-parameter model.
Index Terms: parameter-efficient, sparsely-gated mixture-of-
experts, Conformer, cross-layer weight-sharing

1. Introduction
Nowadays, transformers and their variants have been success-
fully applied to end-to-end (E2E) automatic speech recogni-
tion (ASR) [1, 2, 3]. Transformers usually use stacks of self-
attention and feed-forward networks (FFNs) to build an encoder
and a decoder [1], and then use the attention mechanism to
bridge the encoded acoustic features and the representations of
text token sequences [4]. Lately, as a variant, conformers are
developed to augment transformers with convolution by help-
ing the model capture locality [3]. Combined with techniques
such as relative positional representations [5, 6] and Macaron-
style half-step FFNs [7], conformers further improve the perfor-
mance of transformers in ASR.

Despite the promising performance, many works show the
over-parameterization of transformers [8, 9], which leads the
models to require much memory storage during training and in-
ference, and hence limits the usage of the models on-device. To
reduce the memory cost, some works share the parameters of
one or several transformer blocks so that the total number of the
parameters of the model is much reduced [9, 10, 11, 12, 13].
These models use one or a few transformer blocks to encode
features in a recursive manner, thus the number of parameters is
less than the original transformers with the same depth. How-
ever, because of the fewer free model parameters, the capac-
ity of network is inevitably influenced and the performance de-
grades as a result.

To address this issue, we propose to share the sparsely-
gated mixture-of-experts (MoE) to improve the capacity of
cross-layer parameter-shared conformers, and not increase the

computation in the meanwhile. Specifically, we first design
the second FFN of a conformer block to be a sparsely-gated
MoE module to improve the capacity and share the grouped
conformer blocks in a cross-layer manner. The sparsely-gated
MoE uses a dynamic routing mechanism to activate only one
or a part of experts during training and inference, which keeps
comparable computation with non-MoE models and scales the
capacity of the model [14, 15, 16, 17]. Then, to help the
parameter-shared conformer blocks to adapt the hidden repre-
sentations at different levels, we propose to make each block
have its own router so that the blocks can have flexible rout-
ing paths for different level representations. We also use indi-
vidual normalization layers of the blocks to make them adapt-
able and to ensure the statistics consistent as well [18]. Fur-
ther, we use knowledge distillation [19, 20] to help parameter-
shared model imitate the full-parameter model. Experimental
results on the public AISHELL-1 dataset demonstrate that the
proposed parameter-efficient models can achieve competitive
performance with 1/3 of encoder parameters, compared with
the full-parameter model.

2. Background: Conformer-based Seq2Seq
Models for ASR

As attention-based encoder-decoder (AED) models, transform-
ers [1] use an encoder to capture the high-level representa-
tions from the acoustic features and a decoder to predict text
sequences token-by-token with the attention mechanism. For-
mally, given an acoustic feature sequence x = [x0, · · · , xT−1]
with length T and a text token sequence y = [y0, · · · , yS ] with
length S + 1, where y0 and yS are the start-of-sentence sym-
bol <sos> and the end-of-sentence symbol <eos>, the model
Trfm predicts the probability of the text token:

P (ys|y<s, x) = Trfm(y<s, x), (1)

where y<s is the prefix of ys in the text sequence, 1 ≤ s ≤ S.
The model is trained with maximum likelihood criterion:

Lnll(θ) = − 1

S

S∑
s=1

logP (ys|y<s, x), (2)

where θ is the parameters of the model Trfm. The beam-search
algorithm is used to find the most likely text token sequence
during inference. The overall structure is shown in Fig. 1.

Conformers [3] insert convolution layers into a transformer
block to help the model capture locality of a sequence. With
carefully designed fine-grained structures, including pre-norm
[21], GLU [22] and Swish [23] activation functions, relative
positional encodings [5, 6], conformers further improve the per-
formance and stabilize the training. Our model chooses con-
formers as the basic structure of the encoder. The structure of
the conformer block is shown in the middle part of Fig. 1. The
details of each module in a conformer block are referred to [3].
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Figure 1: (Left) The overall architecture of the ASR system. The encoder consists ofG groups of C consecutive MoE-conformer blocks.
The parameters of the MoE-conformer blocks with the same color are shared among different groups, except the normalization modules
and the routers of MoE module. The decoder consists of Nd transformer decoder blocks. (Mid.) The structure of the MoE-conformer
block consists of two feed-forward network (FFN) modules, a convolution module, and a multi-head self-attention (MHSA) module.
The details of each module are referred to [3]. We novelly extend the second FFN module to the mixture-of-experts (MoE) recipe.
(Right) The structure of the MoE module. The MoE module consists of several parallel FFN modules and a router. During forward
propagation, the input is fed into one of the FFN modules which is activated by the router.

3. Sharing Sparsely-Gated Experts
The core idea of the proposed parameter-efficient model is to
reuse the conformer encoder blocks recursively to make the
most of them. Crucially, the sparsely-gated MoE modules are
used to improve the capacity of the modules without increas-
ing computation. What’s equally important, the routers and the
normalization layers are further designed in an individual way,
so that they can be used as adapters to help the reused blocks
adapt representations at different levels. The method can also
be used in the other network structures, such as transformer de-
coder blocks and convolutional neural networks, as well as in
other E2E ASR models, such as transducers [24] and CTC [25].

3.1. Parameter-Sharing for Conformers
The structure of a conformer, as shown in the middle part of
Fig. 1, consists of two FFN modules, a multi-head attention
module, and a convolution module. All the modules use pre-
norm style combination of the residual connection and the layer
normalization. Besides, the FFN modules use Swish activation
functions. The multi-head self-attention module uses relative
positional encodings. The convolution module is a time-depth
separable style convolutional block with GLU and Swish activa-
tion functions. More details of each module are referred to [3].
Here, formally, for the input representation zt at t time-step, the
computation of a conformer block is as follows:

z
(1)
t = zt +

1

2
FFN(zt),

z
(2)
t = z

(1)
t + MHSA(z

(1)
t ),

z
(3)
t = z

(2)
t + Conv(z

(2)
t ),

ẑt = LayerNorm(z
(3)
t +

1

2
FFN(MoE)(z

(3)
t )),

(3)

where FFN, MHSA, Conv and FFN(MoE) denote the first FFN
module, the multi-head self-attention module, the convolution

module, and the second FFN enhanced with MoE, respectively.
LayerNorm denotes layer normalization [26]. The details of
FFN(MoE) are described in Section 3.2

As shown in the left part of Fig. 1, we share the parame-
ters of different blocks. Specifically, C consecutive conformer
blocks are grouped and G groups are stacked. For the con-
former block at the same position in different groups, the pa-
rameters of each module are shared. It can be viewed as one
group of conformer blocks are reused G times, and the compu-
tation is implemented in a recursive iteration manner. Thus the
model makes the most use of the parameters.

3.2. Dynamic Routing for Mixture of Experts
By parameter-sharing, the parameters of the encoder are much
reduced. However, the capacity of the model is also reduced
which influences the performance of the model negatively. So,
to improve the model capacity but not increase the computation,
we introduce sparsely-gated MoE [14, 17] to the second FFN
module, as shown in the right part of Fig. 1.

The sparsely-gated MoE mechanism consists of E parallel
experts and a router. The input z(3)t is first fed into the router to
select one of the experts1 and then is computed by the activated
expert. The formal computation is as follows:

g = [g0, · · · , gE−1] = softmax(router(z
(3)
t )),

i∗ = arg max
0≤i≤E−1

gi,

FFN(MoE)(z
(3)
t )) = gi∗FFNi∗(z

(3)
t ),

(4)

where FFNi denotes the i-th expert, gi denotes the gating value
regarding to the i-th expert, and i∗ is the index of the selected
expert. One may notice that, the procedure of MoE is actu-
ally similar to the attention mechanism: the input z(3)t can be

1We use top-1 MoE to keep the number of the activated parameters
the same with the non-MoE model in this paper.



viewed as the query vector in the attention mechanism, and the
gating scores g can be viewed as the attention coefficients [1].
However, the attention procedure is in a “hard” way, namely,
the non-maximum coefficients are all set to zero.

In addition, to encourage all the experts to be used in bal-
ance, the load balancing loss [17] is used as follows:

Lbalance = E

E−1∑
i=0

fiḡi, (5)

where fi is the active frequency of the i-th expert in a batch,
and ḡi is the mean of the gating values computed for the i-th
expert. Otherwise, Gaussian noises are added to the routers to
make the expert selection various during training.

With MoE, the parameters are extended so that the model
capacity is increased. However, since only one FFN is activated
actually, the computation is not increased.

3.3. Individual Routers and Normalization
To further improve the ability of the reused MoE modules, we
propose to make each MoE module have its own router. The un-
derneath thinking is to help the routing path achieve more flexi-
bility. With this, the MoE modules in different MoE-conformer
blocks can thus be adapted to different levels of representations.
Furthermore, all normalization layers (including layer normal-
ization and batch normalization) are built individually, thus, to
maintain the statistics of the normalization layers correspond-
ing to representations at different levels is consistent. And the
scale and offset parameters in the normalization layers can be
seen as parameter-efficient bias adapters [27].

3.4. Distilling Knowledge from Hidden Embedding
We use knowledge distillation [19, 20] to transfer the knowl-
edge from a full-parameter model to further improve the per-
formance of the shared-parameter model. Specifically, we
minimize the L2 distance between the outputs of the shared-
parameter encoder (student) and the full-parameter encoder
(teacher):

Lkd =
1

T

T−1∑
t=0

||ht − h′t||, (6)

where ht denotes the output of the shared-parameter encoder
and h′t denotes the output of the full-parameter encoder.

3.5. Learning
The model is learned by minimizing the overall loss:

L = Lnll + α
1

C

∑
Lbalance + βLkd, (7)

where C is the number of MoE module (see Fig. 1), α and β
are hyperparameters to balance the values of the losses.

4. Relation to Prior Work
Conditional computation of mixture-of-experts. MoE has
been shown as an effective way to scale the capacity of neu-
ral networks without increasing computation [14, 15, 16, 17].
However, previous works aim to scale the model sizes to bil-
lions or trillions, which needs extremely much resources and
model parallelization during training and inference. Different
from these works, we aim to use MoE in a parameter-efficient
way. We reuse the MoE modules to make the most use of them.
Cross-layer weight sharing. Cross-layer weight sharing is
first used in transformer with adaptive computation time [10].
[9] uses this technique to reduce the parameters of BERT.

Table 1: The overall character error rates on AISHELL-1. Npe

denotes the total number of the parameters of the encoder. Dev.
and Test denote the character error rates (CERs) on the devel-
opment set and the test set, respectively.

Model Npe Dev. Test
C12 21.58M 4.46 4.93
C2 3.74M 5.86 6.50
C2-MoE4 6.89M 5.77 6.22
C2-G6 3.74M 5.18 5.62
C2-MoE4-G6 6.95M 4.67 5.08
C2-MoE4-G6-KD 6.95M 4.65 5.03

[12, 13, 28] use the similar techniques for ASR. However, di-
rectly sharing parameters may influence the capacity of the
model negatively. To address this issue, we propose to use
the MoE mechanism to improve the model capacity without in-
creasing computation. Recently, [18] shares the MoE module
for ALBERT and ViT and applies the models to NLP and CV
tasks. However, their work uses two experts, which increases
computation cost. Otherwise, sharing the routers limits the ca-
pacity of the models. Different from their work, this paper fo-
cuses on more efficient architecture of Conformers [3] in ASR
tasks. We use individual routers to help the model to have di-
verse routing paths at different levels. And we use group strat-
egy to improve the model capacity in depth.

5. Experiments
5.1. Experimental Setup
We conduct experiments on a publicly available Chinese Man-
darin AISHELL-12 dataset [29], which includes about 150
hours of speech for training, about 18 hours of speech for de-
velopment, and about 10 hours speech for test.

For all the experiments, we use 80-dimension Mel-filter
bank features (FBANK) as the input, which are extracted ev-
ery 10 ms with 25 ms window. We use global cmvn as feature
normalization. Speed perturbation with factors of 0.9, 1.0 and
1.1 is used as audio augmentation [30]. All the feature process-
ing is employed with Kaldi toolkit [31]. We use 4235 Chinese
characters as the vocabulary, including <sos> and <eos>.

We use a 2-layer CNN as a subsampling module. Each layer
is a 3 × 3 convolutional layer with 32 output channels, and the
stride is 2. Thus, the frame rate is subsampled to 25 Hz. For the
encoder, we set the dimension of an MoE-Conformer module to
256, the number of heads of MHSA to 4, the kernal size of Conv
to 15. The intermediate dimension of an FFN module is 1024.
We use 4 experts for the second FFN in an MoE-Conformer
module. We compare effects of the different number of MoE-
Conformer modules and groups, i.e., C and G in Fig. 1. For
the decoder, we use the transformer structure. To control exper-
imental variables, we fix the number of the decoder blocks to 4.
The dimension of the decoder module is also 256 and the inter-
mediate dimension of the FFN in the decoder module is 1024.
We set dropout rate to 0.1 and use SpecAugmentation [32] and
time stretch [33] to avoid overfitting. The values of α and β in
Eq.(7) are set to 0.01 and 0.005, respectively. The standard

deviation of Gaussian noise for the MoE gate is set to 0.1 in
training. CTC loss is also used to improve the alignment with
weight 0.2. The learning rate schedule is inverse square root
with 4000 warm-up steps. All models are trained for 80 epochs
with 8 GPU cards. One batch includes 32000 frames. We use
PyTorch [34] and FastMoE [35] for implementation.

2https://www.openslr.org/33/



Table 2: Ablation studies on AISHELL-1. “n.” denotes normalization modules, and “r.” denotes routers. “indiv.” means that the
corresponding modules are not shared.

(a) w/ MoE vs. w/o MoE.

Model Npe Dev. Test
C1 1.95M 7.53 8.41
C1-MoE4 3.53M 7.26 8.05
C2 3.74M 5.86 6.50
C2-MoE4 6.89M 5.77 6.22

(b) w/ parameter-sharing vs. w/o parameter-sharing.

Model Npe Dev. Test
C1 1.95M 7.53 8.41
C1-G12 1.95M 5.65 6.07
C1-MoE4-G12 3.59M 5.01 5.40
C2 3.74M 5.86 6.50
C2-G6 3.74M 5.18 5.62
C2-MoE4-G6 6.95M 4.67 5.08

(c) Individual routers and normalization.

Model Npe Dev. Test
C1-MoE4-G12 (all shared) 3.53M 6.39 6.90
C1-MoE4-G12 (indiv. n.) 3.58M 5.19 5.57
C1-MoE4-G12 (indiv. n. & r.) 3.59M 5.01 5.40
C2-MoE4-G6 (all shared) 6.89M 5.60 6.00
C2-MoE4-G6 (indiv. n.) 6.94M 4.72 5.21
C2-MoE4-G6 (indiv. n. & r.) 6.95M 4.67 5.08

(d) Knowledge distillation from hidden embeddings.

Model Npe Dev. Test
C12 (teacher) 21.58M 4.46 4.93
C1-MoE4-G12 3.53M 5.01 5.40
C1-MoE4-G12-KD 3.53M 4.99 5.43
C2-MoE4-G6 6.95M 4.67 5.08
C2-MoE4-G6-KD 6.95M 4.65 5.03
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Figure 2: L2 distances between the input and output for each
transformation.

5.2. Results and Analysis
Overall. Table 1 shows the overall performance of our model. C
denotes the number of conformer blocks and G denotes the num-
ber of groups (see Fig. 1). MoE4 and KD mean whether to use
MoE and knowledge distillation, respectively. We can see that
with the proposed methods, C2-MoE4-G6-KD achieves com-
petitive performance with 1/3 parameters of the encoder, com-
pared with the full-parameter model C12. Directly reducing
the number of blocks to 2 hurts the performance of the model
(C2). MoE improves the performance of the models and does
not increase the activated parameters.
w/ MoE vs. w/o MoE. We compare the shallow encoders
with MoE and the ones without MoE in Table 2a. We can
see that MoE improves the capacity so that the performance of
C1-MoE4 is better than C1 and the performance of C2-MoE4
is better than C2. And with more conformer blocks, the model
can perform better but with more parameters (C2 vs. C1 and
C2-MoE4 vs. C1-MoE4).
Recursive iteration. Table 2b shows that more recursive iter-
ations make better performance with the same number of pa-
rameters. Specifically, for C1-G12, the 12 groups of blocks
are shared, which can be seen as the group is computed recur-
sively, and the performance is much better than the non-shared
model C1. Similarly, C2-G6 performs better than C2 with the
same number of parameters. C2-G6, which has more blocks
in one group than C1-G12, performs better than C1 with the
same computation iteration. MoE improves capacity and per-
formance of C1-G12 and C2-G6.
Individual routers and normalization. Table 2c compares the

effect of the individual routers and normalization. We can see
that if the routers and the normalization modules are all shared,
the performance of the parameter-shared model is hurt heav-
ily. Keeping each conformer block having its own normaliza-
tion module at each group can make the modules have proper
statistics so that the performance is better. And the individual
routers make the MoE module be able to select proper experts
at different levels. Thus, the model with individual routers and
normalization can achieve better performance.
Knowledge distillation from hidden embeddings. We fur-
ther use knowledge distillation to make the parameter-sharing
model imitate the full-parameter model (Table 2d). We can
see that with knowledge distillation, the performance of the
parameter-shared model is further improved for C2-MoE4-G6
model. However, the improvement is not very significant for
C1-MoE4-G12. This is probably because, C1 model has far
less conformer blocks when comparing to C12 model (1 vs.
12), then such a big divergence influences the effect of knowl-
edge distillation [36] between them.
L2 distances between the input and the output. Fig. 2 shows
the L2 distances of the input and output of each transformation
for an example utterance. We can see that C2-MoE4-G6 shows
a similar behavior with the full-parameter model C12. Whereas
the curve of the all-shared model is oscillating. This shows that
the individual routers and normalization have an effect on sta-
bilizing network parameters.

6. Conclusions and Future Works
This paper explores sharing the sparsely-gated mixture-of-
experts (MoE) to build a parameter-efficient conformer model
for speech recognition. Specifically, we first use MoE to extend
the capacity of a conformer block. Then, we share the parame-
ters of the grouped conformer blocks so that the parameters are
much reduced compared with the full-parameter model. To en-
sure the representations adapt at different levels, we make the
routers of MoE and normalization modules individual. More-
over, we use knowledge distillation to further improve the per-
formance. The experimental results demonstrate that the pro-
posed model can achieve competitive performance with about
1/3 of the parameters of the encoder, compared with the full-
parameter model. In the future, we will extend the proposed
method to more large-scale datasets and other ASR models,
such as transducers and CTC.
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