
ar
X

iv
:2

20
4.

10
58

6v
4

 [
cs

.C
L

]
 8

 A
ug

 2
02

2

Efficient Training of Neural Transducer for Speech Recognition

Wei Zhou, Wilfried Michel, Ralf Schlüter, Hermann Ney

Human Language Technology and Pattern Recognition, Computer Science Department,
RWTH Aachen University, 52074 Aachen, Germany

AppTek GmbH, 52062 Aachen, Germany
{zhou,michel,schlueter,ney}@cs.rwth-aachen.de

Abstract
As one of the most popular sequence-to-sequence modeling

approaches for speech recognition, the RNN-Transducer has

achieved evolving performance with more and more sophisti-

cated neural network models of growing size and increasing

training epochs. While strong computation resources seem to

be the prerequisite of training superior models, we try to over-

come it by carefully designing a more efficient training pipeline.

In this work, we propose an efficient 3-stage progressive train-

ing pipeline to build highly-performing neural transducer mod-

els from scratch with very limited computation resources in a

reasonable short time period. The effectiveness of each stage

is experimentally verified on both Librispeech and Switchboard

corpora. The proposed pipeline is able to train transducer mod-

els approaching state-of-the-art performance with a single GPU

in just 2-3 weeks. Our best conformer transducer achieves 4.1%

WER on Librispeech test-other with only 35 epochs of training.

Index Terms: speech recognition, neural transducer, efficient

training

1. Introduction
Recently, sequence-to-sequence modeling becomes the major

trend of automatic speech recognition (ASR). Among other

popular approaches such as connectionist temporal classifica-

tion (CTC) [1] and attention-based encoder-decoder (AED)

models [2, 3], the recurrent neural network transducer (RNN-

T) [4] receives the most interest due to its good performance

and streaming nature.

The RNN-T model definition allows a direct from-scratch

training by summing over all alignment paths matching the out-

put sequence. This simplicity usually comes at the cost of high

memory and computation requirement. Meanwhile, the perfor-

mance of transducer models has largely evolved with more and

more sophisticated neural network (NN) architectures [5, 6, 7].

The best performing systems usually adopt a large NN trained

for many epochs. All of these seem to indicate that strong

computation resources have become the prerequisite of train-

ing highly-performing transducer models in a reasonable time.

Although this can be true to some extent, we try to overcome it

by carefully designing a more efficient training pipeline.

More specifically, we propose a fast 3-stage progressive

training pipeline for neural transducer models in this work. We

provide detailed recipes and design principles of each stage,

which largely reduce the time and computation costs. Exper-

iments on both Librispeech (LBS) [8] and Switchboard (SWB)

[9] corpora show that our proposed pipeline is able to train

transducer models approaching state-of-the-art (SOTA) perfor-

mance from scratch with a single GPU in just 2-3 weeks.

2. Model
In this work, we mainly focus on the strictly monotonic version

of RNN-T [10] which closely matches the nature of speech as

desired for many real-time applications, although most of the

proposed approaches can also work for standard RNN-T. Let X
denote the acoustic feature sequence of a speech utterance and

hT
1 = f enc(X) denote the encoder output, which transforms the

input into high-level representations. Let aS
1 denote the output

label sequence of length S ≤ T , whose sequence posterior is

defined as:

PRNNT(a
S
1 |X) =

∑

yT
1
:B−1(aS

1
)

PRNNT(y
T
1 |h

T
1)

=
∑

yT
1
:B−1(aS

1
)

T
∏

t=1

PRNNT(yt|B(y
t−1
1), hT

1) (1)

Here yT
1 is the blank ǫ-augmented alignment sequence, which

is uniquely mapped to aS
1 via the collapsing function B to

remove all blanks. A limited context dependency [11, 12, 13]

can also be introduced to further simplify the model in Eq. (1).

This can be better expressed from a lattice representation of the

transducer label topology [4, 10]. By denoting yt−1
1 as a path

reaching a node (t− 1, s− 1), we have:

PRNNT(yt|B(y
t−1
1), hT

1) = PRNNT(yt|a
s−1
1 , ht) = PRNNT(yt|a

s−1
s−k, ht)

where k is the label context size, and yt
1 reaches (t, s − 1) if

yt = ǫ or (t, s) otherwise.

For decoding using the RNN-T model with an external

language model (LM), a general formulation of the maximum

a posteriori (MAP) decision rule can be given as:

X → Ŵ(aS
1) = argmax

W(aS
1
,S)

Pλ1

LM (W(aS
1)) ·

PRNNT(a
S
1 |X)

Pλ2

RNNT-ILM(a
S
1)

(2)

where PRNNT-ILM is the internal LM (ILM) / sequence prior

of PRNNT. Here λ1 and λ2 are scales applied in common

practice, where λ2 = 0 leads to the simple shallow fusion (SF)

approach [14]. The additional function W is introduced for a

more general coverage of different label choices for a. More

specifically, W is the lexical mapping or identity function when

a represents phonemes or (sub)words, correspondingly.

3. Training Pipeline & Recipes
In a standard pipeline, the encoder of transducer NN is usually

pretrained with the CTC [1] objective, which can be time

consuming when the encoder size grows large. The complete

transducer NN is then trained with the full-sum (FS) loss:

LFS = − logPRNNT(a
S
1 |X) (3)

which is usually very time consuming w.r.t. computation cost

and convergence to optimal performance. It also has a high

memory consumption due to the FS over all alignment paths.

To further improve the FS-trained transducer model, the

minimum Bayes risk (MBR) sequence discriminative training

is commonly applied due to its consistency with the ASR

evaluation metric. For simplicity, we denote aS
1 as a and omit

the variable length S for the MBR criterion:

http://arxiv.org/abs/2204.10586v4

LMBR =
∑

a∈H

Pseq(a|X)
∑

a
′
∈H

Pseq(a
′|X)

·R(a,ar) (4)

Here H is the hypotheses space, which is usually approximated

with an N -best list. The risk function R is typically the

Levenshtein distance w.r.t. the ground truth sequence a
r. The

Pseq is often chosen to be PRNNT directly [15, 16], but may also

include different LMs as in Eq. (2) [17]. This objective requires

generating H by (semi-) on-the-fly decoding with the model

in training, and computing FS for all label sequences in H.

Therefore, the MBR training has even much higher complexity

and cost in terms of both time and memory.

In this section, we present the proposed 3-stage progressive

training pipeline with detailed recipes. All hyper-parameters are

extensively tuned on LBS only, which generalize well on other

public corpora such as SWB and TED-LIUM Release 2 [18].

This efficient pipeline allows to train highly-performing trans-

ducer models from scratch with very limited computation re-

sources in a reasonable short time period. We use conformer [7]

transducer throughout this work, while the recipes also gener-

alize well on common NN structures such as bidirectional long

short-term memory [19] (BLSTM).

3.1. Stage 1: Viterbi training

As a first step, we directly apply the frame-wise cross-entropy

(CE) training to a from-scratch initialized transducer NN:

LViterbi = − logPRNNT(ŷ
T
1 |h

T
1) =

T
∑

t=1

− logPRNNT(ŷt|B(ŷ
t−1
1), hT

1)

where the Viterbi alignment ŷT
1 is obtained by training a very

small CTC model. For label loops in the CTC alignment, we

simply take the last frame of the segment as the label position.

As shown in [11, 20], such Viterbi training for transducer

allows an easy integration of various regularization methods and

auxiliary losses to improve performance and stability:

• 0.2 label smoothing [21] on LViterbi

• Lenc =
∑T

t=1 − logP (ŷt|ht): an auxiliary CE loss w.r.t. ŷT
1

to the encoder output by introducing an additional softmax

layer only in training, which is further weighted by a 1.0 focal

loss factor [22]. The same can also be applied to the encoder

middle layer with a smaller scale (default 0.3) [23].

• Lboost: another auxiliary loss to boost the importance of

output label sequence by simply excluding all blank frames

in LViterbi:

Lboost =

T
∑

t=1

− logPRNNT(ŷt|B(ŷ
t−1
1), hT

1) · (1− δŷt,ǫ)

By default, we further apply a scale α = 5 to this loss.

• chunking: each utterance can also be split into windows with

50% overlap, where the window length can be adjusted based

on the label context size of the model.

The above is our default recipe which yields the final loss as:

Lfinal
Viterbi = LViterbi + Lenc + αLboost

We also add a gradient clipping of 20 to ensure stability. We

observe that this Viterbi training is very robust to varying

quality of the alignment CTC model. The simplified criterion

allows an easy learning, which gives fast convergence to good

performance with only a small number of epochs.

In contrast to the standard pipeline, we obtain several gains

on speed and memory in this stage:

1. We only need to train a very small CTC model till some

reasonable performance to generate the Viterbi alignment.

2. The Viterbi training itself is much faster than FS (3 times

faster in our setup) and needs less number of epochs to reach a

similar good performance.

3. Much less memory is needed, which allows a much larger

batch size. Besides speed-up, this also leads to a more reliable

BatchNorm operation in the conformer model.

However, after quickly reaching a good local optimum, this

Viterbi training barely improves further even with much longer

training. This is mainly due to the limitation of fixed path train-

ing, which restricts the model to further converge to a better

optimum. The problem can only be slightly eased with realign-

ment, which nevertheless makes the training less efficient.

3.2. Stage 2: full-sum fine-tuning

As a result, we directly switch to FS fine-tuning using Eq. (3) as

the 2nd stage after the model quickly converges in the Viterbi

training stage. Without the aforementioned restriction, it gives

the model more freedom to converge to a better optimum, which

is also more consistent with the FS nature of transducer model

definition. Since the starting point is already a good base model,

this stage only needs a very small amount of epochs to achieve

further decent improvement. This largely reduces the time cost

of the FS training in the standard pipeline. Due to memory con-

sumption, we have to accumulate gradients from several smaller

batches to form a usual-size mini-batch for update. Therefore,

we freeze the parameters in BatchNorm operation from this

stage on, which is also more consistent with testing.

3.3. Stage 3: fast sequence training for LM integration

3.3.1. Objective

We also apply MBR sequence discriminative training as the 3rd

stage to further improve the transducer model from stage 2. We

aim to directly prepare the transducer model for external LM

integration in this stage. As explained in [24], FS-trained trans-

ducer models usually have a quite high blank probability, which

forces a rather small scale λ1 for the external LM in SF decod-

ing. Otherwise, the results will be biased towards shorter se-

quences with high deletion (Del) errors. This weakens the LM’s

discrimination power, which is usually handled in decoding by

applying ILM correction [25, 26, 24] and/or heuristics such as

length reward [27, 28]. However, such approaches require very

careful tuning and a high quality of ILM estimation, which can

be more problematic for transducers with limited context.

Therefore, we tend to directly tackle the fundamental issue

by fine-tuning the transducer model with the MBR criterion

towards an LM-aware distribution that further suppresses blank

/ boosts label around label positions while maintains the blank

dominance elsewhere. Ideally, even with SF decoding, this

allows a reasonably larger λ1 to suppress substitution (Sub)

and/or insertion (Ins) errors, while Del errors stay the same or

decrease further. This should also make the scale-tuning easier

for ILM correction if it is still necessary. Thus, we apply LM

SF 1-pass decoding to generate the N -best list. We optimize

λ1 on the dev set using the base transducer model from stage 2,

which usually gives higher Del errors than Ins errors. The Pseq

in the MBR criterion of Eq. (4) is then defined accordingly:

Pseq(a|X) =
(

PRNNT(a
S
1 |X) · Pλ1

LM (W(aS
1))

)β

where β is the global renormalization scale (typically β = 1
λ1

in our setup) and PLM is frozen in the training. We always

include a
r into the N -best and adopt 0.05-0.1 FS loss for

stability, which yields the final loss as:

Lfinal
MBR = LMBR + αLFS

3.3.2. Static N -best generation

In [15], it is observed that a small N -best list usually does not

change much within a certain training period, which allows a

semi-on-the-fly N -best decoding using every new sub-epoch

model. Similarly, we also generate N -best separately and re-

compute the exact FS of PRNNT for each sequence in the N -best

in training. We observe that even with such semi-on-the-fly de-

coding, most improvement of the MBR training only comes in

the first quarter of one full epoch. Based on these, we further

simplify the pipeline by only using the stage-2 base model to

decode random 25% of data for MBR training in this stage.

More specifically, we generate lattices for this subset of

data to obtain the N -best list. For reuse purpose, the lattices

can be slightly larger to allow an N -best size increment and to

contain more unique label sequences after duplicates removal,

e.g. homophones when a represents phonemes. This becomes

a once-only and completely offline process which can be par-

allelized to many CPUs or a few GPUs if available. Different

tuning experiments can then reuse the same lattices and finish

within a few hours. Additionally, this lattice generation pro-

cess can be further split into several sub-epochs, where the first

training experiment can start as soon as the first sub-epoch of

data is decoded. In this case, training and decoding can run in

parallel with minor synchronization effort. This whole process

has a strong similarity to the lattice-based MBR training in the

classical hybrid systems [29, 30].

Our N -best-based MBR training allows a dynamic N to ac-

count for lattices containing less hypotheses than N , which can

happen for some rather simple or short utterances. We also find

that it is safe to use a slightly weaker LM with reduced con-

text/model size to further speed up the lattice generation pro-

cess. However, this weaker LM can not be too distinct from the

final recognition LM so that the small N -best list still contains

representative error patterns. With a largely reduced complex-

ity, the 3rd stage MBR training gives some further improvement

for LM integration within a very short time, which completes

the proposed training pipeline.

3.4. Learning rate scheduling & epochs

Inspired by [28], we also apply the one-cycle learning rate

(OCLR) policy [31] to enhance the effectiveness of our training

pipeline. We try to more closely study the original OCLR de-

sign and adapt it to a simple formulation that requires least tun-

ing effort and works very well in general with common adaptive

optimizer. This can be expressed as a 3-phase LR scheduling

within one training stage:

P1. 0-45% of total steps: linear increase LR from LR1 to

LRpeak with LR1 = LRpeak/10
P2. 45-90% of total steps: linear decrease LR from LRpeak to

LR2 with LR2 = LRpeak/10

P3. 90-100% of total steps: linear decrease LR from LR2 to

LRfinal with LRfinal = 1e−6 typically

As claimed in [31], P1 and P2 share the same spirit as curricu-

lum learning [32] and simulated annealing [33], respectively.

And P3 tries to find the optima of local optimum with a quick

decay to a much smaller LR. With this schedule, only LRpeak

needs to be tuned, whose optimum is usually very close to the

peak LR used in a common constant + exponential decay pol-

icy. We observe that the described OCLR schedule gives consis-

tently better performance than the common one under the same

training epochs. For stage 1 training, we use this OCLR sched-

ule exactly. For stage 2, we adjust P1 with LR1 = LRpeak and

P2 with LR2 = LRpeak/5. For stage 3, we simply use a constant

LR 1e−5. By default, we use a mini-batch size of 10-15k input

frames, 5e−6 L2 regularization and 0.1 dropout, which works

generally well with this schedule. In terms of epochs, we find

that a reasonable range is to use 10-30k hours divided by the

corpus duration for stage 1, and 50-75% of that for stage 2.

Table 1: Number of epochs (#ep) for different transducer mod-

els in stage 1 and 2 training, and corresponding WER [%] re-

sults on the LBS dev-clean/other sets and SWB Hub5’00 set. All

results with LM are from shallow fusion (SF) decoding only.

Train
Stage

Phoneme Transducer ADSM Transducer

LM
LBS SWB

LM
LBS

#ep clean other #ep Hub5’00 #ep clean other

1
4gram

20 2.9 6.9 50 11.4
-

30 3.1 8.4

2 15
2.6 6.0

36
10.7

15
2.7 7.3

Trafo 1.8 4.1 9.9 Trafo 1.9 4.6

Table 2: Stage-1 Viterbi training using various CTC models

for alignment generation and correspondingly-trained phoneme

transducer models (all 20 epochs). WER [%] results using

4gram LM SF decoding on the LBS dev-other set.

Alignment CTC Model Stage-1 Phoneme Transducer

NN size #ep WER Encoder NN size WER

BLSTM 6× 512
20 9.7

BLSTM
6× 512 8.1

6× 640 7.7

VGG-Conf. 12 blocks

6.9

30

9.4 6.9

BLSTM-
Conf.

3× 512
6 blocks 9.0 6.9

VGG-Conf. 12 blocks 7.6 6.9

4. Experiments
4.1. Setups

Detailed experiments are conducted on the 960h LBS corpus [8]

and the 300h SWB corpus [9]. We evaluate the proposed train-

ing pipeline on context-1 transducer models using phonemes

for both corpora, and full-context transducer models using 5k

acoustic data-driven subword modeling (ADSM) units [34] for

LBS. Additionally, we reduce the LBS phoneme inventory in

the official lexicon by unifying stressed phonemes, e.g. (AA0,

AA1, AA2): AA, which we find harmless for the overall per-

formance. Following [11], we further apply end-of-word aug-

mentation to the phoneme sets of both corpora. For SWB, we

use Hub5’00 as dev set, and Hub5’01 and RT’03 as test sets.

Similar as [23], we use a 12 × 512 conformer (Conf.) [7]

encoder with an initial VGG network [35]. The VGG network

contains 3 3-by-3 convolutional layers with number of filters

32, 64 and 64, respectively. The last 2 convolutional layers use

a temporal stride of 2 to achieve a total subsampling of factor 4.

Additionally, we swap the convolution and multi-headed self-

attention modules in the conformer blocks as this gives slightly

better performance in our setup. For the prediction network, we

use 2 × 640 feed-forward network and 2 × 640 LSTM layers

for context-1 and full-context transducer models, respectively.

The standard additive joint network is used, which contains a

linear-tanh layer of size 1024 and a final linear-softmax layer.

We use gammatone features (LBS: 50-dim; SWB: 40-dim)

[36], and specaugment [37] except for stage 3. All model train-

ing is performed on single GTX 1080 Ti GPU. By default, we

apply 1-pass LM SF decoding, where word-level LM is used

for phoneme transducers. The word-level transformer (Trafo)

LMs are the same as in [38] for LBS and [39] (sentence-wise)

for SWB, while the ADSM Trafo LM is the same as in [24].

4.2. Stage 1: Viterbi training

By default, we use a 6 × 512 BLSTM for the alignment CTC

model, which adopts the same subsampling via max-pooling

layers in the middle. For LBS and SWB, we train the CTC

model for 20 epochs and 35 epochs, respectively. After gen-

erating the Viterbi alignment, we apply the stage-1 training on

transducer models. The LRpeak for phoneme and ADSM trans-

ducers are 8e−4 and 3e−4, respectively. The corresponding

Table 3: Efficiency illustration (on single GTX 1080 Ti GPU) of

the proposed training with phoneme transducer; vs. standard

training under similar WER [%] on the LBS dev sets

Model Train
LBS SWB

#ep hour/ep
∑

hour clean other #ep hour/ep
∑

hour

standard 40 18.3 732 2.6 6.1 -

stage 1 20 6 - 50 1.8 -

+ stage 2 + 15 18.3 394.5 2.6 6.0 + 36 5.5 288

Table 4: WER [%] and LM integration effect of stage 3 training

on the stage-2 transducer models; results evaluated with SF and

ILM correction on the LBS dev-other and SWB Hub5’00 sets;

further detailed scales and Sub/Del/Ins error rate [%] on LBS.

Model
Train
Stage LM

LBS SWB

λ1 λ2
dev-other Hub5’00

WER Sub Del Ins WER

phoneme

Transd.

2
Trafo 0.9 0 4.1 3.1 0.6 0.4 9.9

+ ILM 1.0 0.2 3.9 3.1 0.4 0.4 9.7

3
Trafo 1.3 0 3.7 3.0 0.4 0.4 9.3

+ ILM 1.4 0.1 3.7 2.9 0.4 0.4 9.2

ADSM
Transd.

2
Trafo 0.6 0 4.6 3.5 0.7 0.4

-
+ ILM 0.8 0.4 4.0 3.2 0.4 0.4

3
Trafo 0.9 0 4.2 3.4 0.4 0.4

+ ILM 1.2 0.3 4.0 3.2 0.4 0.4

epochs and word error rate (WER) results are shown in Table 1.

We use the LBS phoneme transducer to illustrate the ro-

bustness of this training stage. Different CTC models are evalu-

ated for alignment generation, which covers different NN struc-

tures, epochs and accuracy as shown in Table 2. We see that

the correspondingly Viterbi-trained conformer-transducer mod-

els all achieve the same performance, where the same recipe

also works well for BLSTM-transducer models. We believe the

cost of the alignment CTC model can be further reduced, which

we didn’t investigate much here.

4.3. Stage 2: full-sum fine-tuning

Based on cross-validation score or intermediate recognition, the

best model checkpoints of stage 1 are selected for stage-2 train-

ing. For SWB, we increase dropout to 0.2 from this stage on to

avoid overfitting with the fine-tuning process. We find LRpeak

around 5e−5 to be a good optimum for all models. The cor-

responding number of epochs and WER results of this training

stage are shown in Table 1. We see that decent improvements

are achieved in all cases with only a small amount of epochs.

In Table 3, we show the efficiency of the proposed training

pipeline using phoneme transducers, which is compared with

the standard pipeline on LBS. We use the well-trained VGG-

Conf. CTC model from Table 2 for encoder initialization and

directly train a transducer model using Eq. (3). The same OCLR

schedule as in stage 1 is applied. We train this standard model

for 40 epochs till it reaches the same performance as our stage-

2 model. Based on the total time used, our proposed pipeline

achieves a 46% relative speed-up.

4.4. Stage 3: fast sequence training for LM integration

The best models from stage 2 are then further trained in stage

3 with the fast MBR training described in Section 3.3. As the

weaker LM for lattice generation, we use the same recognition

4gram LM for phoneme transducers, and a 1×1024 LSTM LM

trained on the LM text data for the ADSM transducer. We filter

out utterances longer than 16s in time, or containing more than

190 phonemes or 90 ADSM labels in the transcription. The

MBR training uses an N -best of size 4. Additionally for the

SWB phoneme transducer, we exclude the non-speech labels for

sequence uniqueness and risk computation. Besides WER, we

also evaluate LM integration effect using SF and ILM correction

Table 5: Overall WER [%] results on LBS vs. literature includ-

ing number of parameters (#pm) and epochs (#ep)

Work
Model

LM
dev test

Approach #pm #ep clean other clean other

[40] RNN AED 360M 600 LSTM

-

2.2 5.2

[41] Trafo Hybrid 81M 100
Trafo

2.3 4.9

[42] Trafo CTC 124M 200 2.1 4.2

[7] Conf. Transd. 119M - LSTM 1.9 3.9

this

ADSM Transd. 87M 45 Trafo 1.8 4.0 1.9 4.4
phoneme

Transd.
75M 35

4gram 2.5 5.7 2.9 6.2

Trafo 1.7 3.7 2.1 4.1

Table 6: Overall WER [%] results on SWB vs. literature.

(*: cross-utterance evaluation with combined LSTM and Trafo LMs)

Work
Model

LM Hub5’00 Hub5’01 RT’03
Approach #pm #ep

[23] Conf. Hybrid 88M - Trafo 10.3 9.7 -

[28] RNN Transd. 57M 100
LSTM

9.7 10.1 12.6

[43] RNN AED 280M 250 9.8 10.1 12.0

[44] Conf. AED 68M 250 + Trafo 8.4∗ 8.5∗ 9.9∗

this
phoneme

Transd.
75M 86

4gram 10.3 10.6 11.8

Trafo 9.2 9.4 10.5

for decoding, where the zero-encoder ILM approach [25, 26] is

applied for the latter. The detailed results are shown in Table 4.

With LM SF decoding, consistent improvements are

achieved by the stage-3 training upon all the stage-2 transducer

models. As claimed in Section 3.3, we see that the higher

Del errors are reduced to a balanced level with Ins, while the

LM scale λ1 is increased to a more reasonable value to fur-

ther suppress the Sub errors. With ILM correction, the stage-

2 transducer models already achieve better results. Yet the

stage-3 training brings further 5% relative improvements to both

phoneme transducers. However, the benefit of ILM correction

for the full-context ADSM transducer becomes much smaller

after stage-3 training, which leads to no overall improvement

comparing to the stage-2 ADSM transducer with ILM correc-

tion. It seems that the proposed fast sequence training is more

helpful when the ILM is less powerful, e.g. limited context. We

will further investigate this joint effect in future work.

4.5. Overall performance

Finally, we evaluate the overall performance of our best

phoneme transducer models from stage 3 and best ADSM trans-

ducer model from stage 2. We switch the ILM correction for

ADSM transducer to the mini-LSTM ILM approach [45] as

done in [24]. All scales are optimized on the dev sets. We com-

pare these results with other top systems from the literature in

Table 5 and Table 6 for LBS and SWB, respectively. Our best

systems are competitive with SOTA results, while our models

are smaller and/or trained with much less epochs.

5. Conclusions
In this work, we presented an efficient 3-stage progressive train-

ing pipeline for both phoneme and subword neural transducer

models. The provided detailed recipes and design principles of

each stage are experimentally verified on both LBS and SWB

corpora. Compared with the standard pipeline, our proposed

training pipeline achieves a large reduction on time and com-

putation costs as well as complexity. This allows us to build

conformer transducer models approaching SOTA performance

from scratch with a single GPU in just 2-3 weeks.

Acknowledgements
This work was partially supported by the Google Faculty Research Award for
“Label Context Modeling in Automatic Speech Recognition”, and by NeuroSys
which, as part of the initiative “Clusters4Future”, is funded by the Federal Min-
istry of Education and Research BMBF (03ZU1106DA).
We thank Zuoyun Zheng for training the ADSM LMs.

6. References
[1] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber, “Con-

nectionist Temporal Classification: Labelling Unsegmented Se-
quence Data with Recurrent Neural Networks,” in Proc. ICML,
2006, pp. 369–376.

[2] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-End Attention-based Large Vocabulary Speech Recogni-
tion,” in Proc. ICASSP, 2016, pp. 4945–4949.

[3] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, Attend and
Spell: A Neural Network for Large Vocabulary Conversational
Speech Recognition,” in Proc. ICASSP, 2016, pp. 4960–4964.

[4] A. Graves, “Sequence Transduction with Recurrent Neural Net-
works,” 2012, https://arxiv.org/abs/1211.3711.

[5] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo,
and S. Kumar, “Transformer Transducer: A Streamable Speech
Recognition Model with Transformer Encoders and RNN-T
Loss,” in Proc. ICASSP, 2020, pp. 7829–7833.

[6] W. Han, Z. Zhang, Y. Zhang, J. Yu, C. Chiu, J. Qin, A. Gulati,
R. Pang, and Y. Wu, “ContextNet: Improving Convolutional Neu-
ral Networks for Automatic Speech Recognition with Global Con-
text,” in Proc. Interspeech, 2020, pp. 3610–3614.

[7] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Proc. Interspeech, 2020, pp. 5036–5040.

[8] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio books,”
in Proc. ICASSP, 2015, pp. 5206–5210.

[9] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCH-
BOARD: Telephone Speech Corpus for Research and Develop-
ment,” in Proc. ICASSP, vol. 1, 1992, pp. 517–520.

[10] A. Tripathi, H. Lu, H. Sak, and H. Soltau, “Monotonic Recurrent
Neural Network Transducer and Decoding Strategies,” in IEEE

ASRU, 2019, pp. 944–948.

[11] W. Zhou, S. Berger, R. Schlüter, and H. Ney, “Phoneme Based
Neural Transducer for Large Vocabulary Speech Recognition,” in
Proc. ICASSP, 2021, pp. 5644–5648.

[12] M. Ghodsi, X. Liu, J. Apfel, R. Cabrera, and E. Weinstein, “Rnn-
Transducer with Stateless Prediction Network,” in Proc. ICASSP,
Barcelona, Spain, 2020, pp. 7049–7053.

[13] R. Prabhavalkar, Y. He, D. Rybach, S. Campbell, A. Narayanan,
T. Strohman, and T. N. Sainath, “Less is More: Improved RNN-
T Decoding Using Limited Label Context and Path Merging,” in
Proc. ICASSP, Toronto, Canada, 2021, pp. 5659–5663.

[14] C. Gulcehre et al., “On Using Monolingual Corpora in Neural
Machine Translation,” 2015, http://arxiv.org/abs/1503.03535.

[15] J. Guo, G. Tiwari, J. Droppo, M. V. Segbroeck, C. Huang, A. Stol-
cke, and R. Maas, “Efficient Minimum Word Error Rate Train-
ing of RNN-Transducer for End-to-End Speech Recognition,” in
Proc. Interspeech, 2020, pp. 2807–2811.

[16] C. Weng, C. Yu, J. Cui, C. Zhang, and D. Yu, “Minimum Bayes
Risk Training of RNN-Transducer for End-to-End Speech Recog-
nition,” in Proc. Interspeech, 2020, pp. 966–970.

[17] Z. Meng, Y. Wu, N. Kanda, L. Lu, X. Chen, G. Ye, E. Sun,
J. Li, and Y. Gong, “Minimum Word Error Rate Training with
Language Model Fusion for End-to-End Speech Recognition,” in
Proc. Interspeech, 2021, pp. 2596–2600.

[18] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the TED-
LIUM Corpus with Selected Data for Language Modeling and
More TED Talks,” in Proc. LREC, 2014, pp. 3935–3939.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] A. Zeyer, A. Merboldt, R. Schlüter, and H. Ney, “A New Train-
ing Pipeline for an Improved Neural Transducer,” in Proc. Inter-

speech, 2020, pp. 2812–2816.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision,” in
CVPR, 2016, pp. 2818–2826.

[22] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal Loss
for Dense Object Detection,” in IEEE International Conference

on Computer Vision ICCV, 2017, pp. 2999–3007.

[23] M. Zeineldeen, J. Xu, C. Lüscher, W. Michel, A. Gerstenberger,

R. Schlüter, and H. Ney, “Conformer-based Hybrid ASR System
for Switchboard Dataset ,” in Proc. ICASSP, 2022.

[24] W. Zhou, Z. Zheng, R. Schlüter, and H. Ney, “On Language
Model Integration for RNN Transducer based Speech Recogni-
tion,” in Proc. ICASSP, Singapore, May 2022.

[25] E. Variani, D. Rybach, C. Allauzen, and M. Riley, “Hybrid
Autoregressive Transducer (HAT),” in Proc. ICASSP, 2020, pp.
6139–6143.

[26] Z. Meng, S. Parthasarathy, E. Sun, Y. Gaur, N. Kanda, L. Lu,
X. Chen, R. Zhao, J. Li, and Y. Gong, “Internal Language Model
Estimation for Domain-Adaptive End-to-End Speech Recogni-
tion,” in IEEE SLT, 2021, pp. 243–250.

[27] E. McDermott, H. Sak, and E. Variani, “A Density Ratio Ap-
proach to Language Model Fusion in End-to-End Automatic
Speech Recognition,” in IEEE ASRU, 2019, pp. 434–441.

[28] G. Saon, Z. Tüske, D. Bolaños, and B. Kingsbury, “Advancing
RNN Transducer Technology for Speech Recognition,” in Proc.

ICASSP, 2021, pp. 5654–5658.

[29] K. Veselý, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” in Proc. Inter-

speech, 2013, pp. 2345–2349.

[30] W. Zhou, W. Michel, K. Irie, M. Kitza, R. Schlüter, and H. Ney,
“The RWTH ASR system for TED-LIUM release 2: Improving
Hybrid HMM with SpecAugment,” in Proc. ICASSP, Barcelona,
Spain, 2020, pp. 7839–7843.

[31] L. N. Smith and N. Topin, “Super-Convergence: Very Fast Train-
ing of Neural Networks using Large Learning Rates,” in Artificial

Intelligence and Machine Learning for Multi-Domain Operations

Applications, vol. 11006, 2019, pp. 369 – 386.

[32] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. ICML, vol. 382, 2009, pp. 41–48.

[33] E. H. L. Aarts and J. H. M. Korst, Simulated Annealing and Boltz-

mann Machines: A Stochastic Approach to Combinatorial Opti-

mization and Neural Computing, 1990.

[34] W. Zhou, M. Zeineldeen, Z. Zheng, R. Schlüter, and H. Ney,
“Acoustic Data-Driven Subword Modeling for End-to-End
Speech Recognition,” in Proc. Interspeech, 2021, pp. 2886–2890.

[35] K. Simonyan and A. Zisserman, “Very Deep Convolutional Net-
works for Large-Scale Image Recognition,” in Int. Conf. on

Learning Representations (ICLR), 2015.

[36] R. Schlüter, I. Bezrukov, H. Wagner, and H. Ney, “Gammatone
Features and Feature Combination for Large Vocabulary Speech
Recognition,” in Proc. ICASSP, 2007, pp. 649–652.

[37] B. Zoph, C.-C. Chiu, D. S. Park, E. D. Cubuk, Q. V. Le, W. Chan,
and Y. Zhang, “SpecAugment: A Simple Augmentation Method
for Automatic Speech Recognition,” in Proc. Interspeech, 2019,
pp. 2613–2617.

[38] K. Irie, A. Zeyer, R. Schlüter, and H. Ney, “Language Model-
ing with Deep Transformers,” in Proc. Interspeech, Graz, Austria,
2019, pp. 3905–3909.

[39] K. Irie, A. Zeyer, R. Schlüter, and H. Ney, “Training Language
Models for Long-Span Cross-Sentence Evaluation,” in IEEE

ASRU, 2019, pp. 419–426.

[40] D. S. Park et al., “Specaugment on Large Scale Datasets,” in Proc.

ICASSP, 2020, pp. 6879–6883.

[41] Y. Wang et al., “Transformer-Based Acoustic Modeling for Hy-
brid Speech Recognition,” in Proc. ICASSP, 2020, pp. 6874–
6878.

[42] F. Zhang, Y. Wang, X. Zhang, C. Liu, Y. Saraf, and G. Zweig,
“Faster, Simpler and More Accurate Hybrid ASR Systems Using
Wordpieces,” in Proc. Interspeech, 2020, pp. 976–980.

[43] Z. Tüske, G. Saon, K. Audhkhasi, and B. Kingsbury, “Single
Headed Attention based Sequence-to-sequence Model for State-
of-the-Art Results on Switchboard,” in Proc. Interspeech, 2020,
pp. 551–555.

[44] Z. Tüske, G. Saon, and B. Kingsbury, “On the Limit of English
Conversational Speech Recognition,” in Proc. Interspeech, 2021,
pp. 2062–2066.

[45] M. Zeineldeen, A. Glushko, W. Michel, A. Zeyer, R. Schlüter,
and H. Ney, “Investigating Methods to Improve Language Model
Integration for Attention-based Encoder-Decoder ASR Models,”
in Proc. Interspeech, 2021, pp. 2856–2860.

	1 Introduction
	2 Model
	3 Training Pipeline & Recipes
	3.1 Stage 1: Viterbi training
	3.2 Stage 2: full-sum fine-tuning
	3.3 Stage 3: fast sequence training for LM integration
	3.3.1 Objective
	3.3.2 Static N-best generation

	3.4 Learning rate scheduling & epochs

	4 Experiments
	4.1 Setups
	4.2 Stage 1: Viterbi training
	4.3 Stage 2: full-sum fine-tuning
	4.4 Stage 3: fast sequence training for LM integration
	4.5 Overall performance

	5 Conclusions
	6 References

