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Abstract
In spite of the impressive success of convolutional neural net-
works (CNNs) in speaker recognition, our understanding to
CNNs’ internal functions is still limited. A major obstacle is
that some popular visualization tools are difficult to apply, for
example those producing saliency maps. The reason is that
speaker information does not show clear spatial patterns in the
temporal-frequency space, which makes it hard to interpret the
visualization results, and hence hard to confirm the reliability of
a visualization tool.

In this paper, we conduct an extensive analysis on three
popular visualization methods based on CAM: Grad-CAM,
Score-CAM and Layer-CAM, to investigate their reliability for
speaker recognition tasks. Experiments conducted on a state-
of-the-art ResNet34SE model show that the Layer-CAM algo-
rithm can produce reliable visualization, and thus can be used
as a promising tool to explain CNN-based speaker models. The
source code and examples are available in our project page:
http://project.cslt.org/.
Index Terms: visual explanations, convolutional neural net-
works, speaker recognition, class activation maps

1. Introduction
Deep convolutional neural networks (CNNs) have attained re-
markable success in computer vision [1, 2, 3]. Besides the
unprecedented performance on a broad range of tasks, a spe-
cial reason is that there are multiple visualization tools that
can be used to explain the decisions of the model [4, 5, 6].
Some of the most representative visualization tools include
guided backpropagation [7], deconvolution [8], CAM and its
variants [6, 9, 10, 11]. These tools can produce saliency maps
that identify the important regions in an image that lead to the
model’s decision. Importantly, humans can easily interpret a
saliency map of an image, and hence judge the quality of a vi-
sualization tool.

Recently, CNN models have been widely adopted in
speaker recognition and achieved fairly good performance [12].
However, how the models obtain such performance is hard to
explain. A major obstacle is that the established visualization
tools cannot be used directly. Basically, this is because hu-
mans cannot ‘see’ speech, which makes interpretation and qual-
ity judgement for saliency maps on speech signals quite diffi-
cult [13]. Recently, some researchers have recognized the dif-
ficulty, and provide some solutions [14, 13, 15]. Nearly all the
research focused on visualizing phone classes.

So far very few research in literature reports visualization
for speaker recognition. This is not surprising as speaker traits
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spread among nearly all frequency bands and temporal seg-
ments, making the question ‘where is important’ difficult to an-
swer. In contrast, phone information is much more localized, at
least in the temporal axis. Among the few exceptions, [16] em-
ployed Grad-CAM [17] to compare the behavior of ResNet and
Res2Net under noisy corruption. They found that the saliency
map produced by Grad-CAM is more stable with Res2Net com-
pared with ResNet, thus explaining the advantage of Res2Net.
In [18], the authors used Grad-CAM to analyze genuine speech
and spoof speech, and found that CNN models look into high-
frequency components to identify spoof speech. All the men-
tioned studies employed the visualization tools directly by as-
suming that they are correct. Unfortunately, so far we have no
idea if any of the visualization tools are reliable when applied
to speaker recognition, which makes the conclusions obtained
from visualization not fully convincing.

In this paper, we focus on the popular CAM-based algo-
rithms [6], and try to answer the question if these algorithms,
or any of them, can be reliably applied to speaker recogni-
tion tasks. Three CAM algorithms will be investigated: Grad-
CAM++ [9], Score-CAM [10] and Layer-CAM [11]. The main
idea of these algorithms is to generate a saliency map by comb-
ing the activation maps (channels) of a convolutional layer.

Our investigation starts from a deletion and insertion exper-
iment, as suggested in [19]. In the deletion process, the most
relevant regions (MoRRs) in Mel spectrograms are gradually
masked by setting the values to 0 according to a saliency map.
In the insertion process, the MoRRs are gradually unmasked
(exposed), starting from a totally-masked Mel spectrogram. For
each insertion and deletion config, we examine the accuracy of a
speaker recognition model. This results in a deletion curve and
an insertion curve, by which we can tell if a saliency map really
identifies the salient regions, and compare quality of different
saliency maps, hence different visualization algorithms.

We conducted experiments with a ResNet34SE x-vector
model. The results show that all the three CAM algorithms out-
perform random masking and time-aligned masking, demon-
strating that they are effective. Among the three CAMs, Layer-
CAM shows superiority in the deletion/insertion test, and pro-
duces more localized patterns. However, no clear temporal-
frequency (T-F) patterns are detected.

Further more, we conducted the deletion/insertion experi-
ment on multi-speaker speech. This time, Layer-CAM demon-
strates surprisingly good performance in distinguishing target
speakers and interfering speakers, and the other two CAMs
largely fail. This clearly shows that only Layer-CAM is a valid
visualization tool for speaker recognition.

2. Related work
Understanding the behavior of deep speaker recognition sys-
tems by visualization is a common practice. A popular approach
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is to visualize the distributions of frame-level or utterance-level
representations [20, 21, 22, 23, 24, 25], via manifold learning
algorithms [26] such as PCA and t-SNE [27]. Some researchers
conduct visualization based on scores of trials. For instance,
[28] visualizes the relation of different systems by multidimen-
sional scaling (MDS), where the distance between a pair of sys-
tems is derived from the scores produced by each of them. Re-
cently, the authors proposed a novel config-performance (C-P)
map tool that visualizes the performance of an ASV system in
a 2-dimensional map [29]. All these visualization methods can
(partly) show the behavior of a system, but provide little un-
derstanding for the behavior. CAM, or other saliency-map al-
gorithms, is supposed to offer better explanations for a CNN
model, hence better understanding.

The saliency-map algorithms can be categorized into three
classes: gradient-based approach [4, 7, 8, 30, 31], perturbation-
based approach [8, 19, 32, 33] and CAM-based approach [6, 9,
10, 11, 17]. The gradient-based approach is subject to low qual-
ity and noisy interference [34], and the perturbation-based ap-
proach usually needs additional regularizations [32] and is time-
costing. In comparison, the CAM-based approach often cre-
ates more clear and localized saliency maps, thus being adopted
widely by the computer vision community.

Considering the high quality and localization capability,
this paper focuses on CAMs, with the goal of identifying a
CAM algorithm that can be reliably used to visualize speaker
recognition models. To the best of our knowledge, this is the
first work towards this direction.

3. Methodology
A class activation map (CAM) is a saliency map that shows the
important regions used by the CNN to identify a particular class.
In this section, we will firstly revisit three CAM algorithms that
we will experiment with, and then present the normalization
process designed to attain suitable T-F masks.

3.1. Revisit CAMs

3.1.1. Grad-CAM and Grad-CAM++

We start from Grad-CAM [17]. Let f denote the speaker clas-
sifier instantiated by a CNN, and θ represents its parameters.
For a given input x from class c, the prediction score (posterior
probability) for the target class can be computed by a forward
pass:

yc = fc(x; θ). (1)

Then for the k-th activation map (i.e., the k-th channel) Ak of
a convolutional layer, the gradient of yc with respect to Ak

ij

is computed and the values at all the locations are averaged to
obtain the weight for Ak with respect to class c:

wc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

, (2)

where Z is a constant corresponding to the number of points in
the map. Grad-CAM then produces the saliency map for class
c by linearly combining Ak with weight wc

k and followed by
relu(·):

Sc = relu(
∑
k

wc
k ·Ak)). (3)

Grad-CAM++ [9] is a derived version of Grad-CAM, where
the weight wc

k for Ak is computed by:

wc
k =

1

Z

∑
i

∑
j

αkc
ij · relu(

∂yc

∂Ak
ij

). (4)

Specifically, Grad-CAM++ focuses on positive gradients
only, and weights ∂yc

∂Ak
ij

by αkc
ij . This change helps identify mul-

tiple occurrences of the same class.

3.1.2. Score-CAM

Gradients of a deep neural network can be noisy and vanished.
Score-CAM is a gradient-free algorithm [10], which computes
the weights wc

k for activation map Ak by forward activation
rather than backward gradient. Specifically, it firstly forwards
x through the CNN to generate activation map {Ak}, and then
use Ak to mask x:

x̂k = x ◦ {Norm(Upsampling(Ak))} (5)

where Upsampling(·) stretches Ak to meet the size of x, and
Norm(·) performs a min-max normalization. x̂k is then passed
through the CNN again, and the generated posterior probability
fc(x̂k) is used as the weight wc

k.

3.1.3. Layer-CAM

Layer-CAM [11] is gradient-based, and reweights Ak in a
point-wised way. The weight for activation map Ak for class
c at location (i, j) is defined as the gradient at that location:

wkc
ij = relu(

∂yc

∂Ak
ij

). (6)

Note that only positive gradients are considered, as in Grad-
CAM++. The saliency map is produced as follows:

Sc
ij = relu{

∑
k

wkc
ij ·Ak

ij}. (7)

It was demonstrated that the point-wised weighting is beneficial
to produce more fine-grained and localized saliency maps [11].

3.2. Saliency normalization

The values in the saliency map Sc may vary in a large range,
and the range could be very different with different CAMs. To
make the maps comparable in visualization, and to use them for
speaker localization (Ref. Section 4), we firstly re-arrange the
saliency values into the interval [0,1] by min-max normaliza-
tion:

Ŝc =
Sc −minSc

maxSc −minSc
. (8)

Furthermore, a scale function is applied to redistribute the
saliency values. According to [11], we choose tanh as the scale
function:

Ŝc
n = tanh(

γ ∗ Ŝc

max Ŝc
), (9)

where γ is the scale coefficient which was set to be 5 in our
experiments.

4. Experiments
In this section, we quantitatively evaluate the reliability of
three CAM algorithms: Grad-CAM++, Score-CAM and Layer-
CAM, using a well-trained deep speaker model.



4.1. Speaker model

The development set of VoxCeleb2 [35] was used to train the
speaker model, which contains 5,994 speakers in total. No data
augmentation was used. The structure of the model is ResNet34
with squeeze-and-excitation (SE) layers [36], shown in Table 1.
The model was trained by the Adam optimizer, following the
voxceleb/v2 recipe of the Sunine toolkit 1.

Table 1: The topology of ResNet34SE model.

Layer Module Output

Input – 80×200×1
Conv2D 3×3×32, Stride 1 80×200×32

ResNetBlock1

3× 3× 32
3× 3× 32
SE Layer

×3, Stride 1 80×200×32

ResNetBlock2

3× 3× 64
3× 3× 64
SE Layer

×4, Stride 2 40×100×64

ResNetBlock3

3× 3× 128
3× 3× 128

SE Layer

×6, Stride 2 20×50×128

ResNetBlock4

3× 3× 256
3× 3× 256

SE Layer

×3, Stride 2 10×25×256

Pooling TSP [37] 20×256
Flatten – 5120

Dense – 256
Dense AM-Softmax [38] 5994

4.2. Single-speaker experiment

In this section, we probe the behavior of the three CAM algo-
rithms using single-speaker utterances, i.e., only a single target
speaker exists in an utterance. Our purpose is to examine if the
CAM algorithms can detect salient components in Mel spectro-
grams. We randomly choose 2,000 utterances of 200 speakers
(10 utterances per speaker) from the training data to perform
the evaluation. The saliency maps are generated from ResNet-
Block4 (S4), by Grad-CAM++, Score-CAM and Layer-CAM
respectively.

First of all, we qualitatively compare the saliency maps pro-
duced by the three CAM-based methods. Two examples are
shown in Figure 1. It can be observed that all the saliency maps
clearly separate speech and non-speech segments, demonstrat-
ing the basic capacity of the CAMs. Another observation is that
Grad-CAM++ and Score-CAM tend to regard all the speech
segments being important, while Layer-CAM produces more
selective and localized patterns. Nevertheless, no clear T-F pat-
terns are found in any of the saliency maps. More examples are
provided in our project page2.

We further conduct the deletion and insertion experiment
suggested in [19]. In the deletion experiment, we monitor the
Top-1 accuracy of the CNN model as more and more impor-
tant regions of the input are masked, and in the insertion ex-
periment, we monitor the Top-1 accuracy as more and more
important regions are unmasked. The Area Under the Curve

1https://gitlab.com/csltstu/sunine
2http://project.cslt.org/

Figure 1: The saliency maps of two speaker utterances gener-
ated by GradCAM++, Score-CAM and Layer-CAM. The deeper
the color, the more important the region.

Figure 2: Deletion and insertion curves of three CAM algo-
rithms with single-speaker speech.

(AUC) value is used to measure the quality of the saliency
maps. More the saliency map is accurate, more the AUC lower
in the deletion curve and higher in the insertion curve. Since
we have known that all the CAM algorithms are capable of
detecting non-speech segment, we focus on the speech seg-
ment in this experiment. For that purpose, voice activity de-
tection (VAD) has been firstly employed to remove non-speech
segments. Moreover, we show the performance with random
(un)masking and left-to-right time-aligned (un)masking as ref-
erence (un)masking methods.

Figure 2 shows the results. It can be observed that the three
CAMs are comparable in this deletion/insertion test, though
Layer-CAM is slightly better. The comparison with random
masking and time-aligned masking is also interesting: it shows
that the three CAM algorithms indeed find salient regions. For
example, in the insertion experiment, the curves of CAM algo-
rithms clearly are much higher than that of the random masking,
indicating that the regions exposed earlier by CAMs are indeed
more important than random regions. And in the deletion exper-
iment, the curves of CAM algorithms are much lower than that
of the time-aligned masking, showing that the regions deleted
in the early stage by CAMs are more important than real speech
with the same amount of T-F bins. Note that the quick accuracy
increase with time-aligned masking in the insertion curve is un-
derstandable, as it inserts entire frames which are valuable for
speaker recognition when the utterance is short. Similarly, the
quick accuracy drop with random masking in the deletion curve
is not surprising, as random noise is very harmful for speaker
recognition.



Table 2: Top-1 Acc (%) on target-speaker localization and recognition task with three CAMs. A represents target speaker;
B and C represent non-target speakers. G-CAM: Grad-CAM++; S-CAM: Score-CAM; L-CAM: Layer-CAM. S1∼S4 represents
ResNetBlock1∼ResNetBlock4.‘+’ denotes element-wised average of multiple saliency maps.

Cases A-B A-B-A B-A-B A-B-C

Original 49.15% 83.55% 15.35% 30.30%

Settings G-CAM S-CAM L-CAM G-CAM S-CAM L-CAM G-CAM S-CAM L-CAM G-CAM S-CAM L-CAM

S1 43.00% 34.00% 6.75% 75.55% 62.50% 8.90% 15.15% 12.10% 4.15% 22.40% 17.45% 3.90%
S2 46.60% 46.60% 61.85% 79.90% 79.25% 85.00% 15.70% 16.00% 35.20% 26.85% 26.85% 45.15%
S3 48.45% 48.60% 49.40% 82.65% 82.35% 80.15% 15.75% 16.00% 20.20% 29.20% 29.55% 31.05%
S4 49.20% 48.25% 53.20% 82.10% 82.65% 82.90% 17.20% 16.15% 24.05% 30.10% 29.20% 34.65%
S4+S3 48.65% 48.15% 51.15% 82.50% 82.25% 82.60% 16.50% 16.15% 21.90% 29.40% 29.30% 33.55%
S4+S3+S2 48.55% 48.40% 59.85% 82.20% 82.00% 87.30% 16.10% 16.20% 28.65% 29.65% 29.15% 42.75%
S4+S3+S2+S1 47.70% 47.50% 71.55% 81.50% 80.65% 92.20% 16.10% 16.10% 44.60% 27.95% 27.45% 58.90%

4.3. Multi-speaker experiment

In the multi-speaker experiment, we concatenate an utterance of
the target speaker with one or two utterances of other interfering
speakers, and draw the saliency map. Figure 3 shows a ‘B-A-B’
test example. A denotes the target speaker while B denotes the
interfering speaker. This time, Layer-CAM shows surprisingly
good performance: it can accurately locate the segments of the
target speaker, and mask non-target speakers almost perfectly.
In comparison, Grad-CAM++ and Score-CAM are very weak
in detecting non-target speakers. Moreover, Figure 4 shows the
results of the deletion and insertion curves with 2,000 multi-
speaker utterances in the B-A-B form. It can be seen that Layer-
CAM gains much better AUCs than the other two CAMs.

Figure 3: Saliency maps on a ‘B-A-B’ test example.

Figure 4: Deletion and insertion curves of three CAM algo-
rithms with multi-speaker speech.

4.4. Localization and recognition

Since Layer-CAM can localize target speakers, we can use it as
a tool to perform localization and recognition, i.e., firstly iden-
tify where the target speaker resides and then perform speaker
recognition with the located segments only. We assume this is
better than using the entire utterance.

To test the hypothesis, we select 100 speakers from the
training set, each with 20 utterances. We randomly concatenate
the utterances in forms A-B, B-A-B, A-B-C, and A-B-A, where
A denotes target speakers and B/C denotes interfering speakers.
We use saliency maps produced at the layers of different ResNet
blocks (S1-S4) to mask the input utterance by simple element-
wised multiplication. Saliency maps of different layers can be
combined as well. Top-1 Acc (%) are reported in Table 2.

Firstly, we observe that neither Grad-CAM++ nor Score-
CAM can achieve performance better than the baseline (us-
ing the whole utterance). Layer-CAM, in contrast, delivers re-
markable performance improvement, and this is the case for
the saliency maps at all layers. This provides a very strong
evidence that Layer-CAM can identify the important speaker-
discriminative regions, while the other two algorithms cannot.
This furthermore suggests that Layer-CAM is the only valid vi-
sualization tool among the three variants.

Secondly, we find that although saliency maps at all lay-
ers produced by Layer-CAM are informative, the one from S2
seems the most discriminative. More investigation is required
here, but one possibility is that the saliency map of S2 is more
conservative and retains more regions when compared to the
ones obtained from higher layers.

Finally, we find that for Layer-CAM, aggregating saliency
maps from different layers can improve performance. This ob-
servation seems consistent with the feature aggregation tech-
nique [39, 40]. Note that there is no such a trend with the other
two CAMs. If we believe features are truly complimentary, then
it is another evidence that only Layer-CAM can be used as a re-
liable visualization tool.

5. Conclusion

The ultimate goal of our study is to identify a reliable visualiza-
tion tool. We focused on three CAM-based algorithms: Grad-
CAM, Score-CAM and Layer-CAM. Experiments conducted
with a state-of-the-art ResNet34SE model showed that although
all the three algorithms can identify important regions in single-
speaker utterances, Layer-CAM can localize target speakers in
multi-speaker utterances. We therefore conclude that Layer-
CAM is a reliable visualization tool for speaker recognition,
and is the only one among the three CAM variants. In future,
we will use the same protocol to test other visualization tools.
Furthermore, the localization and recognition experiments con-
ducted here suggests that integrating saliency maps may im-
prove speaker recognition. This deserves more investigation.
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