2206.13708v1 [cs.SD] 28 Jun 2022

arXiv

Personalized Keyword Spotting through Multi-task Learning

Seunghan Yang', Byeonggeun Kim*, Inseop Chung'**, Simyung Chang*

!Qualcomm Al Research’, Qualcomm Korea YH, Seoul, Republic of Korea
2Seoul National University, Seoul, Republic of Korea

{seunghan, kbungkun, ichung, simychan}@qti.qualcomm.com

Abstract

Keyword spotting (KWS) plays an essential role in enabling
speech-based user interaction on smart devices, and conven-
tional KWS (C-KWS) approaches have concentrated on detect-
ing user-agnostic pre-defined keywords. However, in practice,
most user interactions come from target users enrolled in the
device which motivates to construct personalized keyword spot-
ting. We design two personalized KWS tasks; (1) Target user
Biased KWS (TB-KWS) and (2) Target user Only KWS (TO-
KWS). To solve the tasks, we propose personalized keyword
spotting through multi-task learning (PK-MTL) that consists
of multi-task learning and task-adaptation. First, we introduce
applying multi-task learning on keyword spotting and speaker
verification to leverage user information to the keyword spot-
ting system. Next, we design task-specific scoring functions to
adapt to the personalized KWS tasks thoroughly. We evaluate
our framework on conventional and personalized scenarios, and
the results show that PK-MTL can dramatically reduce the false
alarm rate, especially in various practical scenarios.

Index Terms: keyword spotting, personalization, speaker veri-
fication, multi-task learning

1. Introduction

An always-on lightweight keyword spotting system has been
exploited to wake up smart audio devices. When the system de-
tects the keyword, the following audio stream can be uploaded
to speech recognition systems [[1, 12, 13, 14, 15, 16]. This process
can reduce power consumption while maintaining a high recall
rate and low false alarm rate. Conventional keyword spotting
(C-KWS) [2,7] aims to detect a small set of pre-defined speech
signals such as wake-up words, e.g., “Alexa” and “OK Google,”
and has been applied to the always-on keyword spotting system.

However, this system is not personalized, i.e., it only fo-
cuses on pre-defined keywords and does not consider the users.
To adapt the system to the users, query-by-example keyword
spotting 8. 9} [10] has been proposed to allow the users to en-
roll their own keywords, but these approaches only adapt to
new keywords, not explicitly considering the user identity. In
practice, most user interactions come from the target users, and
hence the model requires to be biased on the target users. More-
over, since the aforementioned systems ignore user information,
they cannot prevent detecting general negatives of background
sounds containing target keywords or other keywords having
similar pronunciation to the target, e.g., streaming audios from
TV, online meetings, and conversations. It could lead to undesir-
able power consumption by unnecessarily activating the recog-
nition systems. To address these problems, we introduce more

T Qualcomm AI Research is an initiative of Qualcomm Technolo-
gies, Inc.* Author completed the research in part during an internship at
Qualcomm Technologies, Inc.

Keyword Inputs
| Target Non-Target Task | ts-tk nts-tk ts-ntk nts-ntk
g Target ts-tk ts-ntk C-KWS o o X X
I5] TB-KWS o - X X
vl Non-Target | nts-tk nts-ntk TO-KWS o) X X X

(@)

EER [%] on C-KWS EER [%] on TB-KWS
2 3 25

EER [%] on TO-KWS

19 25 20
2

15

17 10
1

16 05 5

0 0
C-KWS system Our system

(®

Figure 1: (a): Inputs of keyword spotting systems can be cat-
egorized into four cases: ts-tk, nts-tk, ts-ntk, nts-ntk. TB- and
TO-KWS consider nts-tk as neutral and negative, respectively.
(b): The conventional C-KWS system [/|] shows low equal error
rate (EER) on C-KWS, but it downgrades on two personalized
tasks. Our system has a capability to conduct TB- and TO-KWS,
while performing comparable result on C-KWS.

C-KWS system Our system C-KWS system Our system

practical, personalized KWS tasks, considering the target users
enrolled in the device.

To describe personalized tasks, we categorize input utter-
ances of the KWS system into four when a target speaker and a
target keyword are given as Fig. [Ta]left. The four categories are
ts-tk (utterances from the target speaker and the target keyword),
nts-tk (utterances from a non-target speaker and the target key-
word), ts-ntk, and nts-ntk. The vague one is nts-tk, which is the
target keyword to detect but from a non-target user. We design
two personalized keyword spotting tasks considering nts-tk dif-
ferently as Fig. @ right: Target user Biased KWS (TB-KWS)
and Target user Only KWS (TO-KWS) to better focus on the
target users. TB-KWS requires the model to be biased to the
target users and does not explicitly consider nts-tk. Moreover,
some applications in devices prefer to be activated by only the
target users, hence TO-KWS only detects ts-tk and not nts-tk.
We evaluate the C-KWS system [7]] on multiple KWS tasks in
Fig.[Tb} and it shows performance degradation on our proposed
personalized tasks since it does not consider user information.

We propose personalized keyword spotting through multi-
task learning (PK-MTL) that can be selectively utilized on all
three tasks, C-KWS, TB-KWS, and TO-KWS. Our PK-MTL
is a two-stage system consisting of multi-task learning and
task-adaptation. First, we propose to apply multi-task learn-
ing on keyword spotting and speaker verification to leverage
speaker information to the keyword spotting system. With a
slight increase in the number of parameters, our keyword spot-
ting system learns both keyword and speaker characteristics,
and we can get both representations in a computation-efficient

Keyword

—— Training/inference

embedding e
Encoder f5(-) — e > raining
KWS Gosinel |-+ Keyword === Inference y
Sub-Net ——» —|—> Classifier classification
60 9“0 ---» cKwWs
i Il Y Bl W L 5 » Metric learning
) Task-specific
L) sV Cosi Q‘ scoring function | -[-~* TBand TO-KWS
el for TB-KWS
Sub-Net |——1{» ~—|—»| Classifier |-----» Speaker \5 —> r
i10) PRO) classification \’
Input spectrogram \ 4
N &
Speaker Reference
embedding embeddings

(a) Multi-task learning

(b) Task-adaptation

Figure 2: Personalized keyword spotting through multi-task learning consists of two parts. (a) A multi-task learning part: the shared
representation of keyword and speaker classification is encoded in low-level layers, and sub-networks learn the characteristics of each
task in high-level features. (b) A task-adaptation part: initial representations are learned by the multi-task loss function, and these
representations are adapted to each task through task-specific scoring functions.

way. Next, we introduce task-specific scoring functions to adapt
learned representations to TB- and TO-KWS tasks. Since the
purpose of the two tasks is different (see Fig. @, a function that
combines the information from keyword and speaker represen-
tations suitable to each task is needed. We propose two mod-
ules, Score Combination Module (SCM) and Task Represen-
tation Module (TRM), as task-specific scoring functions. SCM
is an optimization-free approach that directly combines initial
representations from the multi-task learning part. The second
approach is to construct a trainable Task Representation Mod-
ule (TRM) that is designed to take the two representations and
learn new task-specific representations for each task. With the
aid of these modules, PK-MTL can be adapted to each task.
We evaluate on Google Speech Commands [11]]. Upon the
multiple keywords spotting backbones [2| [7, [12], our frame-
work significantly boosts the performance of TB- and TO-KWS
while performing comparable results of C-KWS, with a slight
increase in the number of parameters and computation. We also
test PK-MTL in a practical setting, where negative samples con-
tinuously come from TV or other sources. Specifically, we ex-
ploit WSJ-SI200 [13]] and Librispeech [[14] as negative samples,
and the results show that our system dramatically reduces the
false alarm rate with the aid of task-specific scoring functions.

2. Method

As shown in Fig. 2] the overall architecture of our system
comprises two parts: multi-task learning on keyword spotting
(KWS) and speaker verification (SV) and task-specific scoring
functions to adapt to personalized KWS tasks.

Notations. The training data, Dyain, consists of labeled sam-
ples, {(zi, yi)}g‘{“ml, where x; is an input audio feature, and
yi = (yF,yf). y¥ and y¢ are the corresponding keyword and
speaker labels, respectively. To leverage speaker characteristics
to the keyword spotting system, we design a multi-task learn-
ing architecture that comprises a shared encoder, f4(-), sub-
networks for keyword spotting and speaker verification, ff;()
and £ (-), and classifiers, g (-) and g°(*).

Decision process. Given a pre-defined target keyword, con-
ventional keyword spotting system obtains a score ; rr of a
test sample z; belonging to the given target keyword using the
trained keyword classifier [2} 13]. The system accepts x; as the
positive sample when ; .t > ¢, where § is a threshold; oth-
erwise x; is rejected as the negative sample. In this paper, we
additionally utilize an enrolled utterance of the target user r.r
following personalized systems [15, [16] and leverage the simi-
larity of x; and s into the score 1; ref.

2.1. Multi-task learning for personalized keyword spotting

For a given backbone network, fo(:), where 8 = {¢, v}, we
adopt hard-parameter sharing [17, [18]] for low-level layers, i.e.,
the shared encoder, fy(-). The shared encoder can learn com-
plementary information from both KWS and SV, and the shared
design is more efficient in terms of memory and computa-
tion than using separate task designs [19} [20]. Since features
for KWS and SV are adversarial in high-level concepts [21],
i.e., keyword features are speaker-agnostic and vice versa, sub-
networks, f%(-) and f3(-), are added to learn the characteris-
tics of each task. Then, we get keyword and speaker features,
zf = fE(fs(x:)) and 2{ = f3(fs(xs)). On top of that, we
apply cosine similarity based classifiers [22} 23] as follows:

g" (2F) = softmax(w - sim(zf, W*) +b), (1)

where W is the learnable weight for keyword classification,
sim represents cosine similarity, sim(a, b) = a - b/(||al| |0]]),
and w and b indicate scale and bias, respectively (for simplicity
of notation, we omit the superscript k). We define a keyword
classification loss by minimizing the negative log probability of
the true class:

Ly =Y —yilogg"(z).

i

(€3

We get Ls for SV in the same manner and combine two task-
specific loss functions as below:

Lmﬂ = Lk + ALS7 (3)

where A indicates the importance of speaker information. Dif-
ferent from the goal of previous multi-task learning on KWS
and SV [24] 25] that focuses on boosting each task, our frame-
work focuses more on leveraging user information for better-
personalized KWS. After training the network with the loss in
Eq. EL we use learned representations for TB- and TO-KWS.

2.2. Task-specific scoring functions for TB- and TO-KWS

Score Combination Module (SCM). The first approach is to
obtain two scores of keyword and speaker independently and
combine them directly into a task-specific score for the decision
process in each personalized task. Given the enroll utterance
Trer Of a target user y/,.. r, keyword and speaker scores of the test
input sample z; for the user y; are calculated by:

wﬁref = Sim(zzky Wr]:f) and wis,ref = sim(zf, f; (f¢(x“’«f))7

where wﬁref is the cosine similarity score between the keyword
embedding zF and the trained keyword classifier weight W

that can be regarded as the most representative embedding of
the pre-defined target keyword. v; ¢ is the score between the
speaker embedding of the input z; and the embedding of the
enrolled target user f3(fe(zwr)). Note that target keywords are
pre-defined, but speakers are not overlapped between training
and test. Therefore, we use the reference embedding, z., of the
target user at the test time. We define SCM(+, -; &) that com-
bines two scores, wk and v°, into new score for each task, 1/)“’
and v"°. SCM can be any combination functions, but we use
a simple linear combination function, « - % + (1 — @) - ¥°.
The objective of keyword spotting is to minimize the false re-
jection rate (FRR) at the given false alarm rate (FAR). Here,
FAR is the percentage of negative samples being incorrectly ac-
cepted, while FRR is that of positive samples being incorrectly
rejected. To achieve this goal, we obtain the parameters of SCM
at the target FAR c (%) as follows:

o = arg minFRR(SCM(Q/)k7 P a)), st. FAR=c. (4)

Task Representation Module (TRM). The second approach is
to add a trainable neural network, TRMy (-, -) and TRM (-, -),
whose inputs are keyword and speaker embeddings, and an out-
put is a task-specific embedding. We apply metric learning loss
with our proposed batch construction to train this module to
form the discriminative embedding for TB- and TO-KWS. We
define positive and negative samples based on an anchor sam-
ple mimicking the test case of each task as described in Fig. [Ta]
Then, we apply an angular prototypical loss function [[16] to
make the positive samples closer and the negative samples apart
from the anchor sample. First, we measure the similarity be-
tween query samples and prototypes as follows:

¥, = sim(TRMw(2f', 27), TRMw (P}, p5)), (5

where prototypes pf and pj are reference embeddings of the
corresponding keyword and speaker of j-th sample, here we use
learned classifiers’ weights Wf and W as prototypes in train-
ing while the embedding of the enrolled speaker is used for pj
in test. Then, we define a task-specific loss function as follows:

N tb
1 exp(w - ¥;; + b)
Ly = —— E : . (6)
N&YY

=1 exp(w - ff’j +b)

‘We apply the same task-specific loss function for TO-KWS, but
negative samples are selected differently, i.e., nts-tk is selected
for negative samples. TRM can extract discriminative features
for each task by minimizing Eq. [We denote our mutli-task
learning architecture with TRM as PK-MTL.

Inference time. Given the test input x;, we use the score
from keyword embeddings, wﬁ refs for C-KWS and task-specific
scores from SCM or TRM, wf,brer and wff;er, for personalized
tasks, as illustrated in Fig.[2]

3. Experiments
3.1. Experimental Setup

Datasets. We evaluate conventional and personalized KWS sys-
tems on Google Speech Commands v1 [11]. The dataset con-
tains 64,727 utterances of total 30 words from 1,881 speakers.
We follow the conventional 12 class classification setting [11]],
which consists of ten classes of “Yes,” “No,” “Up,” “Down,”
“Left,” “Right,” “On,” “Off,” “Stop,” and “Go” with two ad-
ditional classes “Unknown’ and “Silence,” which indicate re-
maining twenty words and no speech, respectively. We divide
the dataset into training, validation, and test in the same way
as [3L 2, [7 11} 126]. For testing on TB- and TO-KWS, we

make sample-to-sample pairs consisting of positive and nega-
tive pairs. We randomly select an anchor sample and choose
ts-tk, nts-tk, ts-ntk, and nts-ntk samples of the anchor. To re-
duce the performance variation, we obtained 10 test splits where
each test split contains 16,000 pairs. We report the average
performance from 10 test splits. Note that “Silence” and “Un-
known” classes can be selected for non-target keywords but not
for target keywords. Moreover, we make 10 test splits to val-
idate speaker verification performance, which contain 160,000
speaker pairs that are randomly sampled from the test set.

We also evaluate the models trained on Google Speech
Commands in a practical scenario, where speeches continu-
ously come from news or conversations containing words that
are general negatives for the system. We exploit the WSJ-
S1200 [13] and Librispeech [14]] datasets as the negatives for
the above scenario. Negative samples from WSJ-SI200 are seg-
mented from the whole audio stream into the one-second-long
following [9]. For Librispeech, we segment the entire audio
stream into one-second-long in the public noisy test set. We
make a test pair where one sample is from general negatives
and the other is the target keyword with a randomly selected
speaker from Google Speech Commands, and we conduct this
process for all samples by pairing with 10 target keywords.
Implementation details. We exploit three keyword spotting ar-
chitectures as the backbone network, BC-ResNet [7], Res15 [2]
and DS-ResNet [12], for our PK-MTL. For BC-ResNet, we use
input features of 40-dimensional log Mel spectrograms with 30
ms window length and 10 ms frameshift and apply data aug-
mentations following [7]. For the other two backbones, we fol-
low [2 [12] to add noise and random shift to each segment.
Then, we extract 40 dimensional Melfrequency cepstrum co-
efficient features and use them as inputs. We design the shared
encoder using the backbones except the last two conv layers for
BC-ResNet and the last conv block for Res15 and DS-ResNet.
Sub-networks follow the shared encoder, which consist of the
remaining layers of each backbone and an additional fully con-
nected layer. We follow the official training strategy [2} [7, [12]]
of each baseline network, e.g., a learning rate and a mini-batch
size. We set A to 0.1 in Eq.[3] For the baselines, i.e., BC-ResNet,
Resl5, and DS-ResNet, we add an additional fully connected
layer before the classifier and use the cosine classifier, g*(-).
This modification improves the performance with additional pa-
rameters and computational cost.

We define Score Combination Module (SCM) as a linear
combination function. We adopt the attention modules [27]] for
Task Representation Module (TRM). TRM extracts the concate-
nated normalized keyword and speaker embeddings attended by
the attention weights that are obtained by two fully connected
layers whose intermediate feature size is 2. TRM is trained for
50 epochs using the same training strategy of the backbones.
Evaluation metric. We use false alarm rate (FAR), false rejec-
tion rate (FRR), and equal error rate (EER) at which FAR and
FRR are the same. Also, Top-1 test accuracy is used for evalu-
ating multiple keywords classification (C-KWS).

3.2. Ablation studies on Google Speech Commands

Effectiveness of multi-task learning. We compare three meth-
ods: 1) Vanilla is the conventional KWS model, 2) Vanilla
(+SV) uses an additional single task model for SV, and 3) Naive
MTL indicates our MTL framework trained by Eq. [3] In Ta-
ble [T} the results of EER on SV and C-KWS demonstrate that
the keyword spotting system can learn speaker representations
without performance degradation on KWS with a marginal in-
crease in the number of parameters and computation compared

Table 1: Comparison of Top-1 test accuracy (%), EER (%), and FRR (%) at FAR 1% and FAR 10% of SV, C-KWS, TB-KWS, and
TO-KWS on Google Speech Commands v1. Reported numbers are mean (std) over five trials.

sV C-KWS TB-KWS TO-KWS
Method Backbone EER | Acc EER | FRRat1% FRRatl10% EER | FRRat1% FRRat10% EER | #Mult #Param
Vanilla BC-ResNet-3 [7] - 97.57(0.04) 1.92(0.15) | 2.85(0.09) 1.89(0.20) 247 (0.03) | 96.50 (0.07) 64.32(0.26) 21.17 (0.08) 167M 635k
Vanilla (+SV) BC-ResNet:3 7] 3.32(0.10) | 97.57 (0.04) 1.92(0.15) | 2.85(0.09) 1.89(0.20) 2.47(0.03) | 96.50(0.07) 64.32(026) 21.17(0.08) | 22.5M 824k
Naive MTL BC-ResNet:3 [71 3.36 (0.13) | 97.68(0.18) 198 (0.07) | 2.82(0.10) 1.71(0.32) 2.44(0.06) | 96.44 (0.09) 64.26 (0.24) 21.12 (0.09) 175M 802k
PK-MTL w/SCM-M BC-ResNet-3 [7] 336 (0.13) | 97.68 (0.18) 1.98 (0.07) | 2.99 (0.17) 0.90(0.09) 2.12(0.19) | 628(0.27) 273(0.13) 3.89 (0.06) 17.5M 802k
PK-MTL w/ SCM-GS ~ BC-ResNet-3 [7] 336 (0.13) | 97.68 (0.18) 1.98 (0.07) | 2.75(0.14) 1.08(0.52) 240(0.05) | 6.24(0.42) 197 (0.70) 3.76(0.17) 175M 802k
PK-MTL BC-ResNet:3 71 3.36 (0.13) | 97.68(0.18) 198 (0.07) | 258(0.10) 0.75(0.25) 2.02(0.22) | 6.56(0.20) 152(0.18) 337 (0.15) 175M 82.0k
Vanilla Resls - 95.82(021) 238(0.10) | 417(023) 223(0.17) 3.03(0.05) | 96.36(0.28) 63.83(0.82) 21.25(0.08) | 9663M 241.1k
PK-MTL ReslS 443 (0.13) | 9630(0.19) 2.25(0.13) | 3.30(0.33) 0.92(0.08) 2.14(0.19) | 9.35(0.46) 2.56(0.21) 4.44(0.18) | 1.040.6M 262.3k
Vanilla DS-ResNet18 - 96.83 (021) 1.85(020) | 3.10(0.17) 133(0.17) 241 (0.17) | 96.11(0.13) 63.76(0.30) 21.18(0.07) | 305.6M 79.9k
PK-MTL DS-ResNet18 329(0.07) | 96.85(0.32) 1.91(0.21) | 2.46(0.12) 0.81(0.15 1.61(0.06) | 6.62(0.37) 1.90(0.18) 3.68(0.24) | 326.IM 89.9k
Vanilla BC-ResNet-8 [7] - 98.01(0.16) 1.89(0.17) | 2.69(0.11) 077 (0.41) 243 (0.04) | 9630(0.32) 63.20(0.64) 2120(0.09) | 91.9M 386.9k
PK-MTL BC-ResNet-8 7] 2.58 (0.10) | 97.87 (0.12) 1.79(0.27) | 1.72(0.10) 0.47(0.05) 1.33(0.04) | 501(0.17) 141(028) 322(0.27) 96.6M 5017k
Table 2: FAR (%) at FRR 1% and 5% on WSJ and Librispeech - Vanilla Naive MTL
. . 10
datasets. Reported numbers are mean (std) over five trials. et o8

GSC+WSJ GSC+Librispeech
Method Backbone FARat1% FARat5% | FARat1% FARat5%
Vanilla Resls 4149 (2.37) 131 (1.87) | 33.77(2.34) 0.51 (0.08)
Vanilla DS-ResNetl8 [12] | 47.44 (5.76) 0.25(0.39) | 37.46(9.05) 0.48 (0.06)
Vanilla BC-ResNet-3 [7] | 46.61 (7.45) 0.00 (0.01) | 27.59 (3.23) 0.19 (0.02)
Vanilla BC-ResNet-8 45.00 (4.98) 0.00 (0.00) | 21.83 (2.79) 0.12 (0.02)
PK-MTL (TB) BC-ResNet-3 [7] 5.58(4.20) 0.00(0.00) | 2.69(1.98) 0.02(0.01)
PK-MTL (TO) | BC-ResNet-3 0.15(0.11) 0.00 (0.00) | 0.15(0.07) 0.00 (0.00)
PK-MTL (TB) BC-ResNet-8 [7] 1.32(1.55) 0.00(0.01) | 0.99(0.36) 0.01 (0.00)
PK-MTL (TO) | BC-ResNet-8 020 (0.30) 0.00 (0.01) | 0.15(0.06) 0.01 (0.00)

to Vanilla. Vanilla (+SV) also leverages speaker information us-
ing single-task SV model, but it requires a higher computational
cost due to separately performing each task.

Impact of task-specific scoring functions. To analyze the im-
pact of scoring functions, we apply SCM and TRM to Naive
MTL whose backbone is BC-ResNet-3. With a combination
function whose « is manually chosen as 0.5, SCM-M, it cannot
consistently improve TB-KWS even though speaker informa-
tion is exploited to the task. We can improve the performance at
the target FAR, especially 1%, by finding « through grid-search
minimizing Eq. 4 at the target FAR on the validation set, and
PK-MTL w/ SCM-GS largely reduces FRR at FAR 1% of TB-
and TO-KWS. However, it has limited performance improve-
ments because their representations cannot learn task-specific
characteristics explicitly. Therefore, we utilize TRM so that PK-
MTL fully adapts keyword and speaker representations to TB-
and TO-KWS, and it helps reducing FRR and EER significantly.
PK-MTYL on various baselines. Our framework can be applied
to any C-KWS architectures, hence we use three backbones,
Resl15, DS-ResNet18, BC-ResNet-8. In Table m even though
the performance of SV and the influence of SV to KWS induced
by multi-task learning are different depending on the structure
and size of the backbones, PK-MTL improves the performance
consistently on all personalized tasks with the aid of the speaker
representations and the task-specific scoring function, TRM.

3.3. Experiments on the realistic scenario

The KWS system trained on Google Speech Commands selects
a threshold based on the target FRR of positive samples, i.e., s-
tk. With the threshold, we evaluate KWS systems on WSJ and
Librispeech datasets to validate whether they can reject general
negatives. All vanilla methods cannot reject general negatives
that contain the target keywords, e.g., “Yes” and “On,” or similar
keywords because speaker information is ignored for detecting
keywords. It makes KWS systems induce high FAR at the op-
erating points of FRR 1% as shown in Table and it can lead
to increased power consumption. However, in our systems, gen-
eral negatives are easily rejected by considering speaker repre-
sentations since the speaker characteristics of general negatives

10°] B tsntk
3 nts-ntk
=3 general negatives

06
04

02

speaker score

0.0

-02

-0.4

-06
-0.75 -0.50 —0.25 0.00 025 050 075 1.00
keyword score

-06 -04 -02 00 02 04 06 08 10

score

count
g

0l 10°
6 -04 -02 00 02 04 06 08 10 ~0.6 -0.4

score

PK-MTL (TB)

-02 00 02 04 06 08 L0
score

PK-MTL (TO)

Figure 3: The histograms (log scale) for Vanilla and PK-MTL
show the distribution of scores from keyword and task-specific
embeddings, respectively. The scatter plot for Naive MTL shows
the distribution of keyword (x-axis) and speaker (y-axis) scores.

are different from the enrolled users. Especially, PK-MTL (TO)
can effectively reject general negatives even at the low operating
point, FAR 1%, because it learns to reject nts-tk.

We analyze the score distribution of KWS systems as
shown in Fig. 3. We plot the scores of ts-k, nts-tk, ts-ntk, nts-ntk
pairs from Google Speech Commands and pairs of target key-
words and general negatives from Librispeech. In Vanilla, the
scores of target keywords and non-target keywords are well split
regardless of speaker identities, but a lot of general negatives
also result in high scores. We plot both keyword and speaker
scores through Naive MTL. As expected, general negatives have
low speaker scores even though their keywords are similar or the
same as the target. The figure for PK-MTL (TB) shows that the
score of ts-tk is higher than those of nts-tk, which indicates the
model is biased toward the target users. Moreover, ts-tk is well
separated from other samples in PK-MTL (TO), which objec-
tive is to accept the target user only. In PK-MTL, the scores of
general negatives are apart from those of positive samples, thus
we can reject them through the scores of TB or TO.

4. Conclusions

In this paper, we propose to leverage speaker information into
the keyword spotting system to tackle personalized keyword
spotting tasks. Through proposed multi-task learning and task
adaptation, our system can adapt to personalized tasks. Exten-
sive experiments show that leveraging speaker information re-
duces false alarm and rejection rates significantly in personal-
ized and realistic keyword spotting scenarios.

[1]

[2]

[3

=

[4

=

[5]

[6

=

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

5. References

A. Gruenstein, R. Alvarez, C. Thornton, and M. Ghodrat, “A cas-
cade architecture for keyword spotting on mobile devices,” arXiv
preprint arXiv:1712.03603, 2017.

R. Tang and J. Lin, “Deep residual learning for small-footprint
keyword spotting,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2018.

S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim,
and S. Ha, “Temporal convolution for real-time keyword spotting
on mobile devices,” in Proceedings of the INTERSPEECH, 2019.

S. Mittermaier, L. Kiirzinger, B. Waschneck, and G. Rigoll,
“Small-footprint keyword spotting on raw audio data with sinc-
convolutions,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2020.

P. Zhang and X. Zhang, “Deep template matching for small-
footprint and configurable keyword spotting.” in Proceedings of
the INTERSPEECH, 2020.

B. Zhang, W. Li, Q. Li, W. Zhuang, X. Chu, and Y. Wang, “Au-
tokws: Keyword spotting with differentiable architecture search,”
in Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2021.

B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted Residual
Learning for Efficient Keyword Spotting,” in Proceedings of the
INTERSPEECH, 2021.

Y. Yuan, C.-C. Leung, L. Xie, H. Chen, B. Ma, and H. Li,
“Learning acoustic word embeddings with temporal context for
query-by-example speech search,” in Proceedings of the INTER-
SPEECH, 2018.

B. Kim, M. Lee, J. Lee, Y. Kim, and K. Hwang, “Query-by-
example on-device keyword spotting,” in 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 2019.

J. Huang, W. Gharbieh, H. S. Shim, and E. Kim, “Query-by-
example keyword spotting system using multi-head attention and
soft-triple loss,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).

P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” CoRR, vol. abs/1804.03209, 2018.

M. Xu and X.-L. Zhang, “Depthwise separable convolutional
resnet with squeeze-and-excitation blocks for small-footprint key-
word spotting,” in Proceedings of the INTERSPEECH, 2020.

D. B. Paul and J. M. Baker, “The design for the wall street journal-
based CSR corpus,” in ICSLP. ISCA, 1992.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015.

D. Belli, D. Das, B. Major, and F. Porikli, “A personalized bench-
mark for face anti-spoofing,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV)
Workshops, 2022.

J. S. Chung, J. Huh, S. Mun, M. Lee, H. S. Heo, S. Choe, C. Ham,
S. Jung, B.-J. Lee, and I. Han, “In defence of metric learning
for speaker recognition,” in Proceedings of the INTERSPEECH,
2020.

R. Caruana, “Multitask learning: A knowledge-based source of
inductive bias,” in International Conference on Machine Learning
(ICML), 1993.

J. Baxter, “A bayesian/information theoretic model of learning
to learn via multiple task sampling,” Machine learning, vol. 28,
no. 1, pp. 7-39, 1997.

M. Kanakis, D. Bruggemann, S. Saha, S. Georgoulis, A. Obukhov,
and L. V. Gool, “Reparameterizing convolutions for incremental
multi-task learning without task interference,” in Proceedings of
the European Conference on Computer Vision (ECCV). Springer,
2020.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

G. Sun, T. Probst, D. P. Paudel, N. Popovié, M. Kanakis, J. Patel,
D. Dai, and L. Van Gool, “Task switching network for multi-task
learning,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2021.

S. Yun, J. Cho, J. Eum, W. Chang, and K. Hwang, “An end-to-
end text-independent speaker verification framework with a key-
word adversarial network,” in Proceedings of the INTERSPEECH,
2019.

W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface:
Deep hypersphere embedding for face recognition,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

J. Liu, L. Song, and Y. Qin, “Prototype rectification for few-shot
learning,” in Proceedings of the European Conference on Com-
puter Vision (ECCV). Springer, 2020.

R. Kumar, V. Yeruva, and S. Ganapathy, “On convolutional
Istm modeling for joint wake-word detection and text depen-
dent speaker verification.” in Proceedings of the INTERSPEECH,
2018.

M. Jung, Y. Jung, J. Goo, and H. Kim, “Multi-task network for
noise-robust keyword spotting and speaker verification using ctc-
based soft vad and global query attention,” in Proceedings of the
INTERSPEECH, 2020.

0. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and
S. Laurenzo, “Streaming keyword spotting on mobile devices,” in
Proceedings of the INTERSPEECH, 2020.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

	1 Introduction
	2 Method
	2.1 Multi-task learning for personalized keyword spotting
	2.2 Task-specific scoring functions for TB- and TO-KWS

	3 Experiments
	3.1 Experimental Setup
	3.2 Ablation studies on Google Speech Commands
	3.3 Experiments on the realistic scenario

	4 Conclusions
	5 References

