arXiv:2206.15427v2 [eess. AS] 3 Aug 2022

Few-Shot Cross-Lingual TTS Using Transferable Phoneme Embedding

Wei-Ping Huang", Po-Chun Chen?, Sung-Feng Huang', Hung-yi Lee !

!Graduate Institute of Communication Engineering, National Taiwan University
2College of Electrical Engineering and Computer Science, National Taiwan University
{pb07201054, b07901062, £06942045, hungyilee}@ntu.edu.tw

Abstract

This paper studies a transferable phoneme embedding frame-
work that aims to deal with the cross-lingual text-to-speech
(TTS) problem under the few-shot setting. Transfer learning
is a common approach when it comes to few-shot learning
since training from scratch on few-shot training data is bound
to overfit. Still, we find that the naive transfer learning ap-
proach fails to adapt to unseen languages under extremely few-
shot settings, where less than 8 minutes of data is provided.
We deal with the problem by proposing a framework that con-
sists of a phoneme-based TTS model and a codebook module to
project phonemes from different languages into a learned latent
space. Furthermore, by utilizing phoneme-level averaged self-
supervised learned features, we effectively improve the quality
of synthesized speeches. Experiments show that using 4 utter-
ances, which is about 30 seconds of data, is enough to synthe-
size intelligible speech when adapting to an unseen language
using our framework.

Index Terms: few-shot, speech synthesis, transfer learning,
cross-lingual, low-resource language, self-supervised features

1. Introduction

Recently proposed TTS models based on deep learning tech-
niques [} 2, 3 4] are capable of synthesizing natural, human-
like speech. However, training end-to-end TTS systems re-
quires large quantities of text-audio paired data and high-quality
recordings; thus, data efficiency is a major challenge when de-
veloping advanced TTS systems for low-resource languages.
Transfer learning is a common approach when dealing with
data efficiency problems. By training on rich-resource lan-
guages then fine-tuning on the unseen target language, the
model benefits from cross-lingual information and improved
data efficiency when adapting to the new language. A recent
work from Microsoft [S] shows that multilingual training on
50 languages with a balanced data sampling strategy enables
the model to adapt to a new language using only 6 minutes
of paired data. Input linguistic features also play an important
role in cross-lingual TTS. Many researches leverage common
linguistic features across multiple languages to achieve cross-
lingual knowledge-sharing. [0l 7, 8} 9] use the combination of
phonological features (PFs) and phonemes as inputs for multi-
lingual neural TTS models and show improvements in intelligi-
bility across both seen and unseen languages. [10]] utilizes Inter-
national Phonetic Alphabet (IPA)[11] and an automatic speech
recognition (ASR) system to build a unified symbol space and a
cross-lingual phoneme mapping, respectively. Unicode-bytes-
based models have also been proposed [12| [13]], which create a
unified input space by encoding input texts in UTF-8 and treat-
ing each byte as a token. Some works introduce techniques
beyond basic transfer learning. For example, Lrspeech[14] uses
a high-resource language to bootstrap ASR and TTS systems

for the low-resource language and leverages additional unpaired
text and speech data to boost the performances of both systems.

While a variety of approaches have been proposed, meth-
ods that try to achieve cross-lingual knowledge-sharing through
a unified input space still have some underlying issues. Us-
ing phonological features or IPA allows the low-resource lan-
guage to leverage meaningful knowledge from rich-resource
languages. However, these approaches require linguistic exper-
tise, which can be quite unfeasible for dialects or minority lan-
guages. While using Unicode-bytes-based input methods by-
passes the need for extra data and knowledge, transfer learn-
ing of phonological information cannot be achieved as bytes
only encode typographical relations. To reduce the need for ex-
tra phonological knowledge, we propose learning a meaningful
unified latent space for phonemes as a solution.

In this paper, we introduce few-shot cross-lingual adapta-
tion using transferable phoneme embedding. We first pre-train
a TTS model by leveraging data from high-resource (source)
languages and then try to adapt it to low-resource (target) lan-
guages. To better transfer the cross-lingual knowledge from the
source languages and tackle input space mismatch across lan-
guages, we propose a codebook module as shown in Fig [T.
The module utilizes speech representations extracted from self-
supervised learned models to generate a better phoneme initial-
ization for the target language. Compared to the baseline, our
method generates more intelligible and natural speeches. Fur-
thermore, experiments show that our method can produce intel-
ligible speech on unseen language even with only 4 utterances,
which is about 30 seconds of utterances from the low-resource
target language. In comparison, the baseline requires more than
10 times the amount of data to generate intelligible speech.

2. Few-Shot Learning

Under the few-shot learning setting, we use tasks to evaluate a
model at test time. A task contains k training data and q test-
ing data. The model learns from the k training data and is later
evaluated on the ¢ testing data. We call this a k-shot task with ¢
queries. Our work deals with few-shot learning on cross-lingual
TTS, where the testing tasks consist of data from unseen lan-
guages, and the goal is to learn a TTS model for the unseen
language using only few-shot training data. We focus on learn-
ing one language at a time, meaning all data in a task belong to
the same language.

3. Method

We propose a novel transfer learning framework for few-shot
cross-lingual adaptation on TTS by utilizing a better phoneme
embedding initialization. We illustrate the overall framework
in Fig[[] We first provide basic settings in Sec[3-1] then intro-
duce the baseline method in Sec [3.2] and finally describe our
proposed method in Sec[3:3]
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trainable parts. n: the size of codebook, m.: the size of phoneme set of each language, dim: the dimension of speech representations,

®: matrix multiplication.

3.1. Basic Settings

We choose a modified version of FastSpeech 2[[15]] from a previ-
ous paper[16] as our TTS architecture. However, the framework
is not restricted to FastSpeech 2. For the multispeaker part, we
extract speaker embeddings from a pre-trained speaker verifica-
tion model. The speaker embeddings are then added to the in-
puts of both the variance adaptor and the decoder of FastSpeech
2. Fig[Ih shows the architecture of the modified FastSpeech
2. In addition to text-speech paired data, our method requires
phoneme boundaries, which are already provided since they are
needed for training FastSpeech 2. Note that under the few-shot
setting, phoneme boundaries can still be manually aligned or
forced aligned without too much labeling cost, so our frame-
work can still be easily applied to other TTS architectures.

3.2. Baseline: Multilingual Training

For the baseline method, we train the TTS model on multiple
languages together, then fine-tune the model on data from un-
seen languages. Since the TTS model is trained on multiple
different languages, each with its own unique phoneme set, we
use a randomly initialized language-dependent phoneme em-
bedding table for each language. When testing, we also have
to randomly initialize a phoneme embedding table for the un-
seen target language.

3.3. Proposed: Phoneme Embedding Transfer

When adapting to an unseen language using the baseline
method, the encoder, the variance adaptor, and the decoder part
of the model can be transferred. However, the embedding layer
part has to be re-initialized, as mentioned in Section @ We
introduce a novel codebook module to project phonemes from
different languages into a unified latent space and generate em-
bedding tables. Our design is therefore capable of achieving
phoneme-level knowledge transfer across multiple languages
by sharing a common latent space.

3.3.1. Phoneme Query Extraction

To project phonemes from different languages into a unified
latent space, we first extract phoneme queries from audios as

shown in Fig[Tk. For every distinct phoneme that appeared in
an audio, we average frame-level speech representation vectors
belonging to that phoneme according to its boundaries and take
the result as a temporary representation of that phoneme. For
multiple audios, we average all temporary representations of
the same phonemes again to get the final phoneme queries. For
phonemes not appeared at all, we set them to zero vectors. Note
that the process works regardless the phoneme has or hasn’t
been seen before. Since this is a general framework, it is pos-
sible to incorporate any kind of speech representation. Thus,
we consider several different kinds of representations in this
paper, such as Mel-spectrograms, or representations extracted
from self-supervised learning (SSL) models such as hubert[17],
wav2vec 2.0[18]], and XLSR-53[19].

3.3.2. Codebook Module

The codebook module consists of phoneme query extraction
and an attention module with learnable keys and values as
shown in Fig[Th. We denote learnable keys and values as Keys
and Codes. Phoneme queries produced in the previous step are
inputted as queries of the attention module. We apply scaled
dot-product attention[20]. We expect Keys to capture the pat-
terns in phoneme queries, and Codes to construct a unified la-
tent space shared across different languages. Codes can be
viewed as a phoneme embedding basis of the latent space for
all phonemes.

3.3.3. Training and Fine-tuning

In a single training step, every batch contains data from a single
language. We then split the batch into two groups. Speech rep-
resentations from one group are passed through the codebook
module to generate a phoneme embedding table. The training
loss is calculated using the embedding table and the data from
the other group.

When adapting to an unseen language, the only difference
between our method and the baseline method is the phoneme
embedding initialization stage. We generate a phoneme embed-
ding table using the few-shot training data, and take the result as
the initialization instead of randomly initializing it. The code-
book module is used to generate the phoneme embedding table



at the beginning and is ignored at the fine-tuning stage.

4. Dataset

We use Mandarin, French, German, Japanese, and Korean in
our experiments. Japanese and German are chosen for testing
and the other 4 languages for training. We use LibriTTS[21]
train-clean-100 subset for English (en), AISHELL-3[22] for
Mandarin (zh), GlobalPhone[23] for French (fr), CSS10[24]
for German (de) and Korean (ko), and JSUT[235] for Japanese
(jp). We use Montreal Forced Aligner[26] to generate phoneme
boundaries, and every language is independently aligned with
their own phoneme set.

5. Experiments
5.1. Training setup

We split 10% of the data of each language for validation. Dur-
ing the training stage, we extract 40 samples from the same
language for each batch. 32 samples are used to generate the
phoneme embedding table, while the remaining 8 samples are
used to calculate the loss. We split the samples in such a way
that any phoneme that appears in the remaining 8 samples also
appears at least once in the 32 samples. This phoneme coverage
condition ensures that embeddings used at the training step are
meaningful since the phoneme queries are only meaningful for
phonemes that appeared in those 32 samples. The parameters
are trained using Adam optimizer[27|] with an initial learning
rate of 0.001 for 50K iterations. Warmup for 4K iterations and
exponential learning rate decay is applied. For the codebook
module, the codebook size is set to 128, and we use multi-
head attention[20]] with 4 attention heads, each with 64-dim
Codes. The dimension of the embedding table of FastSpeech
2 is set to 256 to match the output from the codebook mod-
ule. We use MelGAN[28] vocoder from a pre-trained check-
point released by the MelGAN’s authors to synthesize audios
from Mel-spectrograms for all experiments.

5.2. Few-Shot Language Adaptation

For few-shot language adaptation, we test on two dissimilar
languages: Japanese and German. We first find the minimum
amount of data required for FastSpeech 2 baseline adaptation.
‘We find that 64 shots, which is about 8 minutes of audio data,
is the minimum amount of data required to fine-tune the mul-
tilingual baseline model to produce intelligible speech. Since
we expect to push our model to the limit, we test our model
under 4, 16, and 64-shot settings. The extreme 4-shot setting
is very challenging since it contains only about 30 seconds of
data. We compare models trained with features from the 24th
layer of hubert-large, Mel-spectrogram features, and the base-
line method. The ground truth audios are also evaluated for
reference. Ground truth audios are first transformed into Mel-
spectrograms and then resynthesized back to audios to show the
influence of the vocoder. During testing, the speaker embed-
dings are extracted from the few-shot training data of each task.

We use Character Error Rate (CER) and Mean of Opin-
ion Score test (MOS) as our evaluation metrics. Synthesized
recordings are sent to Azure Speech-To-Text to get CER as
a large-scale intelligibility metric. CER is averaged over 20
tasks to reduce the performance variance since only 30 sec-
onds of training data is used in the most extreme case. Each
task contains 64 queries. We construct the tasks in such a way
that any phoneme that appears in the 64 queries also appears

Table 1: CERs[%] of recordings produced by different models
under few-shot settings.

Lang. Shots GT  Baseline Mel Hubert
4 81.27 4451  25.26
jp 16 16.52 48.61 3257  21.19
64 28.41 25.30 18.86
4 76.19 51.14  27.16
de 16 6.79 56.52 39.87 18.94
64 32.55 30.08 15.11

Table 2: MOS of recordings produced by different models under
Sfew-shot settings.

Lang. Shots GT Baseline Mel Hubert

4 - 221 280
jp 16 432 - 279 3.01
64 297 328 342
4 - 183 237
de 16 3.5 - 224 261
64 232 246 272

at least once in the few-shot training set. This way, we can
ensure all phonemes used in the queries have a corresponding
trained phoneme embedding. For the Mean of Opinion Score
(MOS) test, we randomly sample 20 different sentences from
all queries. Each sentence is rated by at least 5 individuals, and
over 40 individuals are invited for both languages. The baseline
method fails to produce intelligible speech under the 4-shot and
16-shot settings, so we exclude them from the MOS test. CER
and MOS results are summarized in Table [Tl and Table 2l Hu-
bert represents the model trained with features from the 24th
layer of hubert-large, and GT represents ground truth audios
resynthesized by the vocoder.

Although our framework consistently achieves a higher nat-
uralness score than other baselines, the overall score is low due
to the few-shot setting. Some Japanese audios have been re-
ported to sound like Korean, and some audios have unnatural
intonation. Nevertheless, by using Mel-spectrogram features
and the codebook module, our method outperforms the baseline
under few-shot settings, especially in the 4-shot and 16-shot cat-
egories, where the baseline model fails to produce intelligible
speech. Furthermore, by using SSL features, the performance
can be further improved. This suggests that transfer learning on
phoneme embeddings improves the model’s ability to general-
ize to different languages, and the model does indeed capture
more shared knowledge between multiple languages.

5.3. Feature Selection

Since what we proposed is a general framework, it is possible to
incorporate any kind of speech representation. Thus, we test our
framework on several different extractors. We choose 4 differ-
ent feature extractors: Mel-spectrogram converter, hubert-large,
wav2vec 2.0-large, and XLSR-53. For SSL models with multi-
ple layers, we test on all 24 layers of each model. Both hubert-
large and XLLSR-53 are SSL models built on the wav2vec 2.0 ar-
chitecture. Hubert-large and wav2vec 2.0-large are both trained
on English, but with different training objectives. XLSR-53 has
the same training objective as wav2vec 2.0-large, but is trained
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Figure 2: CERs of recordings produced by different feature extractors. Top: Japanese. Bottom: German.

on multiple languages.

Since there are dozens of models to evaluate, we only use
CER as the evaluation metric. Each reported CER is averaged
over 5 tasks, where each task contains 64 queries for CER test-
ing. We use 16-shots for each task to show the transferabil-
ity gap between the baseline method and our proposed frame-
work since the baseline fails to synthesize intelligible speech
under this setting. Results are summarized in Figure 2} We
have also conducted the same experiment under the 64-shot set-
ting. While the performance gap between the baseline method
and our framework is narrower under the 64-shot setting, it still
shows a similar trend as the 16-shot experiment. However, the
result is not shown due to the space limit.

Most layers of SSL features outperform Mel-spectrogram
features, and using Mel-spectrogram features is better than the
baseline method. In general, XLSR-53 performs slightly bet-
ter than wav2vec2.0-large, indicating that multilingual training
is beneficial to multilingual tasks since XLSR-53 is built on
wav2vec2.0 and trained on multiple languages. Hubert-large
performs on par with XLSR-53 in most layers; however, its 24th
layer shows an outstanding ability to extract features adaptable
to different languages. We also observe that performances tend
to heavily deteriorate at the last few layers for all three models,
except the 24th layer of hubert-large. The exact reason is left
unexplored.

Note that using features from some layers results in a worse
error rate than the baseline method. We find that models using
features extracted from those particular layers failed to learn the
training languages during the training phase. From our exper-
iments, we can see that the performance varies from layer to
layer; therefore, layer selection should also be considered. Ex-
periments show that under our proposed framework, features
extracted from the 24th layer of hubert-large perform the best
among all layers.

5.4. Phoneme Mapping Discovery

Inspired by [10], we study what the codebook module has
learned by analyzing its attention. First, we choose 256 sen-
tences from every language in such a way that all phonemes
appear at least once. Then, we generate the phoneme embed-
ding table from them and extract the attention weights from the
codebook module. For any two distinct phonemes (which may
come from different languages), cosine similarity is calculated

Table 3: Top-5 phoneme mapping discoveries of 10 en
phonemes. A phoneme is marked blue if it shares the same IPA
with the source phoneme.

Source  IPA Top-5 closest phonemes
en-AAQ a de-al, de-&1, zh-al, zh-a4, de-O0
en-AO1 b} de-00, de-O1, jp-w, ko-wv, fr-O
en-CH i) de-J, zh-ch, zh-c, zh-q, ko-ch
en-D d de-d, de-t, jp-d, ko-t0, ko-cO
en-EY2 er ko-we, zh-ei3, zh-ei2, de-e0, jp-e
en-M m de-m, jp-m, fr-M, zh-m, ko-mm
en-OW2  ouv  zh-ou2, zh-ou3, de-UQ, de-Ul, zh-oud
en-S S Jp-sh, de-s, ko-ss, zh-s, fr-S
en-TH 0 Jp-z, zh-z, zh-f, de-f, jp-u
en-Y j de-j, jp-ry, ko-ii, de-10, jp-i

between their attention weights from 4 attention heads and av-
eraged as the final phoneme mapping score. If two phonemes
share similar attention weights among the attention heads, the
score will be high, and vice versa.

For each phoneme, we list the top-5 phonemes from dif-
ferent languages with the highest phoneme mapping scores and
manually map them onto the International Phonetic Alphabets
(IPA). Partial results of en phonemes are shown in TableEI Even
in the mismatched cases, their corresponding IPA symbols still
sound very alike. For example, ko-ii, de-10, and jp-i all sound
like ee, as in meet. There are also some failed cases, such as en-
TH. We find that the other five languages lack phonemes that
correspond to ’0’ in IPA, and therefore don’t share the same
IPA as en-TH. Intuitive mappings indicate that our framework
can indeed learn a unified phoneme latent space successfully.

6. Conclusions

In this paper, we propose a framework for few-shot cross-
lingual adaptation on text-to-speech. By learning a unified
phoneme latent space using SSL representations, the model can
adapt to an unseen language with only 30 seconds of data. Dif-
ferent experiment settings show that our method outperforms
the naive transfer learning baseline by a large margin in terms
of performance and data efficiency.
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