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Abstract

Speaker recognition systems based on deep speaker embed-
dings have achieved significant performance in controlled con-
ditions according to the results obtained for early NIST SRE
(Speaker Recognition Evaluation) datasets. From the practical
point of view, taking into account the increased interest in vir-
tual assistants (such as Amazon Alexa, Google Home, Apple
Siri, etc.), speaker verification on short utterances in uncon-
trolled noisy environment conditions is one of the most chal-
lenging and highly demanded tasks. This paper presents ap-
proaches aimed to achieve two goals: a) improve the quality
of far-field speaker verification systems in the presence of envi-
ronmental noise, reverberation and b) reduce the system quality
degradation for short utterances. For these purposes, we consid-
ered deep neural network architectures based on TDNN (Time
Delay Neural Network) and ResNet (Residual Neural Network)
blocks. We experimented with state-of-the-art embedding ex-
tractors and their training procedures. Obtained results confirm
that ResNet architectures outperform the standard x-vector ap-
proach in terms of speaker verification quality for both long-
duration and short-duration utterances. We also investigate the
impact of speech activity detector, different scoring models,
adaptation and score normalization techniques. The experimen-
tal results are presented for publicly available data and verifi-
cation protocols for the VoxCelebl, VoxCeleb2, and VOiCES
datasets.

1. Introduction

The increasing interest in reliable means of guarding and re-
stricting access to informational resources requires the devel-
opment of new authentication methods. Biometric recognition
remains one of the priority research areas in this field.

Today Automatic Speaker Verification (ASV) systems are
a subject of increased interest of both state law enforcement
agencies and commercial structures due to their reliability, con-
venience, low cost and provided security. Moreover, such sys-
tems can operate on different input-output devices and commu-
nication channels (landline, mobile telephone networks, IP tele-
phony, etc.).

The latest results obtained for the telephone part of NIST
SRE (National Institute of Standards and Technology Speaker
Recognition Evaluation) datasets demonstrated that Speaker
Recognition (SR) systems based on deep speaker embeddings

had achieved significant results in controlled conditions [1].
However, speaker verification on short utterances is still one
of the more challenging tasks in the text-independent speaker
recognition field.

Taking into account the increased interest in virtual assis-
tants (such as Amazon Alexa, Google Home, Apple Siri, etc.),
the demand for far-field speaker verification on short utterances
(such as wake-up words and short commands) in uncontrolled
noisy environment conditions is very high.

Such factors as channel mismatch, environmental noise and
room reverberation can dramatically decrease the quality of
these systems. This was confirmed by the VOiICES from a Dis-
tance challenge 2019 (VOiCES 2019 challenge) [2 13] aimed
to support research in the area of speaker recognition and auto-
matic speech recognition with the special focus on single chan-
nel far-field audio under noisy conditions.

This paper presents approaches aimed to achieve two goals
simultaneously: to improve the performance of far-field speaker
verification systems in the presence of environmental noise and
reverberation, and to reduce the system quality degradation for
short utterances. In order to achieve these goals, we consider
state-of-the-art deep neural network architectures and its appli-
cability for speaker verification task in uncontrolled environ-
mental conditions on publicly available data and verification
protocols for the VoxCelebl, VoxCeleb2, and VOiICES datasets.

We experimented with deep speaker embedding extractors
based on TDNN (Time Delay Neural Network) [4] and ResNet
(Residual Neural Network) [} I5] blocks and different train-
ing objectives. A detailed description of the extractors is pre-
sented in Section @] Special attention was paid to the impact
of deep neural network speech activity detector presented in@
that is more robust against noise and other distortions compared
to classical energy-based methods. In this paper, we also an-
alyzed different scoring models, adaptation and score normal-
ization techniques and estimated their contribution to the final
system performance.

All obtained experimental results and their comparison with
the standard x-vector approach are considered in Section[5] The
proposed systems performance is presented in terms of EER
(Equal Error Rate) and minDCF (Minimum Detection Cost
Function).



2. Related work

Implementation of deep learning approaches for speaker repre-
sentation undoubtedly lets the speaker recognition field reach
new levels of its evolution. Latest trends in the deep learning
area applied to the speaker recognition problem form new state-
of-the-art SR systems.

2.1. DNN speaker embeddings

Deep neural network based speaker embedding extractors sub-
stantially improve the performance of speaker ID systems in
challenging conditions. TDNN based x-vector system sig-
nificantly outperformed conventional i-vector based system in
terms of speaker recognition performance and hence became
new baseline for text-independent SR task [4]]. The authors pro-
posed an end-to-end system that learns to classify speakers and
produce representative deep speaker embeddings able to gen-
eralize well to speakers that have not been seen in the training
data. The key feature of the proposed architecture was a statis-
tics pooling layer designed to accumulate speaker information
from the whole speech segment into one — x-vector. Extracted
from an intermediate layer of the neural network which comes
after the statistics pooling layer, x-vectors demonstrate prop-
erties similar to those of i-vectors from total variability space,
which makes it possible to effectively use them in the standard
Linear Discriminant Analysis (LDA) followed by Probabilistic
Linear Discriminant Analysis (PLDA) [6] backend.

Studies such as [7, (8] follow this deep speaker representa-
tion direction with improvement of SR performance. For exam-
ple, the system from [7|] proposed by JHU team for NIST SRE
2018 used the extended version of TDNN based architecture —
E-TDNN. The differences include an additional TDNN layer
with wider temporal context and unit context TDNN layers be-
tween wide context TDNN layers.

Paper [8] proposes to use an alternative training objective —
A-Softmax (Angular Margin Softmax) activation [9]] — instead
of the standard Softmax to train a so called c-vector based sys-
tem. The main characteristics of the proposed architecture were
residual blocks [10] built using TDNN architecture and MFEM
(Max-Feature-Map) activations [11] used instead of ReLU.

2.2. Speaker embeddings for short utterances

Short utterances and far-field microphones are new challeng-
ing conditions for the SR task. Recent papers [12| 13| devoted
to this problem demonstrate that substantial improvements can
be achieved by deeper architectures such as residual networks
[10]] and by more accurate task-oriented augmentation of train-
ing data.

An analysis of the degradation of speaker verification qual-
ity at short intervals on the VoxCeleb1 dataset was carried out
in [12} [13]. Authors of [12]] demonstrated impressive results
for ”in the wild” scenario. They proposed a modified residual
network with a NetVLAD/GhostVLAD layer for feature aggre-
gation along the temporal axis. This layer is aimed to apply self-
attentive mechanism with learnable dictionary encoding [14].

An alternative approach for feature aggregation over time in
a residual network is discussed in [[13]. The authors proposed
a simple and elegant Time-Distributed Voting (TDV) method.
It demonstrates significant quality improvement for short utter-
ances in comparison with NetVLAD solution. However, it does
not perform so well on longer duration utterances.

2.3. Speaker embeddings for distant speaker recognition

Recent progress and growing popularity of virtual assistants in
smart home systems and smart devices have led to higher re-
quirements not only for speech recognition but for the reliabil-
ity of the biometric systems under far-field conditions as well.
In 2019 the VOICES from a Distance Challenge [3] was organ-
ised to support the research in the area of speaker recognition
and automatic speech recognition with the special focus on sin-
gle channel distant/far-field audio under noisy conditions. The
challenge was based on the freely-available Voices Obscured in
Complex Environmental Settings (VOiCES) corpus [2] released
several months before. Almost all systems proposed during the
challenge exploited different architectures of neural networks
to obtain deep speaker representations. To reduce the effects
of room reverberation and various kinds of distortions, some
researches use more accurate task-oriented data augmentation
[L5L 164 117, [18] and speech enhancement methods [16] based
on single-channel weighted prediction error (WPE) [19].

2.4. Loss function for speaker embedding learning

Over the past few years, in the face recognition field, many
loss functions have been proposed for the effective training
of embedding extractors: A-Softmax [9], AM-Softmax (Ad-
ditive Margin Softmax) [20]], AAM-Softmax (Additive Angu-
lar Margin Softmax) [21], D-Softmax (Dissected Softmax) [22]
based loss functions. Recent studies in speaker verification
field demonstrated impressive performance of the AM-Softmax
based training loss function for speaker ID systems [1} 5].
Thus in this work, we mainly focused on the well-performing
AM-Softmax based loss function and additionally experimented
with D-softmax loss.

AM-Softmax based loss function is defined as follows:
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where cos (0y,) = wy i/ (||[wy,| [Ifi|]), wy, is the weight
vector of class y;, and f; is the input to the layer ¢. Parame-
ter s is an adjustable scale factor and m is the penalty margin.
AM-Softmax loss allows to compare speaker embeddings by
cosine distance.

D-Softmax based loss is a new loss function that was pre-
sented recently in [22] as an effective objective for face embed-
ding learning. Authors of [22] speculate that the intra- and inter-
class objectives in the categorical cross entropy loss are entan-
gled, therefore a well-optimized inter-class objective leads to
relaxation on the intra-class objective, and vice versa. The main
idea of D-Softmax based loss is to dissect the cross entropy loss
into independent intra- and inter-class objective.

D-Softmax based loss function is defined as follows:
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where € and s are customizable parameters.



3. Description of the system components
3.1. Feature extraction

For all our embedding extractors we used MFCC (Mel Fre-
quency Cepstral Coefficients) and MFB (Log Mel-filter Bank
Energies) from 16 kHz raw input signals (standard Kaldi recipe)
as low-level features:

e 40 dimensional MFCC extracted from the raw signal
with 25ms frame-length and 15ms overlap;

o 80 dimensional MFB extracted from the raw signal with
25ms frame-length and 15ms overlap.

For extracted voice features we applied 2 different postpro-
cessing techniques depending on the type of embedding extrac-
tor used afterwards:

e local CMN-normalization (Cepstral Mean Normaliza-
tion) over a 3-second sliding window;

e local CMN-normalization over a 3-second sliding win-
dow and global CMVN-normalization (Cepstral Mean
and Variance Normalization) over the whole utterance.

For our neural network based VAD solution we used MFCC
features extracted from signal downsampled to 8 kHz. The de-
tailed description is presented below.

3.2. Voice activity detection

Besides energy-based VAD (Voice Activity Detector) from
Kaldi Toolkit and ASR based VAD [23] in this work we in-
vestigated our new neural network based VAD.

This work adapts the U-net [24] architecture to the task of
speech activity detection. Such architecture was originally in-
troduced in biomedical imaging for semantic segmentation in
order to improve precision and localization of microscopic im-
ages. It builds upon the fully convolutional network and is sim-
ilar to the deconvolutional network In a deconvolutional net-
work, a stack of convolutional layers — where each layer halves
the size of the image but doubles the number of channels — en-
codes the image into a small and deep representation. That en-
coding is then decoded to the original size of the image by a
stack of upsampling layers.

Our U-net based VAD is built on a modified and reduced
version of the original architecture. Figure|[T]schematically out-
lines the proposed version of neural network. It takes 8kHz 23-
dimensional MFCC as input features. Our VAD solution works
with a half overlapping 2.56 sec sliding window and a 1.28sec
overlap. It should be noted that each MFCC vector is extracted
for 25ms frame every 20ms. This results in 128 x 23 input
features size for the neural network.

The goal of the neural network is to predict the 128 dimen-
sional speech activity mask for every 2.56sec speech segment.
Thus the resolution of the proposed speech detector is equal to
20ms. The final decoder layer is a sigmoid activated global av-
erage pooling layer. Its output is used as the speech activity
mask.

The U-net is trained on artificially augmented data with
speech labels obtained from the oracle handmade segmentation
or using oracle ASR based VAD processing of clean version of
the data.

To train the network, we used a combination of binary cross
entropy loss function and dice loss [25]. The latter aims to max-
imize the dice coefficient between predicted binary segmenta-
tion set p; € P and ground truth binary labels set g; € G:
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Figure 1: U-net based VAD architecture

3.3. Embedding extractors

We considered deep speaker embedding extractor with the most
popular residual network architecture named ResNet34 and a
deeper ResNet50 network [10].

Table[T] describes ResNet34 architecture we used. The key
block of ResNet34 is ResNetBlock. It consists of two con-
volutional layers with 3 x 3 filters. ReLU activation follows
each convolutional layer, and Maxout activation is used for em-
bedding extraction. We apply batch normalization technique to
stabilize and speed up network convergence. The settings for
ResNet34 embedding extractors training were borrowed from
[S).

More complex ResNet50 architecture contains three convo-
lutional layers in ResNetBlock with 1x 1, 3x 3, and 1x 1 masks.
Additionally, we used SE (Squeeze-and-Excitation) blocks [26]]
in each ResNetBlock.

3.4. Backend

In this work, we used Cosine Similarity (CS) and Cosine Simi-
larity Metric Learning (CSML) for scoring. Additionally, adap-
tation and score normalization were applied.

3.4.1. CSand CSML

We used CS to distinguish speaker embeddings:

T
S(x1,%z) = —L X2 )
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Table 1: Embedding extractor based on ResNet34 architecture
configuration.

[ layername | structure [ output
Input 80 MFB log-energy 80 x 200 x 1
Conv2D-1 3 x 3, stride 1 80 x 200 x 32
3 x 3,32 .
ResNetBlock-1 x 3,stride 1 | 80 x 200 x 32
3% 3,32
ResNetBlock-2 3x3,64 X 4, stride 2 | 40 x 100 x 64
3% 3,64
3 x 3,128 .
ResNetBlock-3 3 % 3,128 X 6, stride 2 | 20 x 50 x 128
3 % 3,256 .
ResNetBlock-4 3 % 3.256 x 3, stride 2 | 10 x 25 x 256
StatsPooling mean and std 20 x 256
Flatten - 5120
Densel embedding layer 512
Dense2 output layer Nopk

where (x1,x2) are speaker embedding vectors.

As an alternative scoring model CSML approach was used
for speaker verification. According to the original idea a linear
transformation A was learned to compute cosine distance for a
pair (x1,x2) as follows:

(AX]_ )T (AX2 )
S(x1,%2,A) = s, (&)
[Ax1[[[[Axz]|
where the transformation matrix A is upper triangular. How-
ever, unlike [27]] the triplet loss objective function was used for
A training. The metric learning was performed similar to the
way it was done in [28] using TensorFlow framework.

3.4.2. Domain adaption

In this work, we used simple domain adaptation procedure [[29]]
based on centering on in-domain set (mean speaker embedding
subtraction). The mean vector is calculated using adaptation set
in this case.

3.4.3. Score normalization

Additionally, scoring systems normalization technique from
[30] was used. For a pair (xl, xz) the normalized score can
be estimated as follows:

S(X17X2) = S(x1,%2) — 1 + S(xl,xz) — ,u27 6)

o1 02

where the mean p; and standard deviation o; are calculated
by matching x1 against impostor cohort and similarly for uo
and o2. A set of the n best scoring impostors were selected for
each embedding pair when means and standard deviations are
calculated.

4. Implementation details

Here we describe speaker recognition systems and datasets used
for their training.

4.1. Datasets

In our experiment, we used three groups of training data:

e TrainData-I includes VoxCelebl [31] (without test
data), VoxCeleb2 [32] and SITW [33] and their aug-
mented versions. Augmentation was partially performed
using standard Kaldi augmentation recipe (babble, music
and noise) using the freely available MUSAN datasets[]_-l
Reverberation was performed using the impulse re-
sponse generator based on [34]. Four different RIRs
were generated for each of 40,000 rooms with a varying
position of sources and destructors. It should be noted
that, in contrast to the original Kaldi augmentation, we
reverberated both speech and noise signals. In this case
different RIRs generated for one room were used for
speech and noise signals respectively. Thus we obtained
more realistic data augmentation. We have already used
this approach in our previous studies [[15]. Energy-based
VAD from Kaldi Toolkit was used to preprocess all sam-
ples from the database. The final database consists of
approximately 5,200,000 samples (7,562 speakers);

e TrainData-II contains VoxCeleb1Cat (without test data)
and VoxCeleb2Cat (without test data) and their aug-
mented versions. We concatenated all segments from
the same session into one file.Augmented data was gen-
erated using standard Kaldi augmentation recipe (rever-
beration, babble, music and noise) using the freely avail-
able MUSAN and RIR dataset Energy-based VAD
from Kaldi Toolkit was used to preprocess all samples
from the database. The final database consists of approx-
imately 830,000 samples (7,146 speakers);

o TrainData-III is similar to TrainData-I, but ASR based
VAD [23] was used to preprocess the examples from the
database instead of the energy-based VAD;

e TrainData-IV is similar to TrainData-II, but it contains
only VoxCeleb2Cat (without test data) and its augmented
version. The final database consists of approximately
727,800 samples (5,994 speakers).

4.2. Extractors

ResNet34-MFB80-AM-TrainData-I: This system is based on
ResNet34 embedding extractor.The key feature of this extractor
is high dimensional input features (80 dimensional MFB).Local
CMN- and global CMVN-normalization are used to normalize
extracted MFB features. This extractor was trained on short
segments with the fixed 2 sec length and using AM-Softmax
based loss. Parameters m and s were respectively equal to 0.2
and 30 during the whole training stage. The learning rate was
equal to 0.001 on the first two epochs, then it was decreased by
a factor of 10 for each next epoch. TrainData-I was used for
training. We trained this extractor for 4 epoch.
Xvect-FTDNN-TrainData-I: This system is based on the
factorized TDNN embedding extractor [1]. The main idea is
that TDNN pre-pooling layers of the x-vector system are re-
placed by factorized TDNN with skip connections. Factoriza-
tion of the weight matrix into two low-rank matrices, with one
of them constrained to be semi-orthogonal, helps to reduce the
number of neural network parameters. Using skip connections
allows to solve the problem of gradient vanishing and makes
training process more stable. In our speaker embedding extrac-
tor, described in more detail in [15], we slightly modified the
original skip connections and reduced the size of TDNN layers.
ResNet34-MFB80-D-TrainData-I: This extractor is sim-
ilar to ResNet34-MFB80-AM-TrainData-I, with the difference
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of using a fine-tuning procedure by means of D-Softmax loss
function.

ResNet50-SE-MFB80-AM-TrainData-I: This system is
based on ResNet50 embedding extractor with SE blocks. In-
put features, training procedure and etc. were equivalent to
ResNet34-MFB80-AM-TrainData-I system.

ResNet34-MFCC40-AM-TrainData-I: This extractor is
similar to ResNet34-MFB80-AM-TrainData-I, but uses 40 di-
mensional MFCC features as input. Local CMN- and global
CMVN-normalization are applied.

ResNet34-MFB80-AM-TrainData-II (2s): This extrac-
tor is similar to ResNet34-MFB80-AM-TrainData-I, but was
trained using TrainData-II dataset. AM-Softmax loss was used
for the training with parameter s equal to 30 during the whole
training stage and parameter m equal to 0.001 for the first epoch
and to 0.2 for the next epochs. The initial value of learning rate
was set to 0.001. The learning rate was decreased by a factor of
10 every next epoch. We trained this extractor for 4 epoch.

ResNet34-MFB80-AM-TrainData-II (1s):. This extrac-
tor is similar to ResNet34-MFB80-AM-TrainData-II, but it was
trained using only 1 sec duration chunks. Each 100 MFB
speech frames with no overlap extracted from all samples of the
TrainData-II were used for training. AM-Softmax loss was used
for training, parameter s was equal to 30 during the whole train-
ing stage, parameter m was set to 0.2 for all epochs. The learn-
ing rate was the same as in ResNet34-MFB80-AM-TrainData-II
(2s) system.

Xvect-Ext-TDNN-LSTM-TrainData-III: This extractor
is described in [15]. The system is the extended version [7]
of the original x-vector extractor, but with 9th layer replaced by
LSTM-layer with cell dimension of 512, delay in the recurrent
connections equal to -3, and both recurrent and non-recurrent
projection dimension equal to 256. The LSTM layer context
was reduced to 3. This embedding extractor was trained on
TrainData-III.

ResNet34-MFB80-AM-TrainData-IV (1s): This extrac-
tor is similar to ResNet34-MFB80-AM-TrainData-II, but it was
trained on 1 sec speech chunks obtained from TrainData-IV
dataset in the same way as it was done for ResNet34-MFB80-
AM-TrainData-II.

5. Experiments and discussion
5.1. Experimental setup

All experiments described further in this paper were performed
with the use of VoxCelebl [35] and VOICES 2019 challenge
[2113] datasets. The results are presented in terms of EER (Equal
Error Rate) and minDCF (Minimum Detection Cost Function)
for Piq, = 1072 performance metrics.

5.2. Preliminary investigation

Our first goal was to investigate SR systems performance
for the original full length testing protocols. Thus, Table 2]
demonstrates the experimental results obtained for the original
”VOICES dev”, ”VOICES eval” and ”VoxCeleb1-O cleaned”
protocols.

We experimented with factorized TDNN based x-vector,
ResNet34 and more complex ResNet50-SE networks. It should
be noted that we used VOIiCES eval part as a development
(adaptation) set for the VOiICES dev part and vice versa. For the
VoxCeleb1-O cleaned set we used a subset of 200k randomly
selected clean files from VoxCelebl and VoxCeleb2 datasets
in order to perform system adaptation and score normalization
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Figure 2: DET curves of Xvec-FTDNN-TrainData-I and

ResNet34-MFB80-AM-TrainData-1 embedding extractors for

Sfull and 2 sec duration of test utterances from VOICES (eval
set).

procedures. Top 200 of the impostor scores were used to per-
form s-normalization. In these experiments we focused on dif-
ferent VAD and backend model configurations. We also exper-
imented with the promising D-Softmax based loss function to
improve system performance in case of ResNet34-MFB80-D-
TrainData-I.

All results of the full duration experiments are presented in
Table[2]

5.3. Results analysis of the full duration experiments

Having analyzed the results obtained in[5.2] we can say that sys-
tems based on ResNet architectures outperform x-vector based
systems in all our experiments.

One should note that U-net based VAD helps to improve
the quality of systems for difficult conditions compared to the
standard Kaldi energy-based VAD and S-normalization signifi-
cantly improves the performance of all extractor types.

Our next observation is that appropriate training data prepa-
ration is an important step for system learning. Taking into
account that TrainData-I (in contrast to TrainData-II) was pre-
pared using special augmentation procedure (see Section [4.1))
to meet VOICES dataset acoustic environment conditions it ex-
pectedly shows better performance for VOiICES test protocols.
Thus comparison of ResNet34-MFB80-AM-TrainData-II and
ResNet34-MFB80-AM-TrainData-I shows that despite the fact
that both systems show good quality in various experiments, the
more task-oriented training data preparation can significantly
improve the quality of systems.

We should also note that increasing features resolution im-
proves the quality of the systems. This can be approved by the
results obtained for ResNet34-MFCC40-AM-TrainData-I and
ResNet34-MFB80-AM-TrainData-1 extractors.

From the results in Table 2] one can see that the best per-
forming system for VOICES protocols is ResNet34-MFB80-
AM-TrainData-1. It outperforms our previous best single sys-



Table 2: Results of investigated systems for VOICES (eval set), VOICES (dev set) and VoxCelebl-O (cleaned) protocols.

Embeddin tractor Settines VOICES (eval set) VOICES (dev set) VoxCeleb1-O (cleaned)
cdding extracto etings minDCF  EER, % | minDCF EER, % | minDCE  EER, %
CS backend 0.366 531 0.155 130 0.193 1.96
. +mean adapt. | 0.327 4.88 0.144 1.32 0.195 1.89
ResNet34-MFB30-AM-TrainData-I + s-norm. 0319 482 | 0.169 130 | 0.187 178
+U-net VAD | 0.300 4.52 0.157 112 0.173 1.76
CSML backend | 0.496 712 0.253 228 0363 415
. +mean adapt. | 0.426 6.03 0.234 1.99 0381 4.18
Xvect-FTDNN-TrainData-I + s-norm. 0.408 5.74 0.230 1.84 0.357 3.98
+U-net VAD | 0.390 5.81 0.242 2.00 0.366 4.48
ResNet34-MEBS0-D-TrainData-I CS backend 0419 536 0.220 2.06 0.241 212
ResNet50-SE-MFB80-AM-TrainData-1 | CS backend 0415 575 0.179 156 0222 2.07
ResNet34-MECC40-AM-TrainData-I CS backend 0.405 6.03 0.178 138 0236 214
CS backend 0.447 625 0.193 127 0.151 145
. +mean adapt. | 0.383 5.81 0.185 1.35 0.148 1.44
ResNet34-MFB80-AM-TrainData-II + s-norm. 0366 578 | 0201 142 | 0152 1.39
+U-net VAD | 0354 5.50 0.197 135 0.142 1.46
CSML backend,
Xvect-Ext-TDNN-LSTM-TrainData-III ASR VAD, 0.349 5.16 - - - -
S-norm.

tem (Xvect-Ext-TDNN-LSTM-TrainData-I) submitted to the
VOICES challenge [15].

The obtained results allow to conclude that D-Softmax
based loss training does not help to improve ResNet34-MFB80
performance. We also did not achieve any improvement by us-
ing more complex ResNet50-SE based extractor in comparison
with ResNet34. We suppose that it is caused by the more com-
plex model being overfitted in this case.

For the VoxCelebl-O (cleaned) protocol ResNet34-
MFB80-AM-TrainData-II (2s) is the top performing system. It
was trained on 2 sec speech chunks of TrainData-II dataset.

5.4. Short utterance speaker recognition

In order to compare our SR systems performance for short ut-
terances with those presented in [12}[13]] the special dataset was
generated from the VoxCeleb1 corpus according to the descrip-
tion from [12]: only files longer than 6 seconds (87010 utter-
ances) were selected. A comparison protocol was generated by
randomly sampling 100 target and 100 imposter pairs for each
speaker from a total of 1,251 speakers in VoxCelebl, resulting
in 250,048 unique comparisons. We didn’t succeed in obtain-
ing the same size protocol as in [12]] because not all speakers
had the necessary 100 target comparisons with samples longer
than 6 seconds. But since the original model proposed in [12]
is freely available, we compared it with our ResNet34-MFB80-
AM-TrainData-1V (1s) proposed above using the generated pro-
tocol. The comparison results of these models are shown in Ta-
ble[3] The experiments were carried out in the same way as in
[124[13] without using any VAD.

During our next experiments on short duration utterances,
we used the following settings:

e as enrollment samples, we used only full duration origi-
nal files;

e as test samples, we used only the first 1, 2 and 5 seconds
of speech in each file. If speech duration was less than re-
quired, we used all available speech in this file and didn’t
change the protocol. We applied CMN with a 3-second
sliding window on these segments in the following way:

using VAD segmentation we accumulated the required
amount of features, and applied CMN only to them dis-
carding information redundant for the normalization;

e fixed protocol for all durations.

Table [4] demonstrates the comparison of all the described
systems in case of different test samples duration (1 sec, 2 sec,
5 sec and full duration) for the same protocols in terms of EER.
In order to simplify the experiments and improve the repro-
ducibility of our results, we did not use normalization and U-net
based VAD for these tests.

Additionally, Fig. [2] presents DET (Detection Error
Tradeoff) curves of Xvec-FTDNN-TrainData-I and ResNet34-
MFB80-AM-TrainData-I embedding extractors for full and
2 sec duration samples from VOiCES (eval set).

5.5. Results analysis of the short utterances experiments

Taking into account the results from Table [3| obtained for mod-
ified Voxcelebl dataset we can summarize that, while the pro-
tocol generation procedure was as close as possible to that de-
scribed in [[12], our results were somewhat different but com-
parable to the ones published in [12} [13]. The observed dif-
ferences can be attributed to the differences in test protocols.
Nevertheless, synchronous testing showed significantly better
quality of the proposed model for various short durations (1 sec,
2 sec and 5 sec). It should be noted that the model proposed in
[13]] also demonstrated significantly better quality on short ut-
terances compared to the model [12]]. Unfortunately, we were
unable to test the [13] model due to its public unavailability.

Having analyzed the results presented in Table fi] we can
say that training ResNet based embedding extractors on short
utterances leads to an improvement in its performance for
shorter durations and degradation for full durations. This is
confirmed by the results of ResNet34-MFB80-AM-TrainData-1
model, trained on 1-second and 2-second segments. Thus, it is
possible to slightly improve the quality of the systems for short
durations in this way.

The results show that TDNN based x-vectors systems de-
grade more than ResNet systems on short segments test. We can



Table 3:  The results of the publicly available model from [12)] and the proposed ResNet34-MFB80-AM-TrainData-1V on the short

utterances protocol (generated from VoxCelebl ).

| Embedding extractor

[ EER, % (Is) | EER, % (25) | EER, % (55) |

Thin ResNet34 [[12]]

12.71 6.59 3.34

ResNet34-MFB80-AM-TrainData-1V (1s)

9.91 4.48 2.26

Table 4: Results of the investigated systems for VOICES (eval set), VOICES (dev set) and VoxCelebl-O (cleaned) protocols in relation

to different length of test waveform.

Embeddin tractor VOICES (eval set) VOICES (dev set) VoxCeleb1-O (cleaned)
edding extracto EER, % (1s/2s/5s/full) | EER, % (1s/2s/5s/full) | EER, % (1s/2s/5s/full)
ResNet34-MFB80-AM-TrainData-1I (2s), 16.96/10.14/7.77/6.25 8.70/3.67/1.83/1.27 6.77/2.74/1.59/1.45
CS backend
ResNet34-MFB8O0-AM-TrainData-IL(15), | 19 ¢5/14 27/12.61/11.17 | 9.70/5.07/3.23/2.63 6.87/3.18/2.11/1.99
CS backend
ResNet34-MFB80-AM-TrainData-IV (15), | 5 17,14 76/1324/10.80 | 10.13/5.15/3.27/2.46 7.13/3.54/2.23/2.09
CS backend
ResNet34-MFB80-AM-TrainData-1 (2s), 16.26/9.46/6.95/5.31 8.97/4.15/1.97/1.30 8.04/3.47/2.08/1.96
CS backend
ResNet34-MFB80-AM-TrainData-1 (1s), 16.21/10.63/9.20/8.00 | 8.43/4.35/2.57/2.06 7.51/4.03/2.60/2.57
CS backend
Xvect-FTDNN-TrainData-T (2-3s), 25.62/15.97/11.22/7.12 | 20.88/10.82/5.08/2.28 | 19.45/9.96/4.80/4.15
CSML backend
ResNet50-SE-MFB8O0-AM-TrainData-1 (2s), | |5 67,9 69/7.12/575 | 1022/4.12/2.17/1.56 8.86/3.73/2.18/2.07
CS backend

observe this effect by analysing the results for Xvect-FTDNN-
TrainData-I and ResNet34-MFB80-AM-TrainData-II (1s) sys-
tems on the VOICES (dev set) and Xvect-FTDNN-TrainData-I
and ResNet34-MFB80-AM-TrainData-II (2s) on VOICES (eval
set).

The better the acoustic conditions of the dataset are the
more visible relative performance degradation can be observed
on it. This is confirmed by the results obtained for described
x-vector and ResNet systems on VoxCelebl-O cleaned and
VOICES eval datasets.

6. Conclusion

During the VOiCES challenge we noticed that the task-oriented
training data preparation can significantly improve the qual-
ity of the final SR systems. But at the same time this can
lead to system overfitting. The results of the current work
allows to conclude that our x-vector based systems submit-
ted to the VOICES challenge are not robust for short duration
test utterances and domain mismatch conditions (for example
VoxCeleb1-O (cleaned) protocol). Obtained results confirm that
deep ResNet architectures are more robust and allow to im-
prove the quality of speaker verification for both long-duration
and short-duration utterances. Our best performing system for
VOICES protocols is ResNet34 based system built on high fre-
quency resolution MFB features. It is trained with AM-Softmax
based loss function. We should also note that utilizing the pro-
posed U-net based VAD (instead of energy based VAD), scoring
model in-domain centering and score normalization techniques
provide additional performance gains for proposed SR systems.
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