
ar
X

iv
:2

00
4.

04
09

6v
3

 [
ee

ss
.A

S]
 6

 N
ov

 2
02

0

Probabilistic embeddings for speaker diarization

Anna Silnova1, Niko Brümmer2, Johan Rohdin1,2, Themos Stafylakis2, Lukáš Burget1

1Brno University of Technology, FIT, IT4I CoE, Czechia
2Omilia - Conversational Intelligence, Athens, Greece

{isilnova,rohdin,burget}@fit.vutbr.cz, {nbrummer,tstafylakis}@omilia.com

Abstract

Speaker embeddings (x-vectors) extracted from very short seg-

ments of speech have recently been shown to give competi-

tive performance in speaker diarization. We generalize this

recipe by extracting from each speech segment, in parallel with

the x-vector, also a diagonal precision matrix, thus providing

a path for the propagation of information about the quality of

the speech segment into a PLDA scoring backend. These pre-

cisions quantify the uncertainty about what the values of the

embeddings might have been if they had been extracted from

high quality speech segments. The proposed probabilistic em-

beddings (x-vectors with precisions) are interfaced with the

PLDA model by treating the x-vectors as hidden variables and

marginalizing them out. We apply the proposed probabilistic

embeddings as input to an agglomerative hierarchical clustering

(AHC) algorithm to do diarization in the DIHARD’19 evalua-

tion set. We compute the full PLDA likelihood ‘by the book’ for

each clustering hypothesis that is considered by AHC. We do

joint discriminative training of the PLDA parameters and of the

probabilistic x-vector extractor. We demonstrate accuracy gains

relative to a baseline AHC algorithm, applied to traditional x-

vectors (without uncertainty), and which uses averaging of bi-

nary log-likelihood-ratios, rather than by-the-book scoring.

1. Introduction

We are interested in doing speaker diarization by extracting em-

beddings from very short (1.5s or shorter) speech segments, fol-

lowed by clustering of the embeddings w.r.t. speaker. To pro-

cess a speech recording for diarization, we use the following

cascade: (i) a deep neural net (DNN) to extract embeddings

from short consecutive segments of speech; (ii) a probabilistic

discriminant analysis (PLDA) backend that processes the em-

beddings to compute likelihoods for hypothesized speaker clus-

ters; (iii) agglomerative hierarchical clustering (AHC) to greed-

ily find an approximately optimal clustering. This is one of the

standard ways of doing diarization, but we propose modifica-

tions to all three stages.

Intuitively, for speaker diarization purposes, the quality of

speech segments could depend on factors like speech duration,

reverberation, microphone placement, signal-to-noise ratio and

contamination by overlapped speech. We do not propose here

to explicitly design extractors for such quality factors, but we

rely instead on the ability of DNNs to learn to extract relevant

information from the input.

By treating the embeddings as hidden variables, we derive

a mechanism to propagate the quality information, that is sup-

plied by the embedding extractor, into the scoring and cluster-

ing backend. This gives an augmented embedding extractor

that computes from each speech segment not only an x-vector,

but also a precision matrix that quantifies the uncertainty about

what the value of the x-vector might have been if it had been

extracted from a high quality speech segment. We show how to

modify both PLDA and AHC to make use of this extra informa-

tion.

We discriminatively train the new embedding extractor

jointly with the PLDA parameters, using a novel multiclass

cross-entropy criterion formed by the average log-posterior

probabilities for the correct clustering of n-tuples of embed-

dings. In this paper we use n = 8.

The setup for this work is derived from our winning submis-

sion to DIHARD’19 challenge, where x-vectors were clustered

by Bayesian HMM (BHMM) [1]. Although in this paper we

use the simpler AHC clustering, our proposed mechanisms of

quality propagation could be applied to BHMM in future.

Section 2 reviews prior work. Section 3 develops the the-

ory to marginalize over the hidden embeddings and to score the

modified PLDA backend. This sets the stage for discrimina-

tive training and AHC clustering in sections 4 and 5. Finally,

experiments and results in section 6 demonstrate the theory.1

2. Prior work

Space constraint precludes a review of the extensive literature

on speaker diarization. The focus and novelty of this paper is

the probabilistic embedding mechanism, which we place into

context relative to similar prior work.

In i-vector speaker recognition, the quality effects of du-

ration and phonetic variability were propagated into the PLDA

backend in [2, 3]. We cannot build on these works, since they re-

lied on the i-vector posterior uncertainty as defined by the gen-

erative i-vector extraction model, while the x-vector extractor

that we use here is discriminative. Our method allows propaga-

tion of more general quality factors.

In our previous work [4], we propagated scalar-valued un-

certainties extracted from i-vector/x-vector magnitudes into a

heavy-tailed PLDA backend, while the embedding extractor re-

mained as-is. Our new work is more general in the following

aspects: (i) The embedding extractor is modified and trained to

extract (ii) vector-valued uncertainty; (iii) The hidden variable,

around which the propagation hinges, is now the embedding,

rather than the speaker identity variable as in [4].

In [5] posterior probability distributions for embeddings

given images are proposed. Similar to our approach, they treat

the embeddings as hidden variables. In contrast, we work with

likelihood distributions, the advantages of which are discussed

later.

In [6] an embedding extractor was discriminatively trained

for diarization. They did not use uncertainty propagation and

their training criterion (pseudolikelihood) was different from

1https://github.com/bsxfan/probabilistic embeddings

http://arxiv.org/abs/2004.04096v3
https://github.com/bsxfan/probabilistic_embeddings

ours. It should be noted that both their pseudolikelihood [7]

and our cross-entropy are proper scoring rules [8] that encour-

age good calibration of the trained models.

3. Theory

In this section we present a novel way to derive a discrimina-

tively trainable embedding extractor from a generative model.

The generative approach facilitates a principled interface be-

tween the extracted embeddings and the PLDA backend. Al-

though the whole model is generative, we show how to effec-

tively ignore parts of the model so that it can be discriminatively

trained. After training, the same model can be used at runtime

for diarization. We make our modelling assumptions subject to

tractability and computational efficiency constraints.

Let S = {st}
n
t=1 denote an n-tuple of speech segments,

for which we consider the following generative model. First, a

speaker clustering hypothesis [9], denoted L, is generated from

some prior distribution, P (L). Then L generates an n-tuple of

hidden embeddings, X = {xt}
n
t=1, where xt ∈ R

D . Finally

each speech segment, st, is generated from the associated xt:

L xt st

n
(1)

The st are always observed, L is observed at training time, but

not at runtime, while the xt are always hidden. Notice that ac-

cording to this model, the xt would be the ideal features for in-

ference of L from S, because of the conditional independence:

P (L | X,S) = P (L | X) (2)

Unfortunately, these ideal features cannot be directly observed

or computed and we have to resort to marginalization to com-

pute the clustering posterior:

P (L | S) =

∫

P (L,X | S) dX (3)

The rest of this section is devoted to constructing a model, with

associated tractable algorithms, that enables computation of (3).

3.1. The partition prior

The Bell number, Bn, gives the number of ways that n items can

be partitioned (clustered). For octets, we have B8 = 4140. The

support of the partition prior, P (L), can include up to Bn dis-

crete possibilities, although we might sometimes consider pri-

ors with fewer possibilities—e.g. if we know there are fewer

than n speakers.

In this paper, we use a Chinese restaurant process (CRP) to

define P (L). The CRP assumes that the sequence of speaker la-

bels are exchangeable and that time plays no role. More details

of our CRP prior are given later. In future work, to model depen-

dency between consecutive segments, P (L) could be defined

by a Markov model [1], or perhaps by a distance-dependent

CRP [10].

3.2. The PLDA model

We introduce the PLDA backend via a more detailed view of

model (1), which now includes also n speaker identity vari-

ables, yi ∈ R
d. For simplicity in defining this model, we

let the maximum number of speakers be equal to the number

of speech segments, n. The clustering hypothesis is repre-

sented here as set of speaker labels, L = {ℓt}
n
t=1, where each

ℓt ∈ {1, . . . , n}.

xtℓt yi

st

n

n

(4)

Only a subset of the speakers might produce observations:

There is an arc from every yi to every xt, but when ℓt = k,

then only yk generates observation xt.

The label set, L = {ℓt}
n
t=1, requires some further expla-

nation. In the case of octets for example, there are B8 = 4140
possible ways to cluster 8 elements. But the label set, if it were

unconstrained, would have 88 (almost 17 million) possibilities.

We can however arrange a deterministic, one-to-one relation-

ship between L and the possible clusterings by constraining L

to be a restricted growth string [11], subject to the constraints:

ℓ1 = 1 and ℓt+1 ≤ 1 +max(ℓ1, . . . , ℓt) (5)

The yi are generated IID from the standard d-dimensional mul-

tivariate Gaussian, while the xt are generated from the D-

dimensional conditional Gaussian:

xt | (yk, ℓt = k) ∼ N (Vyk,W
−1) (6)

where V is the D-by-d speaker factor loading matrix and W

is the D-by-D within-speaker precision matrix. If D > d, this

model is usually referred to as simple PLDA (SPLDA), while

if D = d and V is of full rank, the model is referred to as the

two covariance model [9], where VV′ is the between-speaker

covariance.

3.3. Marginalization

The marginalization of each xt can be done independently of

its siblings, by computing the speaker identity likelihood, given

segment st:

P (st | y) =

∫

P (st,xt | y) dxt

=

∫

P (xt | y)P (st | xt) dxt

(7)

where y is the identity variable of the speaker of segment t. The

first factor in the final integrand is Gaussian, given by (6). If we

can force the second factor, P (st | xt), the likelihood for xt

given st, to be Gaussian as a function of xt, then the integral

can be computed in closed form. We shall do exactly that by

imposing a constraint on our model. But first, we need to con-

sider (carefully) the following factorization of the likelihood,

which can be done without loss of generality:

P (st | xt) =
P (st)

g(st)
× g(st)

P (xt | st)

P (xt)

= h(st) × f(st,xt)

(8)

where we have introduced the real-valued functions f, g, h,

such that g, h are strictly positive and f is non-negative. The

function f(st,xt) is a formal representation of our embed-

ding extractor, a trainable DNN, that implements the mapping:

st 7→ f(st, ·), where the output (a likelihood distribution) is

the probabilistic embedding that is extracted from st. Both

P (st | xt) and f(st,xt) are valid forms for the likelihood for

xt given st. The arbitrary functions g, h serve to express in full

generality the unnormalized nature of likelihood distributions.

The difference between the probabilistic embeddings of [5]

and ours is shown by:

f(st,xt) = g(st)
P (xt | st)

P (xt)
(9)

We use the likelihood, f(st,xt), while [5] uses the posterior,

P (xt | st). The likelihood is unencumbered by the necessarily

complex embedding prior, P (xt), which in our case is defined

by the PLDA backend. If your embeddings are any good at sep-

arating classes, then P (xt) needs to reflect this and will take

the form of a mixture with well-separated components. This is

also true of the posterior, P (xt | st), and indeed in [5] they

are forced to work with complex probabilistic embedddings in

mixture form.2 In the likelihood form, the complex prior is ef-

fectively ‘divided out’ and we can work with simpler embed-

ding distributions. We achieve more freedom in the form of the

embedding by this decoupling from the backend.

As will be shown below, h(st) cancels in our scoring for-

mulas and therefore plays no role at runtime or during discrimi-

native training, affording us the luxury of tractable calculations

involving only f . The function, h carries all the complexities

of the distribution of the raw input speech and by side-stepping

it, we enjoy the discriminative privilege of not having to model

the input. Nevertheless, discriminative training of a paramet-

ric form of f(st,xt) (as we do) has some implications for (8)

which are discussed further in appendix A.

We can now introduce our modelling constraint. Since xt

is hidden, we have considerable freedom in choosing its nature

(discreet or continuous), its dimensionality and its relationship

to st. We let f(s,x) be Gaussian in x, with mean and precision

matrix that are arbitrarily complex functions of s. We represent

the Gaussian, f(st,xt), as:

f(st,x) = exp

[

−
1

2
x
′
Btx+ x

′
Btx̂t

]

(10)

where x̂t ∈ R
D and Bt (positive semi-definite precision ma-

trix) are functions of st. In summary, our proposed, trainable

DNN embedding extractor does: st 7→ x̂t,Bt. This is very

similar to the encoder of a variational autoencoder [12]. Note

however that the Gaussian (10) is unnormalized and in general

not even normalizable, unless Bt is positive definite (invert-

ible). Our recipe works in general for non-invertible Bt, as long

as the PLDA parameter, W, is invertible.

After some algebra to solve the Gaussian integral, plug-

ging (6), (8) and (10) into (7) gives:

P (st | y) ∝ exp

[

−
1

2
y
′
V

′(W−W(W +Bt)
−1

W)Vy

+ y
′
V

′
W(W +Bt)

−1
Btx̂t

]

(11)

where we have omitted factors that are independent of y, in-

cluding h(st).

2In the i-vector–PLDA cascade, the simple, single Gaussian i-vector
prior is inconsistent with a view of the whole cascade as a single gener-
ative model. In such a model, the i-vector prior would be defined by the
PLDA backend, which is impractically complex.

3.4. Diagonalization

One way to avoid the O(D3) computational requirements

of (11), is to specialize to the two-covariance model, with

D = d and full rank, square V. Then, without loss of gen-

erality, we can linearly transform the hidden xt, so that VV′

and W are mutually diagonalized. First, transform xt so that

VV′ = I. This is followed by pure rotation that diagonalizes

W, while preserving VV′ = I. We are now free to let V = I.

Finally, we also constrain the extracted embedding precision,

Bt to be diagonal. We can now express (11) as the product of

univariate Gaussians:

P (st | y) ∝
D
∏

j=1

exp

[

wjbjt
wj + bjt

(x̂jtyj −
1

2
y2
j)

]

(12)

where wj > 0 and bjt ≥ 0 are diagonal elements of W and

Bt, while yj and x̂jt are components of y and x̂t. If bjt > 0,

then Gaussian j has mean x̂jt and variance
wj+bjt

wjbjt
. High qual-

ity components with bjt ≫ wj , will have low uncertainty, with

variance saturated at 1/wj . Conversely, low quality compo-

nents with bjt ≪ wj can have arbitrarily large uncertainty. At

the limit, bjt = 0, the associated component x̂jt will be com-

pletely ignored in any downstream processing, as will be shown

below.

3.5. The clustering posterior

The clustering (partition) posterior (3) can be expressed as:

P (L | S) =
P (L)

∏n

i=1 P (S(i) | L)
∑

L̃
P (L̃)

∏n

i=1 P (S(i) | L̃)
(13)

where the summation in the denominator is over all Bn possi-

bilities allowed by (5) and where P (S(i) | L) is the joint distri-

bution for all speech segments3 attributed to speaker i by label

set L. We expand:

P (S(i) | L) =

∫

P (y)
∏

t∈Li

P (st | y) dy (14)

where Li is the set of speech segment indices attributed to

speaker i by L. For P (st | y), we can plug the RHS of (11)

or (12) into (14), because the omitted factors cancel in (13).

The cancelled factors include
∏n

t=1 h(st), which occurs in the

numerator and in each term of the denominator. Recalling that

P (y) is standard Gaussian, the integrand in (14) is a product of

Gaussians so that the integral can be solved in closed form. For

the diagonal case, we find after some algebra:

logP (S(i) | L) =
1

2

D
∑

j=1

(

ā2
j

1 + b̄j
− log(1 + b̄j)

)

+ const

where

āj =
∑

t∈Li

wjbjt
wj + bjt

x̂jt, b̄j =
∑

t∈Li

wjbjt
wj + bjt

(15)

The constant is independent of L and cancels in all our scor-

ing and training recipes. Notice again that if bjt = 0, then

x̂jt is effectively removed from the computation. Conversely,

if bjt ≫ wj , then the weight for x̂jt saturates at wj . If all bjt

3If no segments are attributed to speaker i, we conveniently let

P (S(i) | L) = 1.

are sufficiently large, the result is the same as when traditional

(fixed) embeddings, x̂t, are just plugged into PLDA. The nor-

malized, weighted sum (15) may be interpreted as an attention

mechanism [13], where the wj are the queries, the bjt are the

keys and the x̂jt are the values.

3.5.1. The posterior computation recipe

In summary, to compute the clustering posterior for n-tuples,

we need:

• A DNN that serves as probabilistic embedding extractor

that does st 7→ {x̂jt, bjt}
D
j=1. We assume that the final

stage of the extractor for x̂t is a trainable linear trans-

form, so that we may assume the extracted embeddings

will have been transformed to be compatible with a di-

agonalized two-covariance backend.

• A diagonalized, two-covariance PLDA model that sup-

plies the within-speaker precision parameters, {wj}
D
j=1.

• A precomputed clustering prior, P (L), that respects (5).

The prior can be stored in a table of size Bn, containing

log probabilities.

• A precomputed sparse n-by-(2n − 1) matrix, with 0/1
entries, that can be used to efficiently do the summations

to compute āj and b̄j in (15), for all possible subsets Li.

From these, we can compute logP (S(i) | L) for every

possible subset.

• Another precomputed sparse Bn-by-(2n − 1) matrix,

with 0/1 entries, that can be used to efficiently accumu-

late
∑n

i=1 logP (S(i) | L), for every possible value of

L. After addition of logP (L), a softmax of size Bn

computes the final posterior (13).

4. Discriminative training

We jointly train the embedding extractor and the PLDA param-

eters by minimizing the following Bn-way multiclass cross-

entropy criterion, computed using (13):

C = −
∑

(L,S)∈D

logP (L | S) (16)

where D is a collection of supervised trials, each containing an

n-tuple of speech segments, S, and the associated true speaker

clustering, L. In this paper, we choose n = 8 and we refer to

the n-tuples as octets. The selection of segments to compose

octet trials is described in the section on experiments below.

Note that Bn = 4140, which gives a relatively large, but still

tractable number of clustering hypotheses for each octet trial.

To compute the clustering posterior (13), we require also a

clustering prior, P (L). In this paper we use a Chinese restaurant

process, which will be detailed later.

5. Diarization with Agglomerative
Hierarchical Clustering

At training time we can control n, the number of speech seg-

ments to cluster, so that Bn remains tractable. At runtime,

where n may be a few hundred, Bn far exceeds the number

of atoms in the known universe. This makes an exact search for

an optimal clustering hopelessly intractable.

Agglomerative hierarchical clustering (AHC) is a greedy al-

gorithm for finding approximately optimal clustering solutions.

For speaker diarization, AHC is initialized with one cluster per

segment. Each segment is represented by an x-vector (baseline),

or probabilstic x-vector (proposed). At each iteration, one pair

of clusters is joined, according to some local optimality condi-

tion computed using the x-vectors. When a stopping criterion is

met, each of the final clusters is attributed to a different speaker.

The baseline AHC algorithm described below cannot be in-

terpreted as a search for the maximum-likelihood (ML) cluster-

ing, because of the way that inter-cluster comparisons are com-

puted (via binary log-likelihood-ratio averaging). In contrast,

our proposed AHC algorithm can be considered to be a greedy

search for the ML solution.

5.1. Baseline AHC

The official Kaldi diarization recipe [14] implements the fol-

lowing clustering algorithm. First, some PLDA model is used to

calculate log-likelihood ratio verification scores as a similarity

metric for each pair of x-vectors from the given test recording.

The resulting pair-wise similarity matrix is the only input to the

unweighted average linkage AHC (also known as UPGMA). At

each stage of the algorithm the highest score is selected from the

similarity matrix and two clusters corresponding to that score

are merged. The row and column of the similarity matrix cor-

responding to a new cluster is computed as an average between

the original scores of the two cluster components.

The similarity score threshold σ for stopping the AHC pro-

cess is estimated for each recording separately using an unsu-

pervised linear calibration [15]: a GMM with two univariate

Gaussian components with shared variance is trained on all the

scores from the similarity matrix. The two Gaussian compo-

nents are assumed to be the score distributions corresponding to

the same-speaker and different-speaker x-vector pairs. There-

fore, σ is set as the score for which the posterior probabil-

ity of both components is 0.5 (i.e. decision threshold for the

same/different-speaker maximum-a-posteriori classifier).

5.2. By-the-book AHC

Our proposed AHC is a greedy maximization of the clustering

log-likelihood:

L(L) = logP (S | L) =
∑

i∈clusters of L

logP (S(i) | L) (17)

Here S represents all the speech segments in the recording and

L is a clustering hypothesis for all these segments. Each term

of L(L) can be computed by (15), up to a constant that is irrel-

evant when comparing hypotheses. L is initialized to have each

segment in a separate cluster. At each iteration, we do:

L← argmax

L′
join 2 clusters
←−−−−−−L

L(L′) (18)

where L′ is restricted to merging a single pair of clusters in

L. The iteration is stopped when the new hypothesis fails to

give an improvement in L(L) that exceeds a preset threshold,

σ. For greedy maximum likelihood, the correct threshold is

σ = 0, but we make it adjustable to help compensate for the

fact that maximum likelihood ignores the prior and for any other

mismatches between the model and the real data.

We implement (18) using the log-likelihood-ratios,

∆ = L(L′)− L(L) (19)

where log-likelihood terms not in the to-be-merged clusters

conveniently cancel. The pair with the highest ∆ is joined in

each iteration, except when the best one fails to exceed σ. For

to-be-joined clusters i and j, ∆ is:

log
P (S(i),S(j) | ℓ′1 = · · · = ℓ′Ni+Nj)

P (S(i) | ℓi,1 = · · · = ℓi,Ni)P (S(j) | ℓj,1 = · · · = ℓi,Nj)

The ℓi,k ∈ L are the identical speaker labels for the N i seg-

ments of cluster i and the same applies to cluster j. The ℓ′k ∈ L′

are the new labels for the joined cluster. S(i),S(j) are the sets of

speech segments assigned to each cluster. Likelihoods in the nu-

merator and denominator are computed using (15). The compu-

tation can be done reasonably fast, by precomputing
wjbjt

wj+bjt
x̂jt

and
wjbjt

wj+bjt
. These quantities can be stored in matrices, where

each row initially corresponds to a segment and later to a clus-

ter. When two clusters are merged, the corresponding rows of

the matrices are summed, so that each matrix will have one row

fewer.

6. Experiments and results

6.1. Training and evaluation data

The deep neural network (DNN) x-vector extractor was trained

on VoxCeleb 1 and 2 [16] with 1.2 million speech segments

from 7146 speakers plus additional 5 million segments obtained

with data augmentation. Also, VoxCeleb data are used to train

the baseline PLDA model.

Data from the AMI corpus [17] were used for training

PLDA and probabilistic embedding extractor. We have split the

data into training and cross-validation parts. Training part uses

75% of the available data. The speakers between training and

cross-validation sets are not overlapping.

Finally, we perform the diarization experiments on DI-

HARD 2019 development and evaluation data [18, 19]. Devel-

opment set, in our case, was used for hyper-parameter tuning

(such as selection of the AHC stopping threshold), otherwise,

no development data were used for training system parameters.

Performance is evaluated in terms of Diarization Error Rate

(DER).

6.2. Signal processing

We used the weighted prediction error (WPE) [20, 21] method

to remove late reverberation from the evaluation data. We es-

timated a dereverberation filter on short-time Fourier transform

(STFT) spectrum for every 100 seconds block of an utterance.

To compute the STFT, we used 32ms windows with 8ms shift.

We set the filter length and prediction delay to 30 and 3 respec-

tively for 16kHz. The number of iterations was set to 3.

6.3. X-vector extractor

We used the x-vector extractor from BUT’s submission to the

2019 DiHard challenge [1, 22, 23]. The extractor was trained

with the Kaldi toolkit [24] using the SRE’16 recipe [25] with

the following modifications:

• We used 40-dimensional filterbank features generated

using 16kHz sampling frequency.

• The networks was trained for 6 epochs (instead of 3).

• We used 200 frames for all training segments (instead of

random durations between 200 and 400 frames).

• We sample the training segments in such a way that all

regions of a recording are used equally (instead selecting

the segments completely at random).

• We generated around 700 Kaldi archives such that each

of them contained exactly 15 training samples from each

speaker (i.e. around 107K samples in each archive).

• The network has nine TDNN layers, which sees a total

context of 13 frames per side, before the statistics pool-

ing layer.

• The input to the statistics pooling layer is the concatena-

tion of the output from the 7th and the 9th TDNN layer.

For more details, see [1, 22, 23].

6.4. Baseline PLDA

The baseline PLDA model is trained on x-vectors extracted

from 3s speech segments from VoxCeleb 1 and 2 and utterance

IDs combined with speaker IDs serve as the class labels. Before

the PLDA training, the x-vectors are centered (i.e. mean nor-

malized), whitened (i.e. normalized to have identity covariance

matrix) and length-normalized [26]. The centering and whiten-

ing transformation are estimated on the joint set of DIHARD

development and evaluation data.

6.5. PLDA and embedding extractor initialization

The details of the construction and initialization of our proba-

bilistic embedding extractor and the diagonalized PLDA model

are given here. Recall that the embedding extractor does:

st 7→ x̂t,Bt

where st is a speech segment, x̂t ∈ R
D and Bt = {bjt} is a

diagonal precision matrix. The diagonalized PLDA model has

a single parameter, the diagonal precision matrix, W = {wj}.
In this work, we build our probabilistic embedding extractor

by modifying an existing, baseline x-vector extractor. The exist-

ing extractor includes the final centering, whitening and length

normalization as detailed in section 6.4 above. In all our experi-

ments the x-vector extractor, including the centering, whitening

and length norm, remain fixed and are not subject to retraining.

The modifications are as follows. First, we add a linear

transformation after the standard (length-normalized) x-vector,

so that transformed x-vector is our desired x̂t. Second, the

output of the statistics pooling layer in the x-vector extractor

is passed through an additional feed-forward neural network

which outputs the diagonal precisions, Bt. The parameters of

these extra components, the linear transform and the non-linear

precision extractor are subject to training in our experiments.

The third trainable parameter set is the diagonal PLDA within-

class covariance, W.

We use a diagonalizing transformation of the original base-

line PLDA to initialize the linear x-vector transformation and

W. Here, we decrease the dimensionality of the original x-

vectors from 512 to 500, where we keep the 500 dimensions

with the highest speaker variability.

As an extractor for the precisions, Bt, we use a feed-

forward neural network with a single hidden layer and the soft-

plus activation function. The whole net has the stucture: linear-

softplus-linear-softplus. The final softplus is needed to give

non-negative precisions. As an input, this network uses the

output of the statistics pooling layer of the original x-vector

extractor. The first-order statistics are used as they are, while

second-order statistics are inverted. That is done to speed up the

training since the original statistics contain standard deviation

and we are interested in the precision at the output. Also, we

concatenate the statistics vector with the duration of the speech

segment. The resulting dimensionality of the input is 2049. The

hidden layer is 1000 dimensional and the output has a size of

D = 500, to agree with the size of x̂t.

The parameters of the precision extractor network are ini-

tialized randomly in such a way that at the beginning of the

training the bjt ≫ wj condition (see Section 3.5) would be

satisfied.

So, after the initialization, the model performs very simi-

larly to the baseline PLDA with standard x-vectors.

6.6. Parameter training

Once the model is initialized, we train it using the cross-entropy

objective from Section 4. Our training examples are octets of

x-vectors selected randomly from the training data. All seg-

ments in an octet come from the same recording, but it is not

guaranteed that they are consecutive. Selecting the segments in

a random order results in more difficult training examples and

leads to faster training. (We did also try using consecutive seg-

ments and it performs similarly, except that training then takes

longer.) We use stochastic gradient descent for the training,

the parameters are updated after seeing a mini-batch of 100 ex-

amples. Since we initialize the PLDA and the transformation

matrix from the existing PLDA we do not want them to devi-

ate from the initial values too quickly so that the precision ex-

tractor would benefit from this smart initialization. In order to

achieve that, the learning rate for these parameters is set to a

much smaller value (104 times smaller in our case) than the one

for precision extracting network.

In our experiments, for the prior P (L), we used the Chinese

restaurant process (CRP) [27, 28, 29]. We assigned the param-

eters of the CRP (the concentration and discount) to control the

distribution of the number of speakers: The variance is maxi-

mized, subject to the constraint that expected number of speak-

ers for N segments is the same as the true number of speakers in

the training set, where N is the total size of the training set. As

mentioned above, the CRP gives an exchangeable distribution

that is invariant to the order of the speaker labels. This prior

is appropriate for our procedure of randomly selecting the seg-

ments to form the octets during training. For situations where

the order matters, other priors could be considered, for example

those mentioned in section 3.1.

6.7. Results

The results are summarized in table 1 in terms of diarization

error-rate (DER). For each clustering strategy (rows), the table

presents three sets of results (pairs of columns). The result sets

differ in how the AHC stopping threshold, σ, was set. In the first

two columns, σ = 0, which is the optimal maximum-likelihood

threshold.

In the second set, σ was tuned on the DIHARD develop-

ment set to minimize diarization error-rate. There is an impor-

tant difference between the baseline and the other systems: The

scores for the merging decisions in the baseline AHC are indi-

vidually calibrated for each recording, using the unsupervised

calibration as explained above. The globally optimized thresh-

old, σ, was applied to these calibrated scores. While for the

rest of the experiments no such calibration was done and σ was

applied directly to (19).

Finally, to compensate for the fact that the segments in

the evaluation data are not independent, one can scale down

logP (st | y), the speaker identity log-likelihoods of the in-

dividual speech segments [30, 31]. For us that means scaling

the statistics āj and b̄j in (15). The last two columns of the ta-

ble show the results with the tuned likelihood scalar. The AHC

stopping threshold, in this case, is set to σ = 0. One can no-

tice that optimally scaling the likelihoods has a similar effect to

optimizing σ.

The first row in the table presents the baseline approach.

The baseline is Kaldi-style AHC (section 5.1), with the same

PLDA and x-vector extractor we use to initialize our model.

Here, an important note is that principal component analy-

sis (PCA) is applied to the x-vectors, independently for each

recording, giving a different PCA projection for each record-

ing. The PCA output dimension is adaptively chosen so that the

resulting low-dimensional projected x-vector retain only 30%

of their variability. The projected x-vectors are then length nor-

malized again prior to the clustering. The PLDA parameters

are also projected to the corresponding low-dimensional space.

The resulting PLDA model is used to calculate log-likelihood

ratio verification scores as the similarity metric that is applied

to all pairs of x-vectors in the recording. The resulting similar-

ity matrix is the input to the AHC. If instead, omit these extra

PCA and length normalization steps (as in the rest of the ex-

periments), the baseline results degrade to 28.63% and 28.36%

DER on development and evaluation sets respectively.

The rest of table 1 shows the results for the diarization with

our version of AHC (section 5.2), where we use by-the-book

scoring at each stage of the clustering. First (table row 2), we

applied AHC with exact scoring to the untrained model initial-

ized from the baseline. As mentioned earlier, the model before

training is practically the same as the baseline. So, the main

source of performance difference is the alternative way of clus-

tering. This model is heavily miscalibrated and using σ = 0
as a threshold results in a performance inferior to the baseline.

But, by tuning either the threshold or the likelihood scaling, one

can achieve an improvement over the standard AHC clustering.

Next (table row 3), we present the results obtained with a

system where the part of the network that extracts precisions re-

mains fixed, so that it keeps extracting large precisions, bjt. We

retrain only the PLDA (the wj) and the linear transformation (in

the extractor) that outputs x̂t. One can see that the calibration

problem in this case is not that prominent anymore. But still,

there is a possibility to improve the performance by carefully

optimizing the threshold or the likelihood scalar.

Finally (table row 4), we enable training of all three pa-

rameter sets: the linear transform, the precision extractor and

the PLDA. Here, even without tuning of the hyper-parameters,

we improve over the baseline, although threshold or likelihood

scalar tuning can still give small improvements.

An interesting observation is that as we move from un-

trained model to the one with PLDA training to the one with

all components trained, the optimal values for the threshold are

approaching zero. Similarly for the likelihood scaling factor,

for each next system it is closer to 1.

7. Conclusions

We have made the following contributions:

• We have presented a novel methodology, developed

around the factorization (8), to derive discriminatively

trainable embedding extractors from generative models.

• We have motivated and experimentally demonstrated ar-

guments for data representations in the form of proba-

bilistically distributed hidden embeddings. In contrast to

variational autoencoders [12] and other works on prob-

abilistic embeddings, e.g. [5], that extract hidden vari-

Table 1: Diarization error-rate [%] on DIHARD 2019 development and evaluation sets.

σ=0 σ optimal likelihood scaling optimal

dev eval dev eval dev eval

Baseline AHC - - 25.12 26.33 - -

by-the-book AHC 44.28 41.09 23.82 23.98 22.85 25.18

by-the-book AHC, PLDA trained 26.95 26.34 22.38 22.68 21.05 21.86

by-the-book AHC, PLDA + embedding extractor trained 22.95 23.38 21.61 21.84 20.95 21.79

able posterior distributions, we extract likelihood distri-

butions.

• We have applied the above to the x-vector–PLDA cas-

cade, showing how to adapt PLDA to score probabilistic

embeddings in a computationally efficient way.

• For speaker diarization, we have introduced a new dis-

criminative training objective, a large multiclass cross-

entropy, which is a proper scoring rule [8] that encour-

ages well-calibrated likelihood distributions [32] over all

the Bn possible ways to cluster an n-tuple of speech

segments according to speaker. This was experimentally

demonstrated on joint discriminative training of the em-

bedding extractor and the PLDA backend.

• A new AHC algorithm that makes full use of the PLDA

model to greedily optimize the maximum likelihood

clustering hypothesis.

In future, we would like to make the embedding extractor more

powerful by making the precision extractor deeper and also re-

training the parameters of the whole x-vector extractor. The

extra capacity can be regularized by more aggressive augmen-

tation of the input segments to provide a greater variety of dura-

tions, SNR and other quality factors. We would also like to try

the uncertainty propagation into the BHMM backend.

8. Acknowledgements

The work was supported by Czech National Science Foun-

dation (GACR) project “NEUREM3 No. 19-26934X, Euro-

pean Union’s Horizon 2020 grant no. 833635 “ROXANNE

and by Czech Ministry of Education, Youth and Sports from

the National Programme of Sustainability (NPU II) project

“IT4Innovations excellence in science - LQ1602.

9. References

[1] Federico Landini, Shuai Wang, Mireia Diez, Lukáš

Burget, Pavel Matějka, Kateřina Žmolı́ková, Ladislav

Mošner, Oldřich Plchot, Ondřej Novotný, Hossein

Zeinali, and Johan Rohdin, “BUT System Description

for DIHARD Speech Diarization Challenge 2019,” arXiv

preprint arXiv:1910.08847, 2019.

[2] Patrick Kenny, Themos Stafylakis, Pierre Ouellet, Md. Ja-

hangir Alam, and Pierre Dumouchel, “PLDA for speaker

verification with utterances of arbitrary duration,” in

ICASSP, Vancouver, 2013.

[3] Pietro Laface Sandro Cumani, Oldřich Plchot, “On the use

of i–vector posterior distributions in probabilistic linear

discriminant analysis,” IEEE Trans. Audio, Speech and

Language Processing, 2014.

[4] Niko Brümmer, Anna Silnova, Lukáš Burget, and Themos

Stafylakis, “Gaussian meta-embeddings for efficient scor-

ing of a heavy-tailed PLDA model,” in Odyssey 2018: The

Speaker and Language Recognition Workshop, 2018.

[5] Seong Joon Oh, Kevin Murphy, Jiyan Pan, Joseph Roth,

Florian Schroff, and Andrew Gallagher, “Modeling un-

certainty with hedged instance embedding,” 2018.

[6] Alan McCree, Gregory Sell, and Daniel Garcia-Romero,

“Speaker diarization using leave-one-out Gaussian PLDA

clustering of DNN embeddings,” in INTERSPEECH,

Graz, 2019.

[7] A. Philip Dawid, Steffen Lauritzen, and Matthew Parry,

“Proper local scoring rules on discrete sample spaces,”

The Annals of Statistics, 2012.

[8] Tilmann GNEITING and Adrian E. RAFTERY, “Strictly

proper scoring rules, prediction, and estimation,” JASA,

vol. 102, no. 477, 2007.

[9] Niko Brümmer and Edward de Villiers, “The speaker par-

titioning problem,” in Odyssey Speaker and Language

Recognition Workshop, Brno, Czech Republic, June 2010.

[10] David M. Blei and Peter I. Frazier, “Distance dependent

Chinese restaurant processes,” JMLR, vol. 12, 2011.

[11] Michael Orlov, “Efficient generation of set partitions,”

Tech. Rep., Computer Science Department of Ben-Gurion

University in Israel, March 2002.

[12] Diederik P. Kingma and Max Welling, “Auto-encoding

variational bayes,” in ICLR, 2014.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,

and Illia Polosukhin, “Attention is all you need,” CoRR,

vol. abs/1706.03762, 2017.

[14] Gregory Sell, David Snyder, Alan McCree, Daniel Garcia-

Romero, Jesús Villalba, Matthew Maciejewski, Vimal

Manohar, Najim Dehak, Daniel Povey, Shinji Watanabe,

et al., “Diarization is hard: Some experiences and lessons

learned for the jhu team in the inaugural dihard chal-

lenge.,” in Proceedings of Interspeech 2018, 2018, pp.

2808–2812.

[15] Niko Brümmer and Daniel Garcia-Romero, “Generative

modelling for unsupervised score calibration,” in ICASSP,

Florence, 2014.

[16] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman,

“Voxceleb2: Deep speaker recognition,” arXiv preprint

arXiv:1806.05622, 2018.

[17] Jean Carletta, Simone Ashby, Sebastien Bourban, Mike

Flynn, Mael Guillemot, Thomas Hain, Jaroslav Kadlec,

Vasilis Karaiskos, Wessel Kraaij, Melissa Kronenthal,

Guillaume Lathoud, Mike Lincoln, Agnes Lisowska,

Iain McCowan, Wilfried Post, Dennis Reidsma, and

Pierre Wellner, “The ami meeting corpus: A pre-

announcement,” in Proceedings of the Second Interna-

tional Conference on Machine Learning for Multimodal

Interaction, Berlin, Heidelberg, 2006, MLMI’05, pp. 28–

39, Springer-Verlag.

[18] N. Ryant, K. Church, C. Cieri, A. Cris-

tia, J. Du, S. Ganapathy, and M. Liberman,

“First DIHARD Challenge Evaluation Plan,”

https://zenodo.org/record/1199638, 2018.

[19] N. Ryant and et al., “DIHARD Corpus. Linguistic Data

Consortium.,” 2018.

[20] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and

B. H. Juang, “Speech dereverberation based on variance-

normalized delayed linear prediction,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 18, no.

7, pp. 1717–1731, Sept 2010.

[21] Lukas Drude, Jahn Heymann, Christoph Boeddeker, and

Reinhold Haeb-Umbach, “NARA-WPE: A Python pack-

age for weighted prediction error dereverberation in

Numpy and Tensorflow for online and offline processing,”

in 13. ITG Fachtagung Sprachkommunikation (ITG 2018),

Oct 2018.

[22] Federico Landini, Shuai Wang, Mireia Diez, Lukáš

Burget, Pavel Matějka, Katěrina Žmolı́ková, Ladislav

Mošner, Anna Silnova, Oldřich Plchot, Ondřej Novotný,

Hossein Zeinali, and Johan Rohdin, “BUT System

for DIHARD Speech Diarization Challenge 2019,” in

Conference on Acoustics, Speech and Signal Processing

(ICASSP) 2020, 2020.

[23] Mireia Diez, Lukáš Burget, Federico Landini, Shuai

Wang, and Honza Černocký, “Optimizing Bayesian

HMM based x-vector clustering for the second DIHARD

speech diarization challenge,” in Conference on Acous-

tics, Speech and Signal Processing (ICASSP) 2020, 2020.

[24] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas

Burget, Ondrej Glembek, Nagendra Goel, Mirko Hanne-

mann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al.,

“The kaldi speech recognition toolkit,” in IEEE 2011

workshop on automatic speech recognition and under-

standing. IEEE Signal Processing Society, 2011, number

EPFL-CONF-192584.

[25] Kaldi, “SRE16 v2,” https://github.com/kaldi-

asr/kaldi/tree/master/egs/sre16/v2, [Downloaded:

2017-12].

[26] Daniel Garcia-Romero and Carol Y. Espy-Wilson, “Anal-

ysis of i-vector length normalization in speaker recogni-

tion systems,” in Proceedings of Interspeech 2011, 2011.

[27] Jim Pitman, “Exchangeable and partially exchange-

able random partitions,” Probability Theory and Related

Fields, vol. 102, pp. 145–158, 1995.

[28] Emily B Fox, Erik B Sudderth, Michael I Jordan, and

Alan S Willsky, “A sticky hdp-hmm with application to

speaker diarization,” The Annals of Applied Statistics, pp.

1020–1056, 2011.

[29] Aonan Zhang, Quan Wang, Zhenyao Zhu, John Paisley,

and Chong Wang, “Fully supervised speaker diarization,”

in ICASSP 2019-2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2019, pp. 6301–6305.

[30] Themos Stafylakis, Patrick Kenny, Vishwa Gupta, and

Pierre Dumouchel, “Compensation for inter-frame cor-

relations in speaker diarization and recognition,” in 2013

IEEE International Conference on Acoustics, Speech and

Signal Processing. IEEE, 2013, pp. 7731–7735.

[31] Patrick Kenny, Douglas Reynolds, and Fabio Castaldo,

“Diarization of telephone conversations using factor anal-

ysis,” IEEE Journal of Selected Topics in Signal Process-

ing, vol. 4, no. 6, pp. 1059–1070, 2010.

[32] Niko Brümmer, Measuring, Refining and Calibrat-

ing Speaker and Language Information Extracted from

Speech, Ph.D. thesis, Stellenbosch University, 2010.

[33] Christopher M. Bishop, Pattern Recognition and Machine

Learning, Springer, 2006.

A. Discriminative disclaimer

Although our model (1) for embedding extraction is generative,

where the embeddings are supposed to have generated the ob-

served speech, we must emphasize that our recipe is discrimi-

native in the sense that the observed data is not fully modelled.

Recall (8), reproduced here for convenience:

P (st | xt) = h(st) × f(st,xt) (20)

In the discriminative training of f , h plays no role and it fails

to provide a mechanism to ensure that once f has been trained,

then (20) will give normalizable distributions for the observed

data. Discriminative training does not guarantee that some func-

tion h(st) > 0 exists that would normalize (20) for every xt:

∫

h(st)f(st,xt) dst = 1, ∀xt ∈ R
D

(21)

Arguably the best practical way to (approximately) enforce this

constraint, is to do generative rather than discriminative train-

ing. This would typically require some variational Bayes (VB)

recipe to deal with the intractable marginalizations over the hid-

den variables. In VB, the hidden variable posterior is approx-

imate and in general will also not be exactly consistent with a

normalizable generative model for the observed data. However,

in this case, the training objective (the evidence lower bound,

or ELBO) will at least tend to minimize this inconsistency, by

effectively minimizing KL divergence from approximate to true

posterior [33].

Apart from stating that we do plan to try generative VB

training in future, we could motivate that the failure of (21)

should not trouble us any more than it seems to trouble the de-

signers and users of any other discriminative training recipes—

or indeed any recipe that extracts features without a full gener-

ative model of the observed data. Discriminative recipes gen-

erally do not define generative models for the data and even in

cases where they do, discriminatively trained generative mod-

els are usually defective as models of the observed data. If we

do not need h(st) during training or runtime, should it unduly

trouble us that it may not exist?

https://zenodo.org/record/1199638

	1 Introduction
	2 Prior work
	3 Theory
	3.1 The partition prior
	3.2 The PLDA model
	3.3 Marginalization
	3.4 Diagonalization
	3.5 The clustering posterior
	3.5.1 The posterior computation recipe

	4 Discriminative training
	5 Diarization with Agglomerative Hierarchical Clustering
	5.1 Baseline AHC
	5.2 By-the-book AHC

	6 Experiments and results
	6.1 Training and evaluation data
	6.2 Signal processing
	6.3 X-vector extractor
	6.4 Baseline PLDA
	6.5 PLDA and embedding extractor initialization
	6.6 Parameter training
	6.7 Results

	7 Conclusions
	8 Acknowledgements
	9 References
	A Discriminative disclaimer

