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Abstract
Many recent works on deep speaker embeddings train their fea-
ture extraction networks on large classification tasks, distin-
guishing between all speakers in a training set. Empirically,
this has been shown to produce speaker-discriminative embed-
dings, even for unseen speakers. However, it is not clear that
this is the optimal means of training embeddings that generalize
well. This work proposes two approaches to learning embed-
dings, based on the notion of dropping classes during training.
We demonstrate that both approaches can yield performance
gains in speaker verification tasks. The first proposed method,
DropClass, works via periodically dropping a random subset of
classes from the training data and the output layer throughout
training, resulting in a feature extractor trained on many dif-
ferent classification tasks. Combined with an additive angular
margin loss, this method can yield a 7.9% relative improvement
in equal error rate (EER) over a strong baseline on VoxCeleb.
The second proposed method, DropAdapt, is a means of adapt-
ing a trained model to a set of enrolment speakers in an unsuper-
vised manner. This is performed by fine-tuning a model on only
those classes which produce high probability predictions when
the enrolment speakers are used as input, again also dropping
the relevant rows from the output layer. This method yields a
large 13.2% relative improvement in EER on VoxCeleb. The
code for this paper has been made publicly available.

1. Introduction
Deep speaker embeddings have become the state of the art tech-
nique in learning speaker representations [1, 2], outperforming
the historically successful i-vector technique [3]. These speaker
representations are crucial for many tasks related to speaker
recognition, such as speaker verification, identification and di-
arization [4, 5, 6].

The networks used to generate speaker embeddings, such
as the popular x-vector architecture [2], are typically trained on
a speaker classification task, taking as input the acoustic fea-
tures of an utterance and predicting which training set speaker
produced the input utterance. By taking one of the upper lay-
ers of this network as an embedding, a fixed dimensional vector
can be extracted for any given input utterance. This vector, due
to the training objective that the network was given, is speaker-
discriminative. Crucially, it has been found that these embed-
dings can be used to discriminate between speakers that were
not present in the training set.

Although the approach of achieving speaker-discriminative
embeddings through training via classification is common [7,

Supported by an EPSRC iCASE studentship collaboration with the
BBC.

8], there exist other means in which to achieve this. For ex-
ample, there are several approaches that are variants on triplet
loss [9, 10, 11], which explicitly optimizes embeddings to move
closer to same-class examples whilst moving further away from
out-of-class examples. Another approach is the family of angu-
lar penalty loss functions [12, 13, 14, 15], which are similar to
the standard softmax loss, but enforce a stricter condition on the
decision boundary between classes by adding angular penalty
terms for the correct class, thus encouraging larger inter-class
distances and more compact intra-class distances.

We propose and make available code1 for two methods
aimed at achieving speaker-discriminative embeddings, both
focused around the notion of dropping classes during train-
ing. The first technique, referred to as DropClass, continu-
ally changes the training objective for deep speaker embedding
systems by periodically dropping a random subset of classes
during training, such that the network is continually trained on
many different classification tasks. This is conceptually similar
to applying Dropout [16] on the output layer of a classifica-
tion network while also disallowing training examples from the
dropped classes. We argue that speaker recognition tasks have
strong parallels with few-shot learning tasks and thus may ben-
efit from a meta-learning style approach, which is what Drop-
Class provides.

The second method that is proposed in this work, referred
to as DropAdapt, can be applied to adapt a fully trained model
to a set of enrolment speakers in an unsupervised manner. This
is achieved by dropping the training classes which are are pre-
dicted by the model to be unlikely in the full set of enrolment
utterances, rather than dropping randomly selected subsets of
classes. We also show that the predicted distribution of speak-
ers in the training set and test set can be heavily mismatched,
which we argue negatively impacts performance. Our experi-
ments show that DropAdapt can mitigate this distribution mis-
match and that this correlates with improved speaker verifica-
tion performance.

2. Dropping Training Classes

This work proposes two functionally similar techniques which
revolve around the process of dropping classes during training.
Despite this functional similarity, they have distinct applica-
tions, justifications, and links to literature which will be detailed
in the following sections.

1https://github.com/cvqluu/dropclass_speaker
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Figure 1: System diagram displaying the process of how classes are dropped throughout training in the proposed DropClass method.

2.1. DropClass

A typical architecture of a speaker embedding network, such as
the successful x-vector architecture [2], has the following struc-
ture. This network is trained as a whole, but can be split into
two components, G and C, which will be detailed below.

From an input x of acoustic features such as MFCCs, the
first part of the network G parameterized by θ can produce a
d-dimensional embedding h.

h = G(x; θ) (1)
This is typically trained on a classification task, meaning the
classification part of the overall network C, parameterized by φ
acts on h to produce a prediction y for what class the input x
belongs to.

y = C(h;φ) (2)
Both C and G are trained as a whole, usually via the stan-
dard cross entropy loss against a target one-hot vector ŷ which
indicates which class out the set of M training classes, N :
{i, . . . ,M}, x belongs to.

For simplicity, the classification network C may be as rudi-
mentary as an affine transform that projects the input embed-
ding h into the correct number of dimensions, M . In this sim-
plified case, the entirety of φ is a weight matrix W with the
dimensions (M,d). Without a bias term, this changes Equation
2 to the following:

y = hWT (3)
where y contains the logits of the class prediction.

The proposed technique, referred to as DropClass, is de-
tailed in Algorithm 1. When training with DropClass, every
P iterations, a random subset of N is chosen: R ⊂ N with
size M − D where D is a variable that determines how many
classes should be dropped. P and D are configurable hyperpa-
rameters. The setR defines the permitted classes in the next P
iterations. The rows of the weight matrix W which correspond
to the subset of classes inR are selected to make a new matrix,
W ∗, which has the dimensions (M − D, d), and the output
of the resulting modification of Equation 3, y∗ has dimension
(M −D):

y∗ = hW ∗T (4)

Result: Model trained with DropClass
Given: Feature extractor G(x; θ), Classification affine

matrix W
Set of all training classesN : {i, . . . ,M}
D classes to drop per P iterations
Training dataset Dtrain

while not done do
Randomly sample proper subset of size (M −D)

fromN , R : {j, . . . ,M −D} ⊂ N
W ∗ ←W [Class rows inR]
Dtemp ← Dtrain[Examples from classes inR]
for P iterations do

Train G(x; θ) and W ∗ using Dtemp

end
end

Algorithm 1: DropClass approach to training a deep feature
extractor.

After P iterations, the process is repeated and a new proper sub-
set is randomly selected, with the process continually repeated
until training is completed (Figure 1).

This proposed method can be compared with a number
of existing techniques in literature, in particular Dropout [16].
DropClass essentially drops units in the output classification
layer and synchronizes this with the data provided to the model,
ensuring that no dropped classes are provided while the corre-
sponding classification units are dropped.

The effectiveness of Dropout has been justified by the tech-
nique performing a continuous sampling of an exponential num-
ber of thinned networks throughout training and then taking
an average of these at test time [17, 18]. As a result of this
model averaging, Dropout has been shown to reduce overfit-
ting and generally improve performance [16], and has seen
widespread adoption in many different applications of neural
networks [19, 20, 21]. Similar in its justification, DropClass is
continuously sampling from a large number of different classifi-
cation tasks on which the embedding generatorGmust perform
well, in theory making it agnostic to any one specific task.

This technique also has some similarity to some techniques
in the field of meta-learning for few-shot learning, specifically
Model-Agnostic Meta Learning (MAML) [22] and the related
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technique Almost No Inner Loop (ANIL) [23]. MAML is a
method for tackling few-shot learning problems by utilizing two
nested optimization loops. The outer loop finds an initialization
for a network which can adapt to new tasks quickly, whilst the
inner loop uses the initialization from the outer loop and learns
from a small number of examples from each desired task (re-
ferred to as the ‘support set’), performing a few gradient up-
dates.

Raghu et al [23] found the strength of MAML lay in the
quality of the initialization found by the outer loop, with each
task specific adaptation in the inner loop mostly reusing features
already learned in the outer loop step. They proposed ANIL,
which reduces the inner task-specific optimization loop to only
optimize the classification layer, or ‘head’, of a MAML-trained
network. Similar to DropClass, ANIL makes a distinction be-
tween the part of the overall classification network which gen-
erates discriminative features (referred to as the ‘body’), and
the classification head, which is more task specific. Raghu et al
also proposed the No Inner Loop (NIL) method, which uses the
cosine similarity between the generated features of an unseen
example to the generated features of a small number of known
examples to weight the classification prediction. This use of co-
sine similarity to compare embeddings is extremely common-
place in speaker recognition [24] and in practice, the inference
step of the NIL technique is identical to a 1 to N speaker iden-
tification set up, if one considers the utterances from the N en-
rolment speakers to be the small number of labeled examples,
the ‘support set’.

This similarity of the problems of the few-shot learning and
speaker recognition tasks has influenced the proposal of Drop-
Class, both of which aim to produce a ‘body’ that generates
features applicable to a distribution of tasks (sub-set classifica-
tion) rather than to a single task. However, DropClass does not
perform the outer and inner loops found in MAML/ANIL which
explicitly optimizes the network to be robust to additional gra-
dient steps per sub-task. Instead, DropClass encourages per-
formance on all tasks by continually randomizing the training
objective, implicitly encouraging the generated features to per-
form well across subtasks. Despite this, exploring ANIL and
MAML for speaker representation learning would be a natural
extension to this work. This extension would be particularly
interesting considering the experiments on the NIL method (co-
sine similarity scoring) from Raghu et al [23], specifically Ta-
ble 5. They found that MAML and ANIL trained models sig-
nificantly outperformed ‘multiclass training’ models, where all
possible classes were trained simultaneously. Considering the
‘multiclass training’ paradigm is the most common approach to
training deep speaker embedding extractors, there could well
be gains to be found in adopting a meta-learning approach to
training speaker embedding extractors.

2.2. DropAdapt

Deep speaker representations are optimized to distinguish be-
tween the training set speakers, which is hoped to generalise to
any given set of new unseen speakers. Generally however, the
distribution of speakers in a desired held out evaluation set does
not exactly match the distribution seen during training; that is,
the expected distribution along the manifold of known speak-
ers is often not replicated in the evaluation set. A clearer ex-
planation for this can be seen if we examine what classes are
predicted by the whole network when we give as input the ut-
terances in the test set.

Starting from a trained model, for a given dataset D of N
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Figure 2: Comparison of the 5994 ranked training class proba-
bility predictions from a training set and test set, both provided
with 40 unique speakers with 42 examples each. The training
set probability has uncertainty bounds for 300 bootstrap sam-
pled variations of speakers and examples.

examples, the average probability assigned to each class can be
calculated as follows,

paverage =
1

N

N∑

i=1

softmax(hiW
T ) (5)

where hi is the embedding extracted from the ith utterance,
and W is the final affine weight matrix. The resulting M -
dimensional vector paverage is a representation of the mean prob-
ability that the model predicts for the presence of each speaker
across the N utterances. Provided a uniform distribution of
speakers was used to train the model, it would be expected that
the model predict a near uniform paverage for an input of training
examples with uniform class distribution. This however may
not be the case if the model is provided a selection of evalua-
tion utterances with uniform speaker distribution.

This effect can be seen in Figure 2, where a trained model
predicts close to the uniform distribution of classes when pro-
vided a uniform class distribution of training examples, but pre-
dicts a much more skewed paverage on the test set, with some
training classes predicted to be much more likely than others.
This is perhaps not a surprising result, as in the hypothetical sit-
uation of a test set with entirely one gender, a skewed paverage is
expected. However, this skew is often not as clearly explainable
as the hypothetical one-gender test set, and may have multiple
contributing factors. For context, the VoxCeleb 1 test set has a
‘good balance of male and female speakers’ [25], and the speak-
ers in it were chosen because their names began with the letter
‘E’.

This observation can be interpreted in a number of ways.
For example, it is well known that class imbalance is a sig-
nificant impedance to performance in classification tasks [26],
especially in cases in which training and inference have signif-
icantly different distributions. It is a natural extension to this
that the performance of an embedding extracted from a clas-
sification network would degrade in performance in the same
manner, which has been seen in the work of Huang et al and
Khan et al [27, 28]. In these works, they found cost sensitive
training and oversampling methods to increase the performance
of learned representations.
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Result: Model tuned with DropAdapt
Given: Trained feature extractor G(x; θ), trained W
Training set Dtrain

Unlabeled Test/enrolment utterances Denrol

while not done do
Calculate all paverage from Denrol (see Equation 5)
Rank classes by paverage

Select set of higher probability classes fromN ,
dropping lowest probability D classes→R

if Combine then
Assign all examples not inR same class label

in Dtrain

W ∗ ←W [Class rows inR]
else
Dtrain ← Dtrain[Examples from classes inR]
W ∗ ←W [Class rows inR]

end
W ←W ∗

N ← R
for P iterations do

Train G(x; θ) and W using Dtrain

end
end

Algorithm 2: DropAdapt method for adapting a deep fea-
ture extractor to a chosen dataset

The second closely related interpretation and hypothesis is
that the ‘low probability’ classes predicted by the model are in
some way less important to the performance of the embeddings
on the test set. These ‘low probability’ classes are suggested by
the model’s predictions to be less likely to be present in the test
set. This might imply that distinguishing between these specific
classes is not crucial to the end task.

Following from these interpretations, this technique, re-
ferred to as DropAdapt, works via dropping these low prob-
ability classes permanently to fine-tune a fully trained model,
adapting the model to a test set and hopefully increasing perfor-
mance. This is described in Algorithm 2. This method in theory
should be applied only to a fully or near fully trained model, as
an accurate estimation of the training class occupation must be
obtained first.

To ensure an accurate probability estimation of the test set
throughout the fine-tuning, this ranking (and dropping) of the
least probable classes can be performed periodically, meaning
this technique is functionally similar to the DropClass method
above, except that classes are removed permanently, and the
dropping of classes is determined by the probability criterion
paverage instead of randomly.

A slight variation of this method explored in this work is re-
ferred to DropAdapt-Combine, in which instead of permanently
removing these classes, all the low probability classes are com-
bined into a single new class such that the examples belonging
to the removed classes are not completely discarded.

This method can be compared to techniques in the fields of
active learning and learning from small amounts of data, such
as the Facility-Location and Disparity-Min models [29], which
put heavy emphasis on selecting the right subset of examples
in order to learn efficiently. These methods are typically used
to capture the whole distribution of the desired dataset in as
few examples as possible, encouraging a diverse and represen-
tative subset of examples. However, it is implied by Figure 2
that in this speaker embedding task, even if the whole training
dataset were used, this may not be representative of the distri-

bution found at test time. DropAdapt can be seen as a means
of correcting this mismatch through subset selection for fine-
tuning.

Buda et al [26] and Huang et al. [27] found oversampling
minority classes to be an effective strategy in improving per-
formance for neural networks on imbalanced datasets. Viewing
this problem as a dataset imbalance problem, DropAdapt could
also be interpreted as a corrective oversampling strategy, train-
ing additionally on those classes which are retained to better
match the target distribution.

This train-test distribution mismatch is also closely linked
to the field of domain adaptation and the domain-shift prob-
lem [30]. However, DropAdapt is primarily proposed as a
means of adapting to a class distribution mismatch, as it is
likely that paverage is less informative the greater the domain
mismatch. Combining domain adaptation techniques with
DropAdapt could be an interesting extension to this work.

3. Experiments
The following section details the experimental setup and the ex-
periments performed utilizing the proposed methods.

3.1. Experimental Setup

The primary task that these experiments attempted to improve
performance on was that of speaker verification, specifically
that on VoxCeleb 1 [25] and Speakers In The Wild (SITW) core-
core task [31]. Although there exist several metrics to evaluate
verification performance, which are typically chosen depend-
ing on the desired behaviour of a system, the primary metric
explored here was the equal error rate (EER), as that is the pri-
mary metric for evaluation on VoxCeleb 1.

The training data used for all experiments was the VoxCeleb
2 development set [32], which features 5994 unique speakers.
This was augmented in the standard Kaldi2 fashion with noise,
music, babble and reverberation. The original x-vector architec-
ture was used with very little modification, using Leaky ReLU
instead of ReLU, with 30-dimensional MFCC features as in-
puts, and 512-dimensional embeddings. The main difference
between this implementation and that of Snyder et al [2] was the
use of the CosFace [33] angular penalty loss function instead of
a traditional cross entropy loss. This classification transform
also was applied directly to the embedding layer, unlike the
original, which has an additional hidden layer between the em-
bedding layer and the classification layer. This means that the
simplified notation for the classifier C following from equation
3 is an accurate representation of our model. All pairs of em-
beddings were L2 normalized and scored using cosine distance.

A batch size of 500 was used, with each example having
350 frames. Each batch had the same number of unique speak-
ers as examples. Models were trained for 120,000 iterations,
using SGD with a learning rate of 0.2 and momentum 0.5. The
learning rate was halved at 60,000, 80,000, 90,000, and 110,000
steps. For DropAdapt fine-tuning, the learning rate was chosen
to be the same as it was at the end of training the original model,
and all the enrolment utterances were used to calculate paverage.

3.2. DropClass Experiments

Our initial experiments investigated favourable settings of P
and D for DropClass, and the results are shown in Figure 3,
where the number of classes to drop was fixed atD = 5000 and

2https://kaldi-asr.org/
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Figure 3: Comparison on the effect on EER of varying the num-
ber of iterations to run before re-selecting the class subset, fixed
at dropping 5000/5994 training classes each period.

the number of iterationsP was varied between 50 and 4,000, the
latter being slightly over 1 epoch’s worth of data with the chosen
batch size. It can be seen that improvements over the baseline
are to be found more reliably at lower values of P , with con-
sistent performance improvements when P < 1000 for both
VoxCeleb and SITW (dev). This is perhaps unsurprising, as
a motivating factor for this technique was to train a network on
many different permutations for robustness on a variety of tasks,
and thus with a training budget for each model of 120,000 iter-
ations, this is not a large number of permutations throughout
training. As the value for P increases, this may also increase
the risk of incurring the phenomenon of catastrophic forgetting
[34, 35], an issue in which networks trained on a new task begin
to degrade on the task that they previously were trained on.

From the previous experiment, choosing the best perform-
ing value of P = 250 across each dataset, the number of classes
to drop D was then varied from 1000 to 5000, shown in Figure
4. From this, we can see that for nearly all configurations of
D, performance was improved on all datasets using DropClass
over the baseline. Dropping approximately half the classes at
D=3000 appeared to produce the best performance, although a
more thorough exploration with different training data is likely
required to ascertain if any heuristic exists for the selection of
this value. However, from the previous experiments, it can be
seen that for a suitably low value of P , DropClass can convey
improvements over the baseline.

It is however important to note that a crucial component of
this method is the use of the CosFace [33] angular penalty loss,
with Table 1 showing a comparison of the effect that chang-
ing the loss function had on the improvement that DropClass
produced on VoxCeleb. A more in-depth analysis on how each
loss function changes with the permutations of each subset of
classes is required.
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Figure 4: Comparison on the effect on EER of varying the num-
ber of classes to cycle out every 250 iterations.

3.3. DropAdapt Experiments

Table 2 displays the relative improvement in EER from utiliz-
ing the DropAdapt and DropAdapt-Combine method, using ei-
ther the enrolment speakers from VoxCeleb 1 or SITW (dev) to
choose which speakers to drop. The starting point was a stan-
dard classification trained baseline. Models were trained on a
budget of 30,000 iterations, and one configuration for D and P
was tested. Also compared were the following control experi-
ments: The baseline but trained additionally for the same num-
ber of iterations as DropAdapt, Drop-Random, which drops ran-
dom classes permanently, ignoring the paverage score, and Drop
Only Data, which removes the low probability classes from the
training data, but does not remove the relevant rows in the final
weight matrix, bypassing the use of W ∗ in Equation 4.

Compared to the baseline and control experiments, both
DropAdapt and DropAdapt-Combine show strong performance
gains on VoxCeleb. The 2.63% EER on VoxCeleb is particu-
larly impressive when compared to other works which use sim-
ilar or larger network architectures and more training data and
achieve > 3% EER [36, 7]. The improvements over the base-
line on SITW however are more modest, with DropClass trained
models and ‘Drop Only Data’ outperforming the DropAdapt
models.

An interesting observation is the fact that dropping only the
data improved performance on VoxCeleb, but not as much as the
DropAdapt methods. As discussed in section 2.2, DropAdapt
can be viewed as a form of corrective oversampling of targeted
classes, with oversampling techniques having been shown to
improve performance in imbalanced data scenarios [27, 28].
From this, we can see that for the within-domain data, some
of the benefit of DropClass is gained from only fine-tuning via
oversampling, but this benefit is increased further by also drop-
ping the classes from the output layer. Conversely, for the out-
of-domain SITW dataset, dropping only the classes from the
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EER (VoxCeleb)
Baseline DropClass

Softmax 5.89% 6.25%
CosFace [33] 3.04% 2.80%
SphereFace [14] 3.92% 4.76%
ArcFace [13] 3.19% 3.08%
AdaCos [15] 3.24% 3.81%

Table 1: EER values on VoxCeleb 1 for using DropClass
(P=250, D=3000) or not with different angular penalty loss
functions, all with the paper recommended settings of hyper-
parameters.

EER Rel Impr
Baseline (VoxCeleb) 3.04% -
Baseline (More iterations) 3.06% -0.7%
Drop Random (D=500, P=5000) 3.08% -1.3%
Drop Only Data (D=500, P=5000) 2.86% 5.9%
DropAdapt (D=500, P=5000) 2.68% 11.8%
DropAdapt-C (D=500, P=5000) 2.64% 13.2%
Baseline (SITW) 3.55% -
Baseline (More iterations) 3.61% -1.7%
Drop-Random (D=500, P=5000) 3.73% -5.1%
Drop Only Data (D=500, P=5000) 3.31% 6.7%
DropAdapt (D=500, P=5000) 3.47% 2.3%
DropAdapt-C (D=500, P=5000) 3.39% 4.5%

Table 2: Relative improvment in EER from using DropAdapt
and DropAdapt-Combine (DropAdapt-C) on the VoxCeleb 1
and SITW datasets on a budget of 30, 000 iterations

data performed the best. We hypothesize that the reduced effec-
tiveness of DropAdapt in this case may be due to the technique
having to adapt to not only a new speaker distribution, but also
a new domain. Further exploration combining DropAdapt with
traditional domain adaptation techniques is left for future work.

In addition, more experimentation on the configurations of
P and D could be explored, as it may be possible for example
that the iterative dropping of classes is not necessary, and that
the initial probability estimation is suitable. Furthermore, the
most obvious extension left for future work is to use both Drop-
Class and DropAdapt in conjunction, as both have been shown
to provide performance increases in parallel.

Following up on the hypothesis presented in section 2.2 that
the imbalanced distribution of paverage on the test set may be
an indicator of train-test mismatch and thus incurring perfor-
mance loss, Figure 5 shows the EER and the KL divergence
(DKL(p||U)) from the VoxCeleb test set paverage to the uni-
form distribution as the DropAdapt-Combine model is trained.
As we can see from the figure, while the EER decreases, the
distribution of paverage also gets closer to the uniform distribu-
tion. Whilst there appears to be a correlation, this is likely
not a strongly linked pair of observations, in that we can eas-
ily break this relationship by training only the final affine ma-
trix W and freezing the embedding extractor to provide more
favourable class weightings for paverage. However, in the case
of DropAdapt, the decreasing DKL(p||U) may indicate that a
favourable change in the extracted representations is occurring.
This could be useful as a stopping criterion for cases in which
adaptation data has no labels at all.
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Figure 5: Plot of the evolving EER on VoxCeleb as classes are
dropped with DropAdapt-Combine (P=5000, D=500) along
with the KL divergence from paverage on the test set to the uni-
form distribution.

4. Conclusion

In this work we presented the DropClass and DropAdapt meth-
ods for training and fine-tuning deep speaker embeddings. Both
methods are based around the notion of dropping classes from
the final classification output layer while also withholding ex-
amples belonging to those same classes. Drawing inspiration
from Dropout and meta-learning, DropClass is a method that
drops classes randomly and periodically throughout training
such that a model is trained on a large number of different classi-
fication objectives for subsets of the training classes as opposed
to classifying on the full set of classes. We show that in con-
junction with the CosFace [33] loss function, DropClass can
improve verification performance on the VoxCeleb and SITW
core-core tasks.

We present the mismatch in class imbalance between train
and test as a potential reason for reduced performance in veri-
fication, and propose DropAdapt as a means of alleviating this.
DropAdapt is a method which can adapt a trained model to a tar-
get dataset with unknown speakers in an unsupervised manner.
This is achieved by calculating the average predicted probabil-
ity of each training class with the adaptation data as input. From
these predictions, the model is fine-tuned by dropping the low
probability classes and training for more iterations, focusing on
the classes which the model has predicted to be presented in
the adaptation dataset. This is not unlike traditional oversam-
pling techniques. Applying DropAdapt to VoxCeleb leads to a
large improvement over the baseline, with DropAdapt also out-
performing simply oversampling the same classes, suggesting
it may be an effective strategy in adapting to a different class
distribution than what was seen during training. We also show
empirically that as the class distribution mismatch is corrected
during DropAdapt, so too does the verification performance in-
crease.
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