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Abstract
Evaluation trials are used to probe performance of auto-

matic speaker verification (ASV) systems. In spite of the clear
importance and impact, evaluation trials have not been seri-
ously treated in research and engineering practice. This pa-
per firstly presents a theoretical analysis on evaluation trials and
highlights potential bias with the most popular cross-pairing ap-
proach used in trials design. To interpret and settle this problem,
we define the concept of trial config and C-P map derived from
it. The C-P map measures the performance of an ASV sys-
tem on various trial configs in a 2-dimensional map. On the
map, each location represents a particular trial config and its
corresponding color represents the system performance. Exper-
iments conducted on representative ASV systems show that the
proposed C-P map offers a powerful evaluation toolkit for ASV
performance analysis and comparison. The source code for C-P
map has been release at https://gitlab.com/csltstu/sunine.

1. Introduction
Automatic speaker verification (ASV) aims to testify the
claimed speaker identity of a speech signal [1, 2, 3, 4, 5]. After
decades of research, current ASV systems have achieved fairly
good performance, at least in benchmark evaluations. For ex-
ample, with a bunch of state-of-the-art architectures/techniques,
such as ResNet-based topology [6, 7, 8], self-attentive pool-
ing [9], angular margin loss [10, 11] and score normalization &
calibration [12, 13], researchers have reported equal error rates
(EER) less than 1.0% on the VoxCeleb dataset, partly due to
VoxSRC [14, 15], one of the most popular speaker verification
challenges. Similar low EERs were also reported on SITW [16],
another famous benchmark dataset.

In spite of the impressive EER results in benchmark eval-
uations, the genuine performance of modern ASV systems is
dubious in real deployment applications. Practitioners often ob-
serve substantial performance gap between benchmark test and
experience of end users, which we call benchmark-deployment
gap.

To interpret and settle the benchmark-deployment gap, nu-
merous studies have been carried out. Most of the research fo-
cuses on the data theme, which hypothesizes that the perfor-
mance gap is largely attributed to acoustic mismatch. Based
on this belief, various benchmark datasets were elaborately de-
signed to simulate real-life acoustic conditions. For example,
HI-MIA [17] was designed for near-far field mismatch, NIST
SRE [18, 19] involved long-short mismatch and channel mis-
match. Interestingly, even with the acoustic mismatch, re-
searchers found that good performance can still be attained on
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benchmark tests. A possible reason is that these elaborately
designed benchmarks, although involve some types of acous-
tic mismatch, yet reflect the true complexity of real-life condi-
tions. Recently, a more challenging dataset CN-Celeb [20, 21]
was released, with an intentional design to involve more real-
life complexity, in particular multi-genre and cross-genre phe-
nomena. Experiments on CN-Celeb demonstrated much higher
EER results than on other benchmarks. Solving real-life data
complexity remains a hot and challenging topic.

Besides the data complexity, there is another issue that
seems equally important but less attended: the bias on evalu-
ation trials. It is well known that trials are used to probe and
measure performance of ASV systems. Therefore, if the trials
are not appropriately designed, the performance of the target
system cannot be correctly measured. Unfortunately, in most
existing benchmark tests, the trials are designed simply based
on cross-pairing. This trivial design leads to trials that might be
quite different from those encountered in real-life scenarios. In
particular, cross-pairing tends to produce a large proportion of
easy trials, leading to over optimistic performance estimation.
We argue that the trial bias problem is a primary source for the
benchmark-deployment gap.

In this paper, we firstly conduct a theoretical analysis on
evaluation trials and highlight the potential trial bias problem.
Our analysis shows that an ASV system may exhibit very dif-
ferent performance when probed by different settings of trials,
and therefore a prudent performance evaluation should involve
multiple and diverse trial settings. We call each setting of tri-
als a trial config, and the performance with various trial configs
form a 2-dimensional map, named Config-Performance (C-P)
map. We will show that C-P map is a powerful tool for system
analysis, tuning and comparison. For instance, the benchmark-
deployment gap can be interpreted as the performance discrep-
ancy between two different trial configs on the C-P map.

The rest of the paper is organized as follows. Section 2
presents a theoretical analysis on evaluation trials and discuss
the trial bias problem, and Section 3 presents the concept of
trial config and C-P map derived from it. Section 4 presents
the experimental results with C-P map of several representative
ASV systems, and Section 5 concludes the paper.

2. Trials and bias on trials
In speaker verification, the performance of a system is eval-
uated by a set of trials. Each trial is an individual test case,
generally involving an enrollment prototype and a test speech.
With modern embedding-based systems (e.g., i-vector [22] or x-
vector [23] systems), both the enrollment prototype and the test
speech are represented by embedding vectors, and the verifica-
tion task is formulated as testifying whether the two embedding
vectors belong to the same speaker or not.

Trials are used to measure performance of ASV models and
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systems, and the role is like a prober. Obviously, if the prober
is not well designed, the performance measurement cannot be
reliable. Unfortunately, the importance of trials have not widely
recognized, and the trivial cross-pairing approach remains the
most popular for trial design. Specifically, suppose there are
N speakers in the test set, each having K utterance, full cross-
pairing selects any two utterances (or the corresponding embed-
ding vectors) as a trial and labels it as positive if the two utter-
ances are from the same speaker or negative if they are from
different speakers. This leads toNK(K−1) positive trials and
N(N−1)K2 negative trials. A variant of this full cross-pairing
is enrollment-fixed cross-pairing, which fixes the enrollment
speech, and selects only test speech by cross-pairing. This leads
to NK positive trials and N(N − 1)K negative trials, where
K is the number of test utterances per speaker.

A notable problem of the cross-pairing approach is that it
produces a large proportion of easy trials: trials that are easy
to make decisions. This is particularly the case for negative
trials. Unfortunately, the trials encountered in real-life applica-
tions might be quite different from those created by the cross-
pairing, and usually more challenging. For instance, real situ-
ations tend to involve users with similar accent and utterances
recorded in similar acoustic environment, making the negative
trials more challenging. In addition, the number of positive tri-
als could be much larger than negative trials, so the probability
of meeting easy trials is low. Finally, if a user finds a failure,
he/she tends to try it over and over, leading to more hard trials.
All the above issues suggest that there is a trial bias between
the situations of benchmark test and real-life deployment. We
argue that trial bias is an important source for the benchmark-
deployment gap mentioned in the previous section. Fig. 1 illus-
trates the phenomenon of trial bias.

(a)

−∞ +∞

(b)

−∞ +∞

Figure 1: Illustration of trial bias, where the axis represents the
scores produced by an ASV system. The top figure (a) shows
the scores of trials created by cross-pairing, and the bottom fig-
ure (b) shows the scores of trials encountered in a real applica-
tion. The red star represents positive trials and the blue circle
represents negative trials. Note that the class-conditional distri-
butions of the scores are different in the two scenarios, which
reflects the bias on trials.

It should be highlighted that from the perspective of per-
formance evaluation, the bias is only related to the score dis-
tributions of the two trial classes (positive and negative). This
means (1) only the scores matter, not any other properties of the
test speech, such as acoustic environment, speaker traits, etc.
(2) only the distributions matter, not any other quantities such
as the number of speakers and the utterances per speaker. These
two points are important and will be used to define the concept
of trial config and C-P map.

3. Trial config and C-P map
3.1. Concept of C-P map

To gain a deeper understanding for the bias on trials, we intro-
duce the concept of trial config. Given a set of enrollment/test
utterances, a trial config is defined as a subset of trials se-
lected to test against the target system. The full cross-pairing
is the largest trial config and involves all the possible trials; the
enrollment-fixed cross-pairing is another trial config where ut-
terances are separated into an enrollment set and a test set, and
only cross-set pairing is permitted. Clearly, for a particular ASV
system, performance with different trial configs are different,
reflecting performance of the target system under different de-
ployment situations. By collecting all the trial configs and the
corresponding performance, we can evaluate the target system
in a more thorough way. This idea can be implemented as a
config-performance (C-P) map. In this map, the x-axis corre-
sponds to subsets of positive trials and the y-axis corresponds
to subsets of negative trials, so each location (x, y) on the map
corresponds to a particular trial config. Let the color at (x, y)
represents the performance measurement, we obtain a C-P map.

A general C-P map is hard to read unless the neighboring
trial configs form a spatial structure. A natural structure can
be obtained by sorting the trial configs according to their ‘hard-
ness’. The hardness can be defined by human, by agreement
of several system, or by a system itself. As an example, Fig. 2
shows a C-P map where the trial configs are sorted by the pri-
vate hardness of an i-vector system. Specifically, we sort the
trials according to the scores assigned by an ASV system, and
then construct trial configs by selecting trials from the ordered
list. For the target trials sets (x-axis), we gradually select trials
with higher scores from left to right, and for the non-target trials
sets (y-axis), we gradually select trials with lower scores from
bottom to up. The color in the map represents the EER values
corresponding to each trial config. This leads to an ordered C-P
map, where the trial configs on the left and bottom are harder
than those on the right and up.

Figure 2: Illustration of config-performance (C-P) map. The
green star and the red start illustrates the trial configs applied in
benchmark test and real-life applications respectively.

Although the hardness is defined privately by an ASV sys-
tem, the C-P map still reveals lots of information. For instance,
the large proportion of the high-performance area (right and up)
suggests that there are many easy trials in the full cross-pairing
trial config, and the low-performance area close to the origin
point implies that the system performance is not perfect. More-



over, the benchmark-deployment gap we mentioned in previous
sections can be clearly explained with the C-P map. First notice
that the benchmark test and real-life deployment apply two dif-
ferent trial configs, one is created with cross-pairing design and
the other is determined by the application scenario. These two
configs are illustrated in Fig. 2 by the green star (right-up cor-
ner) and the red star (on the bottom left) respectively. The posi-
tion of the red star reflects the fact that in real applications, neg-
ative trials could be more challenging, and positive trials tend
to be more than negative trials in number. It is clear that the
two trial configs lead to quite different EER results, which is
precisely the benchmark-deployment gap.

If the order of the trial configs are fixed, the C-P map is
more useful. For instance, it is possible to select several ASV
baseline systems to evaluate each trial, and use the averaged
score to sort the trials and construct the ordered trial configs.
Using these ordered trial configs to draw C-P maps for differ-
ent systems, we can get detailed comparison among systems.
This offers a powerful tool that can be used to confirm effective
techniques or identify spurious innovations.

3.2. Validity of C-P map

A critical question arises here is: are the performance measure-
ments shown at different locations on the C-P map comparable,
if they are based on different sets of trials? If the answer is NO,
then the C-P map is not very useful, as the patterns shown in the
map will be meaningless.

To answer this question, firstly notice that the performance
metrics we consider in this study, i.e, EER and minDCF, are
fully determined by the score distributions of the positive and
negative trial classes. Take EER as an example, if we use p(c)
and q(c) to denote the score distributions of positive and neg-
ative trials respectively, then it is easy to compute the EER
threshold θ by solving the following equation:∫ θ

−∞
p(c)dc =

∫ +∞

θ

q(c)dc (1)

where the left quantity represents the false rejection (FR) rate
and the right quantity represents the false alarm (FA) rate, when
the decision threshold is set to θ. According to the monotonic
property of cumulative distribution functions (CDFs), the solu-
tion for θ is unique. Once θ is determined, the EER can com-
puted as the left or right quantity of Eq. (1). Fig. 3 shows an ex-
ample of the computation when the score distributions of both
the positive and negative classes are Gaussian.

0 3

FR FA

Figure 3: Illustration of EER computation when the score dis-
tributions of the negative and positive trials are both Gaussian.
Suppose the variances of the two Gaussians are both 1.0, and the
means are 0.0 and 3.0 respectively. According to the symmetry,
it is easy to know the decision threshold is 1.5, and looking the
CDF table of a normal Gaussian shows that EER is 6.68%.

This means that no matter which trials are used in the test
set, only if they can approximate the score distributions of the
positive and negative classes, the EER/minDCF results will ap-
proach to the true values. For instance, if one increases the
number of test speakers and the number of test utterances per
speaker, the number of negative trials will be increased much
faster than the number of positive trials, but the EER/minDCF
will be the same, supposing that the new speakers and utter-
ances are sampled from the same underlying distribution as the
original test set.

Since the evaluation metrics are determined by distributions
of scores of trials rather than trials themselves, it is obvious to
conclude that the performance values in the C-P map are com-
parable, only if every trial config involves sufficient trials. Note
that the condition of the above statement means that on the C-P
map, the origin point and its vicinity are not well defined and
should be interpreted with caution.

4. Experiments
4.1. Data

VoxCeleb [24, 25] was used in our experiments. It is a large-
scale audio-visual speaker dataset collected by the University
of Oxford, UK1. Specifically, the development set of VoxCeleb2
was used to train the i-vector and x-vector systems, which con-
tains 5,994 speakers in total and entirely disjoints from the Vox-
Celeb1 and SITW datasets. Trials of the cleaned VoxCeleb1-O
was used for tuning and the cleaned VoxCeleb1-E was used for
evaluation.

4.2. Basic systems

In our experiment, we firstly follow the VoxCeleb recipe of the
Kaldi toolkit [26] to build our i-vector [22] and x-vector [23]
baselines2. These basic recipes may not achieve the best per-
formance on a particular dataset, but have been demonstrated
to be highly competitive and generalizable by many researchers
with their own data and model settings. Moreover, using these
recipes allow others to reproduce our results easily. No data
augmentation is used.

• i-vector: The i-vector model was built following the
Kaldi VoxCeleb/v1 recipe. The acoustic features com-
prise 23-dimensional MFCCs plus the log energy, aug-
mented by the first- and second-order derivatives, re-
sulting in a 72-dimensional feature vector. Moreover,
cepstral mean normalization (CMN) is employed to nor-
malize the channel effect, and an energy-based voice ac-
tive detection (VAD) is used to remove silence segments.
The UBM consists of 2,048 Gaussian components, and
the dimensionality of the i-vector space is 400. For the
back-end model, LDA is firstly used to reduce dimen-
sionality to 200, and then PLDA [27] is employed to
score the trials.

• x-vector: The x-vector model was created following the
Kaldi VoxCeleb/v2 recipe. The acoustic features are
30-dimensional MFCCs. The DNN architecture adopts
TDNN topology which involves 5 time-delay (TD) lay-
ers to learn frame-level deep speaker features, and a
statistic pooling (TSP) layer is used to accumulate the
frame-level features to utterance-level statistics, includ-
ing the mean and standard deviation. After the pooling

1http://www.robots.ox.ac.uk/∼vgg/data/voxceleb/
2https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/



Table 1: EER(%) and minDCF results with the modern ASV systems on VoxCeleb1 evaluation trials.

System Front-End Back-End VoxCeleb1-O VoxCeleb1-E
EER(%) minDCF EER(%) minDCF

1 GMM i-vector PLDA 5.819 0.5189 5.872 0.5038

2 TDNN + TSP + Softmax PLDA 4.558 0.4882 4.290 0.4343

3 TDNN + TSP + AM-Softmax Cosine 3.430 0.3370 3.389 0.3619

4 ResNet34 + TSP + AM-Softmax Cosine 1.633 0.1770 1.688 0.1900

5 ResNet34 + TSP + AAM-Softmax Cosine 1.803 0.1961 1.747 0.1946

6 ResNet34 + ASP + AM-Softmax Cosine 1.521 0.1642 1.504 0.1669

layer, 2 fully-connection (FC) layers are used as the clas-
sifier, for which the outputs correspond to the number
of speakers in the training set. Once trained, the 512-
dimensional activations of the penultimate layer are read
out as an x-vector. The back-end model is the same as in
the i-vector system.

4.3. More powerful systems

We also constructed more powerful x-vector systems to repro-
duce the performance of the SOTA speaker recognition tech-
niques. A bunch of state-of-the-art architectures/techniques,
including ResNet34 topology [6], attentive statistics pooling
(ASP) strategy [28] and angular margin-based training ob-
jectives (AM-Softmax [10] and AAM-Softmax [11]) are em-
ployed in our experiments. Specifically, the acoustic features
are 80-dimensional Fbanks. The DNN architecture adopts the
ResNet34 topology for frame-level feature extraction. The TSP
and ASP strategies are used to construct utterance-level rep-
resentations. These representations are then transformed by a
fully-connected layer to generate logits and are fed to a soft-
max layer to generate posterior probabilities over speakers. The
training objective employs AM-Softmax and AAM-Softmax,
and the margin factor is set to 0.2 and the scale factor is set
to 30. Once trained, the 256-dimensional activations of the last
fully-connection layer are read out as an x-vector. The simple
cosine distance is used to score the trials. No data augmenta-
tion is used. The source code has been published online to help
readers reproduce our systems3.

The EER and minDCF (p-target is 0.01) results of these ASV
systems are presented in Table 1. It can be observed that modern
ASV systems can obtain reasonable performance, even with the
basic settings.

4.4. C-P map

In this section, we use the C-P map as a tool to analyze perfor-
mance of the modern ASV systems on the cleaned VoxCeleb1-
E dataset. In order to define a unified arrangement for the trial
configs in the C-P map, the scores from the two basic systems
(i-vector and x-vector) are averaged and used to sort the pos-
itive and negative trials respectively. The C-P maps are then
constructed based on the sorted trials, following the process pre-
sented in Section 3.1.

Fig. 4 and Fig. 5 show the C-P maps of 6 systems cor-
responding to Table 1 with EER and minDCF metrics respec-
tively. Firstly, it can be seen that all these systems can obtain

3https://gitlab.com/csltstu/sunine

satisfactory performance on the trial configs in the right-up cor-
ner. However, as the trial configs approach to the origin point in
the left-bottom corner, the performance gap of different systems
becomes significant. This indicates that these systems are good
at recognizing easy trials but are different on tackling hard tri-
als. Secondly, comparing these C-P maps, we observe that with
the development of speaker recognition techniques (from Sys-
tem 1 to System 6), the performance improvement is steadily
obtained. Among all these technique advances, neural topology
change from TDNN to ResNet34 seems the most significant.

4.5. Delta C-P map

This section uses C-P map to compare two systems on various
trial configs. To make the comparison more clear, the relative
change ratio (RCR) at each location (x, y) on two C-P maps is
computed as follows:

RCR(x, y) =
CPref (x, y)− CPtest(x, y)

CPref (x, y)
, (2)

where CPi(x, y) is the metric value (e.g., EER, minDCF) at the
location (x, y) on the C-P map of system i. CPref represents
the C-P map of the reference system and CPtest represents the
C-P map of the test system.

Once RCR(x, y) is computed at all the locations, we can
construct a delta C-P map, to compare two systems in an all-
round way. Obviously, for the trial config at location (x, y)
in the delta C-P map, if its RCR is positive, it means the test
system beats the reference system. In contrast, if RCR(x, y)
is negative, the test system loses. To avoid numerical uncer-
tainty, we define a small tolerance value ε (10−5 in this study),
and regard the comparison is tied if |RCR(x, y)| < ε. We can
therefore compute the proportion of the trial configs on the delta
C-P map with three situations (win: tie: lose), which provides
a thorough comparison between two systems. Experiments are
conducted to compare some representative speaker recognition
techniques by delta C-P map, from the perspectives of model,
topology, training objective and pooling strategy. All these re-
sults demonstrate that delta C-P map is a powerful tool to com-
pare performance of systems in a thorough way.

4.5.1. i-vector vs. x-vector

Firstly, the delta C-P map between the basic i-vector system
and x-vector system is presented, as shown in Fig. 6. The C-P
map of the i-vector system (System 1) corresponds to CPref (·)
and the C-P map of the x-vector system (System 2) corresponds
to CPtest(·). It can be observed that x-vector wins the game on
almost all the trial configs. This indicates that the discriminative



(a) System 1: GMM i-vector (b) System 2: TDNN + TSP + Softmax

(d) System 4: ResNet34 + TSP + AM-Softmax (e) System 5: ResNet34 + TSP + AAM-Softmax

(c) System 3: TDNN + TSP + AM-Softmax

(f) System 6: ResNet34 + ASP + AM-Softmax

Figure 4: The C-P maps of 6 systems tested on VoxCeleb-E trials with EER metric.

(a) System 1: GMM i-vector (b) System 2: TDNN + TSP + Softmax

(d) System 4: ResNet34 + TSP + AM-Softmax (e) System 5: ResNet34 + TSP + AAM-Softmax

(c) System 3: TDNN + TSP + AM-Softmax

(f) System 6: ResNet34 + ASP + AM-Softmax

Figure 5: The C-P maps of 6 systems tested on VoxCeleb-E trials with minDCF metric.

model is superior to the probabilistic model at least under our
experimental condition.

4.5.2. Softmax vs. AM-Softmax

Secondly, we compared two training objectives Softmax and
AM-Softmax by delta C-P map, as shown in Fig. 7. The C-P
map of the Softmax system (System 2) corresponds to CPref (·)
and the C-P map of the AM-Softmax system (System 3) corre-
sponds to CPtest(·). It can be observed that the margin-based

AM-Softmax overwhelmingly outperforms the standard Soft-
max, even though with a simpler back-end model.

4.5.3. TDNN vs. ResNet34

Thirdly, we compare two popular neural topologies, TDNN and
ResNet34 by delta C-P map, as shown in Fig. 8. The C-P map
of the TDNN system (System 3) corresponds to CPref (·) and
the C-P map of the ResNet34 system (System 4) corresponds
to CPtest(·). It is clear to see that the ResNet34 topology is



(b) x-vector against i-vector (minDCF)(a) x-vector against i-vector (EER)

Win : Tie : Lose = 99.96% : 0.00% : 0.04% Win : Tie : Lose = 60.68% : 29.96% : 9.36%

Figure 6: The delta C-P maps of x-vector against i-vector with EER/minDCF metrics.

(b) AM-Softmax against Softmax (minDCF)(a) AM-Softmax against Softmax (EER)

Win : Tie : Lose = 100.00% : 0.00% : 0.00% Win : Tie : Lose = 98.68% : 1.32% : 0.00%

Figure 7: The delta C-P maps of AM-Softmax against Softmax with EER/minDCF metrics.

(b) ResNet34 against TDNN (minDCF)(a) ResNet34 against TDNN (EER)

Win : Tie : Lose = 100.00% : 0.00% : 0.00% Win : Tie : Lose = 100.00% : 0.00% : 0.00%

Figure 8: The delta C-P maps of ResNet34 against TDNN with EER/minDCF metrics.

Win : Tie : Lose = 0.00% : 0.00% : 100.00% Win : Tie : Lose = 35.64% : 0.04% : 64.32%

(b) AAM-Softmax against AM-Softmax (minDCF)(a) AAM-Softmax against AM-Softmax (EER)

Figure 9: The delta C-P maps of AAM-Softmax against AM-Softmax with EER/minDCF metrics.



Win : Tie : Lose = 100.00% : 0.00% : 0.00% Win : Tie : Lose = 99.88% : 0.12% : 0.00%

(b) ASP against TSP (minDCF)(a) ASP against TSP (EER)

Figure 10: The delta C-P maps of ASP against TSP with EER/minDCF metrics.

C-P Maps

delta C-P Maps

minDCF

EER

(1) GMM i-vector (2) TDNN TSP Softmax (3) TDNN TSP AM-Softmax (4) ResNet TSP AM-Softmax (5) ResNet TSP AAM-Softmax (6) ResNet ASP AM-Softmax

minDCF

EER

x-vector against i-vector AM-Softmax against Softmax ResNet against TDNN AAM-Softmax against AM-Softmax ASP against TSP 

…

…

Figure 11: The roadmap of speaker recognition techniques measured by C-P map and delta C-P map.

superior to TDNN by a large margin, demonstrating the success
of ResNet34 in speaker recognition.

4.5.4. AM-Softmax vs. AAM-Softmax

Fourthly, two margin-based training objectives AM-Softmax
and AAM-Softmax are compared by delta C-P map, as shown
in Fig. 9. The C-P map of the AM-Softmax (System 4) corre-
sponds to CPref (·) and the C-P map of AAM-Softmax (System
5) corresponds to CPtest(·). It can be observed that the perfor-
mance gap between the two objectives are quite marginal, even
though AM-Softmax shows a bit advantage than AAM-Softmax
on most trial configs.

4.5.5. TSP vs. ASP

Finally, two pooling strategies TSP and ASP are compared by
delta C-P map, as shown in Fig. 10. The C-P map of the TSP
system (System 4) corresponds to CPref (·) and the C-P map of
the ASP system (System 6) corresponds to CPtest(·). It can be
found that ASP outperforms TSP on the whole, demonstrating
its advantage.

4.6. Roadmap

This section combines all these C-P maps and delta C-P maps
in Section 4.4 and Section 4.5, and constructs a roadmap that

illustrates the development of speaker recognition techniques in
recent years. By this roadmap, it is clear to see which technique
is effective and which innovation is revolutionary. This further
demonstrates that the proposed C-P map is a very valuable tool
for technique analysis and system comparison.

5. Conclusions
This paper is inspired by the ubiquitous benchmark-deployment
discrepancy. Our hypothesis is that this problem is largely at-
tributed to the different trials encountered in different situations.
To formulate the significant impact of trials on performance
measurement, we propose the concept of C-P map which rep-
resents performance of a speaker verification system on various
trials configs in a 2-dimensional map. We empirically show
that C-P map is a novel evaluation toolkit for ASV system anal-
ysis and comparison, and can be used to confirm really effective
techniques. As for the future work, more comprehensive anal-
ysis will be conducted to understand the behavior of different
models at different locations on the C-P map. Besides, other
recently proposed techniques will be analyzed by C-P map to
verify their effectiveness.
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