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Abstract

Data privacy is crucial when dealing with biometric data. Ac-

counting for the latest European data privacy regulation and

payment service directive, biometric template protection is es-

sential for any commercial application. Ensuring unlinkability

across biometric service operators, irreversibility of leaked en-

crypted templates, and renewability of e.g., voice models fol-

lowing the i-vector paradigm, biometric voice-based systems

are prepared for the latest EU data privacy legislation. Employ-

ing Paillier cryptosystems, Euclidean and cosine comparators

are known to ensure data privacy demands, without loss of dis-

crimination nor calibration performance. Bridging gaps from

template protection to speaker recognition, two architectures are

proposed for the two-covariance comparator, serving as a gen-

erative model in this study. The first architecture preserves pri-

vacy of biometric data capture subjects. In the second architec-

ture, model parameters of the comparator are encrypted as well,

such that biometric service providers can supply the same com-

parison modules employing different key pairs to multiple bio-

metric service operators. An experimental proof-of-concept and

complexity analysis is carried out on the data from the 2013 –

2014 NIST i-vector machine learning challenge.

1. Introduction

The latest EU data privacy regulation [1] declares biometric in-

formation as personal data, i.e. highly sensitive and entitled to

the right of privacy preservation. Similarly, the current payment

service directive [2] also requires biometric template protection

to be employed in biometric systems utilized for banking ser-

vices. To that end, the ISO/IEC IS 24745 [3] on biometric in-

formation protection provides guidance on how to preserve the

subject’s privacy by defining the following three main proper-

ties to be fulfilled by protected biometric templates:

• unlinkability: stored biometric templates shall not be

linkable across applications or databases,

• irreversibility: biometric samples cannot be recon-

structed from protected biometric templates,

• renewability: multiple biometric references can be inde-

pendently transformed, when they are created from one

or more samples of a biometric data capture subject.

In addition to these properties, other performance metrics, such

as recognition accuracy, should be preserved.

Even if some works argue that there is no need for template

protection depending on the feature extraction [4], sensitive in-

formation can be derived from unprotected templates, as it has

already been proved for other biometric characteristics [5, 6]. In

particular, linkability of state-of-the-art speaker recognition fea-

tures is demonstrated in [7] with the motivation of interchanging

features among different voice biometric services. The inter-

change of biometric data across services is recently addressed

ethically in [8], especially when targeting forensic and investi-

gatory scenarios. Accounting for latest data privacy legislations,

we motivate template protection, especially in commercial but

also in other dual-use case application scenarios.

Current approaches to biometric template protection can be

broadly classified into three categories [9], namely: i) cance-

lable biometrics [10], where irreversible transformations are ap-

plied at sample or template level; ii) cryptobiometric systems

[11], where a key is either bound or extracted from the bio-

metric data; and iii) biometrics in the encrypted domain [12],

where techniques based on homomorphic encryption (HE) and

garbled circuits are used to protect the data. Whereas cancelable

biometrics and cryptobiometric systems usually report some ac-

curacy degradation [9], the use of HE schemes prevents such

loss, since the operations carried out in the encrypted domain

are equivalent to those performed with plaintext data. For this

reason, we apply in this work HE schemes similar to the ones

proposed in [13, 14, 15, 16] to speaker recognition relying on

generative comparators, such as probabilistic linear discrimi-

nant analysis (PLDA). We thereby ensure data privacy for data

capture subjects for comparison models utilizing the two-co-

variance (2Cov) approach [17, 18] (i.e. full subspace PLDA) as

a prototype generative comparison algorithm.

In contrast to conventional discriminative comparators,

generative models can emit features with associated likelihoods

based on pre-trained models. Thus, comparison scores of gen-

erative models represent probabilistic similarity. In this con-

text, supplying model parameters to various service operators

can arise privacy concerns regarding the data protection of bio-

metric service vendors, i.e. the pre-trained models. Therefore,

we further propose a mutual encryption scheme granting subject

and vendor data privacy by employing well-established Paillier

homomorphic cryptosystems [19, 20]. It should be finally noted

that, while conventional image based biometric systems employ

non-generative comparators, operating either on binary or non-

negative integers [15, 16, 21, 22], the generative comparators

used in speaker recognition applications make assumptions on

underlying distributions, such as normal distribution [23, 24],

consequently operating on normal distributed float values.

In the following, we make HE available to speaker recog-

nition, targeting data privacy for subjects and vendors. Secs. 2,

3, 4 depict related work on homomorphic cryptosystems and

speaker recognition. Sec. 5 proposes two architectures for HE

protected 2Cov comparators. A proof-of-concept study is dis-

cussed in Sec. 6 with conclusions drawn in Sec. 7.
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2. Related Work

In order to apply standardized biometric template protection

schemes, binarization can be employed [3]. Related work on the

binarization of traditional speaker recognition systems utiliz-

ing universal background models (UBMs) targeting the GMM –

UBM approach can be found in [25, 26, 27]. In addition, in our

earlier work [28], we proposed a biometric template protection

scheme for speaker recognition, based on binarized Gaussian

mixture model (GMM) supervectors.

However, due to the binarization process, the biometric per-

formance usually declines, and calibration properties are lost.

Contrary to performance-lossy template protection approaches

as biometric cryptosystems and cancelable biometrics [9], HE

completely preserves biometric accuracy. Therefore, we inves-

tigate on Paillier HE schemes, which are already introduced to

other biometric modalities, such as signature [13], iris [21], and

fingerprint [22] recognition, considering Hamming distances

(XOR operator), dynamic time warping (DTW), the Euclidean

distance, and the cosine similarity. We thus focus on homomor-

phic cryptosystems for the remainder of the article.

In [29] and [30], the authors provide an overview of sev-

eral biometric template protection schemes based on homomor-

phic encryption and garbled circuits. Barni et al. [22] present

a way to protect fixed-length fingercodes [31] using homomor-

phic encryption. This system was modified in [32] to accelerate

the process by reducing the size of the fingercode. However, a

reduction of information also leads to a degradation of biomet-

ric recognition performance. Ye et al. present an anonymous

biometric access control (ABAC) system [33] for iris recogni-

tion. Their system setup verifies only whether a subject is en-

rolled without revealing the identity and thus grants anonymity

towards the subjects. Another ABAC protocol is proposed in

[34] by Luo et al. and a secure similarity search algorithm is

presented for anonymous authentication. Combining homomor-

phic encryption with garbled circuits, Blanton and Gasti [35]

implement secure protocols for iris and fingerprint recognition.

Among the existing cryptosystems in the literature, encryp-

tion algorithms based on lattices are assumed to be post-quan-

tum secure [36, conjecture 2], which is a convenient property

for a public key encryption scheme. Using ideal lattices in a

somewhat homomorphic encryption (SHE) scheme, Yasuda et

al. [37] compute the Hamming distance of encrypted templates

in an efficient way by using a packing method before the en-

cryption. By using binary feature vectors with a constant size

of 2048bits for every biometric data, again Yasuda et al. [38]

present a new packing method in a SHE scheme for biometric

authentication based on a special version of the ring learning

with errors assumption. Another privacy-preserving biometric

authentication approach [39] splits a 2048bits iris code into

64 blocks with 32bits each and encrypts these blocks using

n-th degree truncated polynomial ring (NTRU). As in the afore-

mentioned works, scores are computed in the encrypted domain

without disclosure of biometric information.

3. Homomorphic Cryptosystems

Homomorphic encryption [40, 41, 42] has the property that

computations on the ciphertext are equivalent to those car-

ried out on the plaintext. In particular, homomorphisms are

functions which preserve algebraic structures of groups [43].

The function f ∶ G → H is a homomorphism for groups(G,◇), (H, ◽) with sets G,H and operators ◇, ◽ if:

f(g ◇ g′) = f(g) ◽ f(g′) ∀g, g′ ∈ G. (1)

Public-key cryptosystems (K,M,C, enc,dec) with sets of

keys K, plaintexts M , ciphertexts C, and functions represent-

ing encryption enc and decryption dec are homomorphic if:

∀m1,m2 ∈M,∀pk ∈K ∶
encpk(m1) ◽ encpk(m2) = encpk(m1 ◇m2), (2)

where the public key pk is used for encryption and the secret

key sk for the decryption functions, respectively:

encpk ∶M → C,

decsk ∶ C →M. (3)

3.1. Paillier HE Scheme

Motivated by asymmetric Paillier cryptosystems [19, 20], HE

has been made available to biometric template protection [13,

15, 16]. Paillier cryptosystems are homomorphic probabilistic

encryption schemes based on the decisional composite residu-

osity assumption (DCRA): for integers n, z it is hard to decide,

whether z is an n-residue modulo n2. Due to this assumption,

the Paillier cryptosystem is secure against honest but curious

users conducting chosen ciphertext attacks [19, 44, 45].

In the Paillier cryptosystem, the public key pk = (n, g) is

defined by n = p q and g ∈ Z∗
n2 , where p, q are two large prime

numbers, such that gcd(p q, (p − 1) (q − 1)) = 1, and with Z
∗
n2

as the set of module n2 integers having a modular multiplicative

inverse. The modular multiplicative inverse ̺ to ̺ is required

with gcd(̺, ̺) = 1: ̺̺ ≡ 1 (mod n2). Based on p, q, the

secret key sk = (λ,µ) is defined by λ = lcm(p − 1, q − 1) and

µ = ̺ mod n with ̺ = L(gλ mod n2) and L(x) = x−1
n

.

During encryption c = encpk(m,s) ∈ Z
∗
n2 of a message

m ∈ Zn with public key pk, a random number s ∈ Z∗n provides

the probabilistic nature of the cryptosystem, i.e. encpk(m,s1) ≠
encpk(m,s2) for two different s1, s2 ∈ Z

∗
n:

c = encpk(m,s) = gm s
n

mod n
2
, (4)

which is abbreviated in the following as encpk(m).
Ciphertexts are decrypted as:

m = decsk(c) = L(cλ mod n
2) µ mod n. (5)

Similarly to [13, 15, 16, 20], we utilize the additive homo-

morphic properties of the Paillier cryptosystem regarding plain-

texts m1,m2 and corresponding ciphertexts c1, c2:

decsk (c1 c2) =m1 +m2 mod n,

decsk (c1l) =m1 l mod n, with a constant l. (6)

In other words, whereas the decrypted product of two cipher-

texts is equivalent to the sum of two plaintexts, the correspond-

ing exponentiation of a ciphertext results in the product of the

corresponding plaintext and constant as exponent.

3.2. Homomorphic Template Protection

Targeting biometric template protection, data privacy friendly

comparison schemes are sought, in which only encrypted refer-

ences, i.e. no plaintexts, are stored in databases. As such, the

Euclidean and cosine similarity comparison scores SEuc, Scos

between two F -dimensional vectors X = {x1, . . . , xF },Y ={y1, . . . , yF } are computationally derived as [13, 15, 16]:

SEuc (X,Y ) = F∑
f=1

x
2

f + F∑
f=1

y
2

f − 2 F∑
f=1

xf yf , (7)



and the corresponding encrypted score encpk (SEuc (X,Y )):
encpk (SEuc (X ,Y )) =

encpk

⎛
⎝

F∑
f=1

x
2

f

⎞
⎠ encpk

⎛
⎝

F∑
f=1

y
2

f

⎞
⎠

F∏
f=1

encpk (yf)−2xf , (8)

where the protected reference Y
encpk

Euc is defined as:

Y
encpk

Euc =

⎛
⎝ encpk

⎛
⎝

F∑
f=1

y
2

f

⎞
⎠ , (encpk (yf))Ff=1 ⎞⎠. (9)

On the other hand, the cosine comparison is derived as [13, 15]:

Scos (X,Y ) = X ′Y

∣∣X ∣∣ ∣∣Y ∣∣ =
F∑

f=1

xf∣∣X ∣∣
yf∣∣Y ∣∣ ,

encpk (Scos (X,Y )) = F∏
f=1

encpk ( yf∣∣Y ∣∣ )
xf

∣∣X∣∣
, (10)

where the protected reference Y
encpk
cos is defined for length-nor-

malized features as:

Y
encpk
cos = ((encpk (yf))Ff=1) = encpk(Y ). (11)

In [13, 15], solely positive integers are considered. Accommo-

dating a broader range of only positive float values, a 1012 scal-

ing factor is employed. Accounting for negative float values,

this study relies on an alternative float representation.

Client

DBcontroller

ASoperator

1. Extract probe: X

3. Compute:

encpk (Scos) = 2X

encpk(Y )
2. Send:

encpk(Y )

4. Send:

encpk (Scos)

5. Decrypt score:

Scos = decsk (4)
6. Decision:

(η ≤ 5)→ yes / no

pk, sk

Figure 1: Architecture of homomorphic encrypted cosine simi-

larity comparison for length-normalized features, cf. [13], with

client, servers (blue) and communication channels (orange).

Fig. 1 illustrates a distributed client – server architecture

employing HE with a cosine comparison: a client C extracts

the probe feature vector X and requests the encrypted reference

feature vector encpk(Y ) from the database DBcontroller. Then,

scores are calculated on the client, and sent to the authentica-

tion server ASoperator, which holds the key pair (pk, sk). Based

on pre-defined threshold, ASoperator outputs the decision D of

whether the decrypted score Scos is greater or equal to a thresh-

old η, or not. Ideally, DBcontroller is in the domain of an inde-

pendent data controller, restricting access to operators among

others. Tab. 1 provides an overview to the complexity of the en-

crypted Euclidean and cosine comparison, where numbers di-

verge from [13] as in the signature recognition scenario, five

reference templates are encrypted rather than e.g., an averaged

template model. As references are encrypted during enrolment,

cosine-based biometric comparisons require no additional en-

cryptions, whereas in Euclidean-based comparisons, the probe

templates need to be encrypted.

Table 1: Complexity analysis for the Euclidean and cosine com-

parators during verification, cf. [13], assuming F = 250 dimen-

sional features, the size of an encrypted feature c = 0.5KiB,

and the plain feature size p = 64bits.

Euclidean Cosine

No encryptions F 0

No decryptions 1 1

No additions F − 1 0

No products 2F + 4 F − 1

No exponentiations 2F F

Plain template size pF pF
≈ 2.0KiB ≈ 2.0KiB

Protected template size c (F + 1) cF
= 125.5KiB = 125.0KiB

Channels: amount of c (F + 2) c (F + 1)
protected data exchanged = 126.0KiB = 125.5KiB

4. Speaker Recognition: 2Cov Comparator

Recent speaker recognition approaches rely on intermediate-

sized vectors (i-vectors), representing the characteristic speaker

offset from an UBM, which models the distribution of acous-

tic features, such as Mel-Frequency Cepstral Coefficients

(MFCCs) [46]. UBM components’ mean vectors are concate-

nated to a supervector µUBM. Seeking non-sparse features,

speaker supervectors s are decomposed by a total variabil-

ity matrix T into a lower-dimensional and higher-discriminant

i-vectors i as an offset to the UBM supervector µUBM:

s = µUBM + T i. (12)

The total variability matrix is trained on a development set us-

ing an expectation maximization algorithm [23, 24]. Then,

i-vectors are projected onto a unit-spherical space by whiten-

ing transform and length-normalization [47, 48].

State-of-the-art i-vector comparators belong to the PLDA

family [18, 48]. PLDA comparators conduct a likelihood ratio

scoring comparing the probabilities of the hypotheses that ref-

erence and probe i-vectors X ,Y stem from (a) the same source

or (b) different sources. Therefore, within and between speaker

variabilities are examined in a latent feature subspace. In this

work, emphasis is put on the 2Cov approach [17, 18], the full-

subspace Gaussian PLDA. Notably, the 2Cov comparator can

also be related to pairwise support vector machines [17, 18].

For the sake of tractability, this study focuses on the generative

2Cov model. Also, i-vectors are solely considered as point esti-

mates, assuming ideal precision during feature extraction. The

closed-form solution to the 2Cov scoring is denoted regarding

within and between covariances W −1,B−1 with mean µ [17]:

S2Cov (X,Y ) =X ′

ΛY +Y ′ΛX +X ′

ΓX+
Y
′

ΓY + c′ (X +Y ) + k,
Λ =

1

2
W
′

Λ̃W , Γ =
1

2
W
′ (Λ̃ − Γ̃)W ,

c =W
′ (Λ̃ − Γ̃) Bµ,

k = k̃ + 1

2
((Bµ)′ (Λ̃ − 2 Γ̃) Bµ) ,

Λ̃ = (B + 2W )−1 , Γ̃ = (B +W )−1 ,
k̃ = 2 log ∣Γ̃∣ − log ∣Λ̃∣ − log ∣B∣ +µ′Bµ. (13)



5. Proposed Architecture

In the following, two discriminative HE schemes are proposed.

The first puts emphasis on HE for i-vectors during 2Cov com-

parison, seeking data privacy for end-users, whereas the sec-

ond scheme focuses on the encryption of i-vectors as well as

2Cov model parameters, targeting data protection for subjects

and vendors. An auxiliary float representation is implemented,

encoding float values as nonnegative integers for the purpose of

providing Paillier properties, cf. Eq. (6).

5.1. Auxiliary Float Representation: nonnegative Integers

For the purpose of representing float values of i-vectors as

nonnegative integer values, i.e. seeking conformance to Pail-

lier cryptosystems, the integer encoding scheme standardized

in IEEE 754 is employed [49]. Floats are encoded in terms

of a sign S, a mantissa M times a base B = 16 raised to an

exponent E. Nonnegative integers are derived by seeking con-

gruent positive representations in modulo n2, i.e. regarding the

public key domain. Accounting for negative values [50], the

plaintext integer domain is divided into four intervals: [0, n

3
)

for positive float representations, [ 2n

3
, n) for negative float rep-

resentations, and [n
3
, 2n

3
) as well as [n,∞) for the purpose of

detecting overflows resulting from previous Paillier HE oper-

ations. Targeting Paillier HE, same exponents of m1,m2 are

required, hence the mantissa is encrypted as a nonnegative in-

teger representation. The plaintext exponent of the depending

mantissa encoding is kept auxiliary. Security is satisfied due

to the DCRA employing randomized mantissa obfuscation dur-

ing encryption. In Paillier addition, encrypted mantissae are

scaled for equivalent addend exponents. In Paillier multiplica-

tion, modular exponentiation of c = encpk(M,s) is conducted,

during which mantissae are kept rather small by iterative multi-

plications than by right-away exponentiation.

5.2. Data Privacy: Protecting Subjects

For the sake of tractability, we assume a zero mean, causing

c = 0, and neglect the normalization term, i.e. k = 0, such

that the following scheme solely holds for discriminative 2Cov,

however calibrated scores can be easily achieved by adding the

k term after score decryption:

S2Cov (X ,Y ) =X ′

ΛY +Y ′

ΛX +X ′

ΓX + Y ′ΓY ,

= (X ′

Λ) Y +Y ′ (ΛX)+
X
′

ΓX + Y ′ΓY . (14)

For the discriminative 2Cov, HE is employed motivated by

the (symmetric) dot product for vector multiplication:

encpk(Y )X =
F∏

f=1

encpk(yf)xf
= encpk(X ′

Y )

= encpk(Y
′

X) =
F∏

f=1

encpk(xf)
yf
= encpk(X)

Y
,

encpk (S2Cov (X,Y )) = encpk(Y )
(X′

Λ)
encpk(Y )

(ΛX)

encpk(X ′

ΓX) encpk(Y ′

ΓY ) ,

encpk(Y ) = (encpk(yf))Ff=1 , (15)

with auxiliary vectors are denoted as (X ′

Λ) , (ΛX), and the

protected reference Y
encpk

2Cov = (encpk(Y ), encpk(Y ′ΓY )) .

Fig. 2 illustrates the proposed HE architecture for a dis-

tributed system. Similarly to the cosine comparison HE ap-

proach, the scores are computed in the encrypted domain on

the client, and decrypted on the authentication server. Thereby,

the 2Cov score is computed in four parts.

Client

DBcontroller

ASoperator

1a. Extract probe: X

1b. Encrypt:

encpk (X′ ΓX)

3. Compute:

2a(ΛX)

4. Compute:

2a
(X′Λ)

5. Compute:

encpk (S2Cov)
= 1b × 2b × 3 × 4

Γ,Λ

encpk(Y )

encpk(Y ′ ΓY )

Γ

2a. Send:

encpk(Y )

2b. Send:

encpk(Y ′ ΓY )

7. Decrypt score:

S2Cov = decsk (6)
8. Decision:

(η ≤ 7)→ yes / no

pk, sk

6. Send:

encpk (S2Cov)

Figure 2: Architecture of homomorphic encrypted 2Cov com-

parison solely protecting subject data, with client, servers (blue)

and communication channels (orange).

5.3. Data Privacy: Protecting Subjects and Vendors

Contrary to established biometric HE approaches employing

non-generative comparators, generative comparators require

trained hyper-parameters e.g., between and within covariance

matrices in terms of the 2Cov comparator. For the purpose of

protecting both subject and vendor data, two key sets are em-

ployed (pk1, sk1), (pk2, sk2). Utilizing the Frobenius inner

product 1, Eq. (13) can be reformulated [17]:

S2Cov (X,Y ) = ⟨Λ,XY
′ +Y X

′⟩ + ⟨Γ,XX
′ +Y Y

′⟩+
c
′ (X +Y ) + k,

=w
′

Λ ϕΛ(X ,Y ) +w′Γ ϕΓ(X ,Y )+
w
′

c ϕc(X ,Y ) +w′k ϕk(X ,Y ),

=w
′

ϕ(X,Y ), with:

ϕ(X,Y ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vec(XY ′ +Y X ′)
vec(XX ′ + Y Y ′)

X +Y
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϕΛ(X ,Y )
ϕΓ(X,Y )
ϕc(X ,Y )
ϕk(X ,Y )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vec(Λ)
vec(Γ)

c

k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

wΛ

wΓ

wc

wk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

For the simplified 2Cov comparator, a mutual HE scheme

sustaining data privacy for subjects and vendors can be em-

ployed by extending the inner product of vectors to the Frobe-

nius inner product of matrices A,B, which can be reformulated

via the vec(⋅) operator as the inner product of (column-stacked)

vectors, such that the dot product can be employed as well with

a public key pk:

encpk (A)⟨⟩(B) = encpk (vec (A))vec(B) , (17)

where the encryption of a matrix A is denoted as:

encpk (A) = ((encpk(ai,j))Fi=1)
F

j=1
. (18)

1The inner Frobenius product denotes x′Ay = ⟨A,xy′⟩ =
vec(A)′ vec(xy′), where vec(⋅) denotes the operator stacking ma-
trices into a vector and ⟨A,B⟩ is the dot product between matrices,
cf. [17].



In the simplified 2Cov comparator, the encrypted vendor

and operator communication takes the form:

S2Cov (X,Y ) =w′Λ ϕΛ(X,Y ) +w′Γ ϕΓ(X ,Y ),

encpk2 (S2Cov (X,Y )) = encpk2(Λ)⟨⟩(c1)encpk2(Γ)⟨⟩(c2+c3),

with: c1 =XY
′

+Y X
′

,c2 =XX
′

, c3 = Y Y
′

, (19)

where the computation of c1,c2,c3 is subdue to the encrypted

operator, controller and end-user communication:

encpk1(c1) = encpk1(Y )X
′

○ encpk1(Y ′)X ,

encpk1(c2 + c3) = encpk1(XX
′) ○ encpk1(Y Y

′), (20)

where ○ denotes the Hadamard product 2, and the terms

encpk1(Y )X
′

, encpk1(Y ′)X represent exponentiations in an

outer product fashion, resulting in the matrices encpk1(Y X ′)
and encpk1(XY ′), respectively. Finally, the protected refer-

ence is Y
encpk1

2Cov = (encpk1(Y ), encpk1(Y Y ′)).

Client

DBcontroller

ASoperator DBvendor

ASvendor

1a. Extract probe: X

1b. Encrypt:

encpk1 (X X
′)

3. Compute:

encpk1(c1)

= 2aX
′

○ 2a′X

4. Compute:

encpk1(c2+c3)
= 1b ○ 2b

encpk1(Y )

encpk1 (Y Y
′)

2a. Send:

encpk1(Y )

2b. Send:

encpk1 (Y Y
′)

7. Decrypt:

c1 = decsk1 (5a)

8. Decrypt:

c2+c3 = decsk1 (5b)

9. Compute:

encpk2 (S2Cov)
= 6a⟨⟩(7) 6b⟨⟩(8)

pk1, sk1, pk2
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11. Decrypt score:

S2Cov = decsk2 (10)
12. Decision:

(η ≤ 11)→ yes / no

pk2, sk2

10. Send:

encpk2 (S2Cov)

Figure 3: Architecture of protected templates and hyper-

parameters, with client, servers (blue) and communication

channels (orange).

Fig. 3 presents the proposed architecture. The previously

proposed architecture is extended by additional communication

channels between operators and vendors. Applications employ

two key pairs, such that template protection can be achieved

dependent on both: (a) different biometric services of an opera-

tor, and (b) multiple provisions of a biometric system to service

operators by a vendor. Consequently, additional servers are nec-

essary on the vendor site in terms of a database DBvendor and an

authentication server ASvendor, respectively.

2The Hadamard product is an entrywise product of two matrices
A,B having the same dimension: A ○B = (A)i,j (B)i,j .

6. Experimental Analysis and Discussion

An experimental validation is conducted on the 2013 – 2014

NIST i-vector machine learning challenge [51, 52] phase III

database (i.e. with labeled development data), where 600 di-

mensional i-vectors are supplied, comprising a development set

of 36572 i-vectors, 1306 references with each five enrolment

i-vectors, and 9634 probes, conducting 12582004 compar-

isons on averaged reference i-vectors as template models. The

prototype system comprises a dimension reduction to F = 250
by linear discriminant analysis, within class covariance nor-

malization, length normalization, and 2Cov comparison. For

the Paillier cryptosystem, n = 2048bits keys are utilized, in

accordance with the NIST recommendation [53]. In contrast,

plaintext operations consider double floating-point precision,

i.e. p = 64bits per plain real feature value. Implementations

are based on the freely available sidekit [54] and Python Pail-

lier [50]. Fig. 4 illustrates the DET performance of conventional

and HE 2Cov comparators on the evaluation set in terms of false

non-match rate (FNMR) and false match rate (FMR): the base-

line performance is preserved across all operating points. The

DET is depicted in terms of the convex hull of the receiver oper-

ating characteristic (ROCCH). For the exemplary 2Cov system,

a 2.5% equal error rate (ROCCH-EER), a 0.050 minDCF (pa-

rameterized according to [51]), and a 0.099 Cmin
llr are preserved

in the protected domain. As the k normalization term is ne-

glected in this set-up, the baseline system yielded a 9.560 Cllr.

Calibration loss can be reduced by a post score re-bias, or by

employing conventional score calibration methods, cf. [55]. By

utilizing linear score calibration trained on the oracle develop-

ment set, Cllr is reduced to 0.284.
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Figure 4: DET comparison of the baseline 2Cov system (or-

ange), and the proposed HE 2Cov schemes, focusing on subject

data protection (blue, dashed), and the protection of subject and

vendor data (black, dotted) with rule of 30 bounds (red, green).

As the verification performance is preserved, the proposed

schemes are further examined regarding requirements of the

biometric template protection standard [3] in terms of [13]: i)
only the client can have access to the plain probe template, ii)
the plain reference template should not be seen by the client,

and only its encryption should be stored or handled during ver-

ification, and iii) the score should also be protected in order

to prevent hill-climbing and inverse-biometrics attacks. Firstly,

both employed homomorphic Paillier cryptosystem provide se-



mantic security: only secret keys are able to derive the plain

probe after encryption, where the client solely communicates

the encrypted score (encpk (S2Cov (X,Y ))) or auxiliary matri-

ces (encpk1 (c1) , encpk1 (c2 + c3)). Secondly, biometric ref-

erences are communicated from the controller database server

to the client in the encrypted domain, assuming the authentica-

tion server being able to protect the secret key sk1, no other

entities will be able to relate the protected biometric informa-

tion. Similarly, the vendor data is protected in the sense, that

the vendor authentication server is assumed to be able to protect

sk2. Finally, scores are computed in the protected domain, and

can solely be decrypted utilizing secret key sk2. Thus, the irre-

versibility criterion is met. Renewability is granted as depicted

in [13]: if templates are lost, new key pairs can be generated

for the purpose of re-encrypting the database, such that (a) re-

acquisitions of enrollment samples are avoided when revoking

corrupted templates, and (b) comparisons of corrupt to renewed

templates result in non-matches, granting security and data pri-

vacy. Thus, templates can easily be revoked, thereby providing

data privacy. Unlinkability is granted due to the probabilistic

nature of the Paillier cryptosystem, where random numbers are

utilized for different encryptions, i.e. encrypting the same data

Y twice, two different random numbers s1, s2 are drawn, such

that: ence(Y , s1) ≠ ence(Y , s2), cf. [13, 19].

Table 2: Complexity analysis for the proposed 2Cov HE

schemes (verification) with the data sizes of the exemplary em-

ployed system (p = 64bits, ν = 0.5KiB, F = 250).

Comparator 2Cov 2Cov
Protection subject subject & vendor

No encryptions 1 F
2

No decryptions 1 2F
2 + 1

No additions 4F (F − 1) 0

No products 4F
2 + 2F + 1 5F

2 − 1

No exponentiations 2F 4F
2

Plain template size pF pF
≈ 2.0KiB ≈ 2.0KiB

Protected template size ν (F + 1) ν (F 2 + F )
= 125.5KiB ≈ 30.6MiB

Plain model size 2pF
2

2pF
2

≈ 1.0MiB ≈ 1.0MiB

Protected model size 0 2ν F
2

= 0KiB ≈ 61.0MiB

Channels: amount of ν (F + 2) ν (5F 2 + F + 1)
protected data exchanged = 126.0KiB ≈ 152.7MiB

In terms of complexity, each approach can be analyzed re-

garding the amount of required resources, i.e. the number of

operations performed in the encrypted domain as well as the

size of encrypted data sent over a channel. For a single veri-

fication attempt, the chipertext channel bandwidth is ν = 2n
due to the Paillier ciphertext length in modulo n2 domain [13],

i.e. ν = 4096bits 1KiB

8192bits
= 0.5KiB for the examined sys-

tem. Tab. 2 summarizes the proposed HE schemes’ complexity.

Regarding to an i-vector dimension F = 250, the cosine HE

approach requires ν F = 125KiB for storing a reference i-vec-

tor. For transmitting the protected score to the authentication

server, 0.5KiB are necessary, i.e. a protected scalar. The sub-

ject protective 2Cov HE scheme stores a reference tuple with

ν (F + 1) = 125.5KiB, communicating a protected scalar as

well to the authentication server. However, the subject and ven-

dor protective 2Cov HE scheme stores protected auxiliary ma-

trices, requiring ν (F 2
+ F ) ≈ 30.6MiB. Therefore, the chan-

nel between client and authentication server considers two pro-

tected matrices, requiring 2ν F 2
≈ 61.0MiB, alike for the ven-

dor database to operator authentication server channel. Regard-

ing the protected data exchanged over the communication chan-

nels, the first proposed scheme comprises ν (F + 2) = 126KiB
as the protected template and score are transmitted. The sec-

ond proposed scheme demands higher requirements: as the

model hyper-parameters are protected, the client to authenti-

cation server channel transmits auxiliary matrices comprising

2ν (F 2) ≈ 61.0MiB, whereas the same data amount is loaded

for the protected model from the vendor database server. Fi-

nally, a protected score is transmitted to the vendor authentica-

tion server, making application decisions. Afterwards, conven-

tional security protocols can be employed.

7. Conclusion

Homomorphic template protection is made available to genera-

tive comparators, i.e. comparators employing statistical models,

where the related biometrics work solely considers non-genera-

tive comparators, such as XOR, DTW, Euclidean distance, and

cosine similarity. Extending the HE scheme for cosine simi-

larity comparison, template protection is made available to the

2Cov comparator in two architectures. The first proposed HE

architecture solely puts emphasis on the protection of templates,

which can be sustained under a fair complexity tradeoff. Con-

trastively, the second proposed HE 2Cov scheme provides sub-

ject and vendor data protection. However, the required com-

plexity increases by a quadratic term. By pre-loading both pro-

tected model parameters the channel bottleneck is reduced to

ν (3F 2
+ F + 1) ≈ 91.7MiB for a single verification attempt,

which however limits the application scope to well-equipped

infrastructures e.g., call center and forensic scenarios. Depend-

ing on the application scenario, protected templates may also be

pre-loaded, further reducing the overall transmitted data amount

to ν (2F 2
+ 1) ≈ 61.0MiB. For mobile device voice biomet-

rics, one may prefer to employ the first proposed architecture.

Both approaches ensure biometric template protection require-

ments as of the ISO/IEC 24745 standard. For the sake of repro-

ducibility, we provide a reference implementation.

As the proposed schemes target 2Cov as prototype gener-

ative comparators, i.e. the full-subspace Gaussian PLDA spe-

cial case, extensions to other members of the PLDA family and

related comparators can be easily developed. Accounting for

i-vectors not only as single point estimate features but also as

latent variables, uncertainties associated to the single point esti-

mation can be incorporated as well, e.g. targeting full-posterior

PLDA. Also, HE schemes seem promising for end-to-end neu-

ral network system architectures, as the inner Frobenius prod-

uct is computable in the protected domain. Extensions of the

proposed architectures and implementations of alternative HE

schemes is left to future work.
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