
Weakly Supervised Training of Speaker Identification Models

Martin Karu, Tanel Alumäe
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Abstract
We propose an approach for training speaker identification
models in a weakly supervised manner. We concentrate on the
setting where the training data consists of a set of audio record-
ings and the speaker annotation is provided only at the recording
level. The method uses speaker diarization to find unique speak-
ers in each recording, and i-vectors to project the speech of each
speaker to a fixed-dimensional vector. A neural network is then
trained to map i-vectors to speakers, using a special objective
function that allows to optimize the model using recording-level
speaker labels. We report experiments on two different real-
world datasets. On the VoxCeleb dataset, the method provides
94.6% accuracy on a closed set speaker identification task, sur-
passing the baseline performance by a large margin. On an Es-
tonian broadcast news dataset, the method provides 66% time-
weighted speaker identification recall at 93% precision.

1. Introduction
Conventional speaker identification models are usually trained
on data where the speech segments corresponding to the target
speakers are hand-annotated. However, the process of hand-
labelling speech data is expensive and doesn’t scale well, espe-
cially if a large set of speakers needs to be covered. This makes
such models difficult to manage and to deploy. For example,
this problem is evident in the domain of media monitoring or
indexing of large speech corpora where one might need to iden-
tify the speech segments of a wide and growing range of public
figures, such as politicians, scientists and celebrities.

On the other hand, very large collections of audio and video
documents are available online. The documents often come
with metadata which may provide information about the per-
sons speaking in the document. For example, many items in the
BBC radio archive1 have a ‘Contributors’ section which lists
the names of the speakers appearing in the programme, often
together with names of other crew, such as producers and di-
rectors. Often, the names of the speakers appearing in the au-
dio/video document are given in free form text. For example,
a video on YouTube that contains an interview with Elon Musk
has probably the name ‘Elon Musk’ in the title and may further
elaborate on the contents in the video description. However, the
metadata rarely provides information about ‘who spoke when’,
i.e., it doesn’t provide the necessary information for training
speaker identification models in a supervised way.

This paper presents a method for training speaker identifi-
cation models in a weakly supervised manner, relying only on
the possibly incomplete set of speakers occurring in each audio
document in the training set. That is, the method does not need
training data annotation at the speech segment level but rather

1http://www.bbc.co.uk/archive/

at the recording level. The method relies on speaker diarization,
i-vectors [1] and deep neural networks. First, each recording in
the training corpus is processed by a speaker diarization mod-
ule that partitions the recording into homogeneous segments,
applies speech/non-speech detection and clusters the result-
ing speech segments according to likely (anonymous) speaker
turns. Second, i-vectors are extracted from each segment and
averaged across the speaker turns. Finally, a deep neural net-
work (DNN) is trained to perform speaker identification, us-
ing i-vectors as inputs and true speaker identities as outputs.
Since we don’t know the true mapping between i-vectors and
speakers, we cannot use supervised learning using the cross-
entropy criterion to train the DNN, as it is usually done when
training classification models. Instead, we use a technique in-
spired by a method called expectation regularization [2]: rather
than providing the true speaker label for each i-vector, we pro-
vide a speaker distribution over allowed speaker labels for the
i-vectors of each recording and the training procedure is encour-
aged to find model parameters that predict a similar speaker dis-
tribution for each recording. That is, the loss function is defined
at the recording level, not at the speaker level. If different speak-
ers occur intermixed in different recordings in the training data,
then the optimal solution to this objective function is a model
that predicts the true label for each i-vector. The method is sur-
prisingly robust and easy to implement: it requires defining a
loss function for the DNN that can be implemented in just a few
lines of code in any modern deep learning framework.

The evaluation of this technique is performed on two very
different datasets: the VoxCeleb dataset of YouTube videos
[3] and an Estonian broadcast news dataset. VoxCeleb con-
tains automatically retrieved videos corresponding to over 1000
different US celebrities, with around 18 videos per person.
The videos do not have any metadata, other than the name of
celebrity that was used for the corresponding YouTube search.
The Estonian broadcast news dataset consists of over 6000
recordings of the main evening news program of Estonian na-
tional radio. Each recording is accompanied with metadata that
lists all speakers (both news reporters and interviewees) speak-
ing in that programme. The two datasets are very different:
while the VoxCeleb dataset is relatively heterogeneous, with
unconstrained audio recording conditions, it contains roughly
equal amount of speech for each speaker identity. The Estonian
broadcast news database is much more homogeneous but the
amount of speech from different speakers varies greatly: some
news reporters appear in thousands of recordings while most
speakers occur only once. We show that the proposed method
works well for both datasets.

The remainder of the paper is organized as follows. Section
2 presents related work. Section 3 describes the main idea of the
training algorithm. Experimental results are shown in section 4.
Section 5 concludes the paper.
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2. Related work
2.1. Named speaker identification from speech transcripts

An alternative way for avoiding costly segment-level annota-
tions for large-scale speaker name identification in audio doc-
uments is to use automatically generated speech transcripts to
find hints about the speaker identities. This principle is based on
the assumption that the names of the speakers are pronounced at
some point in the document, as it usually happens in broadcast
news. The general principle behind this idea is to detect named
entities in speech transcripts and determine whether they refer
to a speaker in the document or not. This decision is usually
done based on linguistic cues. A popular approach is based on
semantic classification trees (SCT) [4, 5] that are trained to au-
tomatically learn lexical rules that determine whether a detected
named entity is associated with the current speaker turn, previ-
ous turn, next turn or neither of them. (e.g. “thank you Chris-
tiane Amanpour” probably means that the name corresponds to
the previous speaker). The rules are learned based on a large
manually transcribed training corpus where speaker names are
annotated for each speaker turn. The method was tested on
the ESTER corpus of French broadcast news and was shown
to be able to identify the correct speaker during 70% of the total
speech duration (with 18% of false identifications) when man-
ual speaker diarization and manual speech transcripts are used
[4]. Later it was shown that using automatic speaker diarization
and automatic transcripts has a big negative effect on the ac-
curacy of transcript based named identification, increasing the
overall duration of false identification from 17% to 75% [6].

One of the drawbacks of this approach is that the lin-
guistic patterns of using names for speaker introduction (or
self-introduction) are highly domain-specific. For example, in
broadcast news, reporters and interviewees are introduced using
different words than in talkshows.

2.2. Named speaker identification from TV captions

When working with video data, written names in the overlaid
video captions can be used as another source of information
for named speaker identification. Early experiments with this
approach struggled with high name detection error rate due to
the bad video quality [7]. Later approaches identify names with
very high precision, partly thanks to better video quality and
partly due to improved algorithms. For example, in [8], 80%
precision and 68% recall was reported on the REPERE corpus
of French TV broadcasts, using time-weighted error metrics.

The main shortcoming of this approach is that it only works
for broadcast TV data. It cannot be applied to radio broadcasts
and to online video archives where speaker names are not anno-
tated in the overlaid title block.

2.3. Named speaker identification in video using face iden-
tification

When working with video data, speakers could also be identi-
fied based on face identification. This approach was used for
constructing the VoxCeleb database [3] which contains hun-
dreds of thousands of ’real world’ utterances for over 1000
celebrities. The database was collected from YouTube, using
the following workflow. First, a target speaker list was con-
structed, using an intersection of popular celebrity names and
persons appearing in the VGG Face dataset [9]. Second, 50
top YouTube videos were retrieved for each person, using a
query “<name> interview”. Third, a face detector was used
to identify faces in video frames. Fourth, audio-video synchro-

nization between detected faces and speech was determined, in
order to identify which face in the video corresponds to the cur-
rent speaker (if any). Finally, a face verification system was
used to determine whether the face of the active speaker cor-
responds to the target person of the video. This results in a
database where high-confidence video segments corresponding
to the target speakers are automatically annotated and can be
used for training speaker identification models. Experiments
showed that a speaker identification model trained on such data
achieves 80.5% accuracy, using a closed set identification task.

2.4. Multi-instance multi-label learning

The task of training a speaker identification model based on
speakers annotated at the recording level could be formulated
as a multi-instance multi-label (MIML) learning problem [10].
MIML handles the general classification task where objects in
the training set are decomposed into a bag of instances and are
associated with multiple class labels. For example, in image
classification problems, an image could be decomposed into
segments and labeled with multiple labels, whereas the rela-
tionship between segments and labels is not explicitly given in
training data. The standard goal in MIML is to learn a classifier
that predicts a label set for an unseen bag of instances. Vari-
ous algorithms for MIML have been proposed in recent years
[10, 11, 12].

A common approach to MIML shared by several recently
proposed algorithms [13, 14] is to use a ranking loss to opti-
mize the MIML classifier. For example, the MIMLfast algo-
rithm [13] uses the following method to learn the model: at
each step, MIMLfast randomly samples a triplet from training
data which consists of a bag, a relevant label of the bag and an
irrelevant label, and optimizes the model to rank the relevant
label before the irrelevant one if such an order is violated.

The method proposed in this paper could be extended to
handle the general MIML problem and is one of the directions
for our future work.

2.5. Label regularization

Our method is directly inspired by a technique called expecta-
tion regularization [2], a semi-supervised method that augments
the traditional log-likelihood loss function with an additional
term that encourages the model predictions on unsupervised
data to match some expectations, typically given as class pri-
ors. The idea of this method is that while the mapping between
inputs and outputs must be learned from supervised data, prior
knowledge about the unsupervised data can provide the model
important side information. The method penalizes models by
divergence between the model’s average expectations over the
unsupervised data and prior probabilities of the labels, which
can be estimated from labeled data or given as prior knowledge.
The method is found to be robust, it is easy to implement and
scales well to large datasets.

3. Proposed method
The proposed method relies on an annotated set of speakers ap-
pearing in each audio recording. Note that the set does not need
to be exhaustive: only the speakers that need to be identifiable
by the system must be included in the sets.

Outline of the training process is depicted in Figure 1. First,
we apply a speaker diarization system to the training data. This
step partitions the recording into homogeneous segments, dis-
cards non-speech segments and clusters the speech segments
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Figure 1: Architecture of the weakly-supervised training pro-
cess.

that are likely uttered by the same speaker.
Next, we use an i-vector extractor to compute i-vectors for

all speakers in all recordings. The i-vector extractor can be
trained on available labeled training data, possibly from another
domain. Alternatively, the i-vector extractor can be trained on
the automatically clustered speakers of the training set. We ex-
perimented with both methods and found no clear difference
between those alternatives.

Here we give some useful notations for the rest of this sec-
tion. Let X ⊂ RD denote the D-dimensional feature space
(i.e., the i-vector space) and Y = {1, 2, ..., C} the set of tar-
get speaker identities. The training corpus D contains a set
of N audio recordings {Xn}n=1,2,...,N where each record-
ing Xn contains a set of i-vectors for the diarized speakers
Xn = {xmn}m=1,2,...,Mn , with xmn ∈ X . The training
corpus also contains the corresponding sets of speaker labels
for each recording {Yn}n=1,2,...,N where Yn ⊂ Y . Note that
the number of speaker labels does not have to agree with num-
ber of i-vectors for the corresponding recording, and the cor-
respondence between xmn and the elements in {Yn} is not
known. The task is to train a model to classify i-vectors based
on the speaker identities, i.e., to learn a classification function
f : X → Y from the training dataset.

We use a feed-forward neural network to learn the mapping
from the i-vector space to the speaker label space. First, we aug-
ment the set of target speaker identities with a special 〈unk〉
identity reserved for unknown speakers, Y ′ = Y ∪ {〈unk〉}.
The neural network takes i-vectors as input and has |Y ′| out-
puts. The softmax function is used in the final layer of a neural
network.

The neural network is trained using an objective function
defined at the recording level, not at the single training sample
level as usually. Specifically, we want the neural network pre-
dict a similar set of speakers for the set of i-vectors as is defined
in the metadata. To achieve this, we first define the expected
average distribution over the speaker labels for each recording
as

¯̃pn(yi) =


1

|Xn| , if yi ∈ Yn
max(0, 1− |Yn|

|Xn| ), if yi = 〈unk〉
0, otherwise

(1)

The recording level objective function is the Kullback-
Leibler divergence between the expected average distribution

Input

Dense

Dropout

Dense Dense

Dropout Speaker 1

Speaker 2

Speaker C

〈unk〉

LeakyReLU LeakyReLU Softmax

Figure 2: Architecture of the speaker identification DNN.

and model’s expected average conditional distribution:

D(¯̃p|| ¯̂pθ) =
∑
y

¯̃p log
¯̃p
¯̂pθ

(2)

The idea of this objective function is that we don’t know
the exact correspondence between the i-vectors and speakers of
a recording, but we want exactly a single i-vector to be assigned
to each speaker of the show, and the rest (if any) to be absorbed
by the class that is reserved for unknown speakers. Clearly,
the assumption that only one i-vector corresponds to a labeled
speaker is not always true: in broadcast news, a news anchor
could be speaking at the beginning of the news show with back-
ground music, and later without music, which usually causes the
speaker diarization module to split the single speaker into two
pseudo-speakers. Similarly, a reporter could speak both in a stu-
dio setting and with a noisy background in a single news show,
also resulting in two i-vectors. However, we haven’t found this
to cause any noticeable problems.

The proposed method works only if the recordings in the
training data have sufficiently different speaker distributions.
Note that the objective function does not encourage the neural
network in any way to assign a high probability to a particular
speaker in the recording – given a single recording and a set of
speakers for that recording, the objective function can be mini-
mized by predicting a uniform distribution over all i-vectors for
all speakers appearing in that particular recording. However,
since we require the recordings to have different speaker distri-
butions, the neural network has to start assigning non-uniform
distributions to the i-vectors of a show, in order to better fit the
data.

The neural network also doesn’t learn to differentiate be-
tween the speakers that occur always together in the same
recordings.

The training algorithm is summarized in listing 1.
We used a very simple deep neural network as the under-

lying model (Figure 2) . The network has two fully-connected
hidden layers, using the leaky rectified linear units. The num-
ber of hidden units was optimized on development data. We
found that dropout layers added after the dense layers improve
performance of the model.

This method is very similar to expectation regularization,
described in section 2.5. However, we use it without the super-
vised log-likelihood loss, and we use a different prior probabil-
ity for each minibatch (where the minibatches correspond to the



Data:
List of target speaker names: Y = {1, 2, ..., C} ;
A set of N diarized audio recordings with metadata,
consisting of
• i-vectors {X1, ..., XN}, Xn = {xmn}
• Speaker names: {Y1, ..., YN}, Yn ⊂ Y

Result: Trained model that maps X → Y
Initialize neural network with parameters θ;
Precompute expected average speaker distribution ¯̃pn for

each recording according to eq. 1;
while training hasn’t converged do

Shuffle training data;
for n = 1...N do

Compute the neural network predictions p̂mθ for
i-vectors xmn;

Compute average predictions
¯̂pθ = 1

M

∑
m=1..M p̂mθ ;

Update model weights: θ ← SGD(D(¯̃pn|| ¯̂pθ));
end

end
Algorithm 1: Algorithm for training a neural network on
weakly labeled data.

i-vectors of the same recording), not globally as in expectation
regularization.

4. Experiments
We conducted experiments on two datasets: the VoxCeleb
database and an Estonian broadcast news dataset.

4.1. VoxCeleb

As described in section 2.3, VoxCeleb is a dataset that con-
tains YouTube videos corresponding to over 1000 celebrities.
The dataset is collected automatically by retrieving top matches
from YouTube for queries “<name> interview”, for a prede-
fined list of celebrity names.

Table 1: Statistics of the VoxCeleb dataset. Medians shown with
lower and upper quartiles where appropriate.

# of target speakers 1251
# of videos per target speaker 14 (13 / 22)
Video length (s) 268 (171 / 426)
# of diarized speakers per video 3 (2 / 4)

One method to train a speaker identification system based
on this dataset was proposed in [3] and summarized in section
2.3. The method relies on a large face recognition database
that is used to train a face verification model that covers all the
celebrities in the dataset. The face verification model is used
to identify video segments where the corresponding celebrity is
speaking and the speaker identification model is trained based
on those speech segments.

Our method, on the other hand, uses only the speech data.
Additionally, the name of the celebrity for whom the video cor-
responds to is used as weak supervision2.

2We found that there were some videos that were retrieved for sev-
eral celebrities. In this case, we used all the names as weak supervision
for this video

We used a speaker diarization system trained on Estonian
radio broadcast data [15] to segment and cluster the VoxCeleb
training data, despite the obvious domain mismatch. The di-
arization system is based on the LIUM SpkDiarization toolkit
[16] and uses BIC clustering [17] followed by CLR-like cluster-
ing [18] to find the most likely segment-to-speaker mappings.

The speaker-diarized VoxCeleb training data was used to
train an i-vector extractor using Kaldi [19]. We use 600-
dimensional i-vectors. The underlying 20-dimensional MFCC
features are extracted from band-limited speech signal, with
the high cutoff frequency of 3700 and a frame length of 20.
Speaker-level i-vectors are computed by length-normalizing the
utterance i-vectors, averaging the utterance vectors and finally
length-normalizing the average.

The DNN for speaker identification has two hidden layers
with a dimensionality of 1024. Dropout layers use a dropout
proportion of 0.2 at training time. The DNN was trained for 50
epochs using the described weakly supervised method, with a
linearly decreasing learning rate on the training partition of the
VoxCeleb data.

Validation and evaluation is performed on the segments of
the VoxCeleb development and test data that are verified to be-
long to the corresponding celebrity using face identification.
That is, we use the same speech segments for speaker identi-
fication evaluation as are used in the VoxCeleb paper.

Although our speaker identification model is an open-set
model, meaning that it assigns a probability to the prediction
that the input is an an unknown speaker, we use the model at test
time in a closed set mode by discarding the unknown speaker
output. This is compatible to the approach used in the VoxCeleb
paper.

The speaker identification results are given in Table 2. Our
DNN trained in weakly-supervised manner achieves 94.6% top-
1 accuracy, noticeably higher than the CNN trained on face-
verified segments, as proposed in the VoxCeleb paper.

Table 2: Speaker identification accuracies on the VoxCeleb test
set.

System Top-1 (%) Top-5 (%)
CNN on spectrograms, trained
on face-verified segments [3]

80.5 92.1

DNN on i-vectors, weakly su-
pervised

94.6 98.1

4.2. Estonian broadcast news

In the second experiment, we use recordings of the Esto-
nian Public Broadcasting main evening news radio programme,
Päevakaja. The programme delivers daily news reports and
commentary from people involved.

4.2.1. Training data

In order to perform weakly supervised training, we downloaded
all available 6619 recordings of the programme from the archive
of the broadcasting organization. The programme has been on
air since 1944 but the majority (92%) of the recordings in the
archive originate from 2004 and later. As we executed the
download at the end of 2016, the last show originates from
November 16, 2016. Most of the recordings range from 10 to
24 minutes in length. A small percentage of recordings is less
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Figure 3: Zipf plot showing the number of appearances per
speaker in Päevakaja training data vs. his/her frequency rank.

than 5 minutes or more than 25 minutes long. The total duration
of the recordings is 1854 hours.

The recordings in the archive are accompanied with meta-
data that also includes the names of the speakers that appear
in the programme. The number of different names across all
programmes is 13 771. The majority of speakers occur only
once: only 4967 appear more than once, and 1529 appear at
least five times. The most frequently appearing speakers are
news reporters and anchors. The most frequent speaker who is
not related to the production of the programme is Andrus An-
sip who was the prime minister of Estonia from 2005 to 2014.
He appears in 498 different shows. Figure 3 shows the number
of appearances vs the ranks of all speakers in the training data.
The positions of Andrus Ansip and Toomas Hendrik Ilves (the
president of Estonia from 2006 to 2016) are highlighed.

When analyzing the speaker information given in the meta-
data, we discovered that the metadata of over 2000 different
shows not include any speaker information. It turned out that
most of the shows between 2006 and 2008 miss the speaker
annotation. We discarded the shows with zero speakers from
our training data. The histogram of the number speakers per
show (after discarding invalid shows) is shown in Figure 4.
We can observe two local maxima in the histogram: one cor-
responding to one speaker per show, and another one around
the 15 speakers-per-show point. This can be explained by the
fact that for some time periods, the archive also contains short
news shows that often do consist of only a single news reporter
speaking.

4.2.2. Evaluation data

For evaluation, we used 16 manually annotated news recordings
of the same programme. The shows originate from June to July
of 2017, that is, more than a half a year later than the last show
in the training set. The first eight shows were used as a devel-
opment set and the last eight shows for evaluation. Overview of
the data is given in Table 3. The speakers appearing in the de-
velopment and evaluation data were grouped into news anchors
(including reporters and commentators) and other persons not
related to the production of the programme. It can be seen that
although only about one quarter of the speakers are anchors,
their speech takes up the majority of the total speaking time.
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Figure 4: Histogram of the number of speaker per show’s meta-
data in Päevakaja training data, after discarding shows with no
speaker annotation.

Table 3: Development and evaluation set statistics.

Dev Eval
# shows 8 8
Total number of speakers 99 121

Anchors 24 32
Non-anchors 75 89

Total speaking time 2h08 2h38
Anchors 1h22 1h41
Non-anchors 0h43 0h57

Average show duration (min:sec) 17:11 21:00
Average # of speakers per show 16.1 19.0
Average speaking time (seconds) 60 62
Minimum speaking time (seconds) 6 8
Maximum speaking time (seconds) 320 401

4.2.3. Data pre-processing

For segmenting and clustering the training and evaluation data
we used same speaker diarization system that was used in the
VoxCeleb experiments. The mean diarization error rate (DER)
of the system is 0.10 on development data and 0.12 on test data.
The i-vector extractor is trained on around 200 hours of man-
ually annotated Estonian speech recognition training data. As
in the VoxCeleb experiment, we use 600-dimensional i-vectors
with length normalization.

4.2.4. Model

For training the speaker identification DNN, we prune the list
of speakers to include only those that occur at least twice in
the training data, resulting in 4939 unique names. This set cov-
ers 59% of the development set speakers. The DNN has 1024
units in both hidden layers and uses a dropout proportion of 0.5.
The model is trained for 100 epochs, with learning rate decreas-
ing linearly from 0.01 to 0.001. The described hyperparameters
were tuned so that the speaker recall of the development set at
95% precision would be optimized. We optimized the model
using the 95% precision constraint as we intend to use it in an
application where high precision is more important than high
recall.

Note that contrary to the VoxCeleb experiment, the speaker
identification in this task is an open set model, i.e., it assigns a



Table 4: Speaker identification results on manually segmented
Päevakaja data.

System Dev Eval
Precision Recall Precision Recall

Supervised 100% 15% 100% 17%
Proposed 95% 41% 95% 45%

probability to the unknown speaker.

4.2.5. Results

We used a speaker identification system trained in supervised
manner for comparison. The system is trained on around 200
hours of manually transcribed speech data. The data consists
of broadcast news, broadcast conversations (such as talk shows
and interviews from both TV and radio), lectures and confer-
ence talks. Most of the material originates from between 2010
and 2014. The system includes models for 814 speakers – all
persons with at least 10 utterances in the training data. Cosine
similarity metrics between speaker i-vectors is used for identi-
fying speakers. The similarity threshold was optimized on de-
velopment set so that recall at the 95% precision would be opti-
mized. Note that this actually results in 100% precision on both
development and test set, as any lower threshold would have
reduced the precision below 95%.

Table 4 lists speaker identification precision and recall of
the baseline and proposed systems, using manually segmented
evaluation data. The weakly supervised system greatly outper-
forms the baseline system. Actually, the proposed system even
results in higher recall than the oracle maximum of the super-
vised system, since the supervised system covers only 28% of
the speakers in the development set.

It is difficult to compute speaker-level precision and recall
metrics for the automatically segmented and diarized evaluation
data, as a single real speaker can correspond to many clusters in
the speaker diarization result, or vice versa. Therefore, we used
time-weighted error metrics: identification error rate (IER), pre-
cision and recall characterize now the proportion of time during
which the current speaker is identified correctly. We used the
pyannote.metrics Python package [20] to calculate the results.
A collar of 0.5 seconds was used at speaker change boundaries.
Time-weighted results on the evaluation set, based on both per-
fect (oracle) and automatic diarization, are listed in Table 5.

The proposed weakly supervised system performs notably
better than the baseline supervised system that was used for
comparison. The supervised system is not able to identify al-
most any of the non-anchor speakers, whereas the weakly super-
vised system identifies non-anchors correctly during 20% of the
time. This can be partly explained by the fact that most of the
manually annotated training data originates from before 2015,
and there has been a strong shift in Estonian political landscape
since then, resulting in a different set of public figures who ap-
pear in radio news. This also shows the strength of the weakly
supervised system, as it is much easier to obtain or create up-
dated training data for it, compared to manually segmented and
annotated data.

Automatic speaker diarization errors have a noticeable ef-
fect on the accuracy of the speaker identification systems: the
average identification error rate of the weakly supervised sys-
tem increases from 28% to 35%.

We analyzed how many times a speaker must appear in the

Table 5: Time-weighted speaker identification results on man-
ually segmented and automatically segmented Päevakaja eval-
uation set.

Speakers System IER Precision Recall
Oracle diarization

All Supervised 49% 100% 51%
Proposed 28% 96% 75%

Anchors Supervised 22% 100% 78%
Proposed 4% 98% 98%

Non-anchors Supervised 99% 100% 1%
Proposed 78% 89% 24%

Automatic diarization

All Supervised 56% 96% 45%
Proposed 35% 93% 66%

Anchors Supervised 34% 96% 69%
Proposed 14% 94% 89%

Non-anchors Supervised 99% 100% 1%
Proposed 80% 90% 22%

weakly labeled training data in order to be identified in un-
seen data. Figure 5 shows how the number of appearances of
a speaker relates to the probability of him/her being correctly
identified in unseen data. The dots correspond to the empirical
identification probabilities (number of appearances vs relative
frequency of identification) and the line corresponds to the lo-
gistic regression curve fitted to the empirical data in log space.
The dots show that, for example, speakers with 5 appearances
in training data were never recognized in test data. The min-
imal number of appearances that resulted in correct identifica-
tion was only six. However, around 15 appearances are needed
for the probability of identification to become more than 50%.

A speaker identification system based on the proposed ap-
proach is currently used in the archive of automatically tran-
scribed Estonian broadcast data [21], available at http://
bark.phon.ioc.ee/tsab.

5. Conclusion
We have presented a method to train speaker identification mod-
els using only the information about speakers appearing in each

1 2 5 10 20 50 100 1000
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Figure 5: Number of appearances per speaker in training data
vs the probability of identifying him/her in evaluation data. The
orange line shows a log-space fitted logistic regression curve.
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of the recordings in training data, without any segment level an-
notation. Obtaining or creating such training data is much easier
than segment-annotated data. To our knowledge, this is the first
attempt to use such high-level annotation for this task. During
training, we use speaker diarization and i-vector extraction to
map different speakers in each recording to fixed-dimensional
vectors. A neural network is then trained using a special ob-
jective function that encourages the model to assign a similar
average distribution of labels to the i-vectors of a single show
as the annotation in the training data. Our experimental results
show that a model trained using such weak labels can provide
a recall of 66% at 93% precision on a broadcast news task. On
the VoxCeleb dataset of YouTube videos, the method results in
94.6% accuracy, greatly outperforming a baseline system that
uses face identification for obtaining training data annotation.

In the future, we plan to extend the method to a more gen-
eral multi-instance multi-label learning problem.
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[15] Tanel Alumäe, “Recent improvements in Estonian
LVCSR,” in SLTU, 2014.

[16] Sylvain Meignier and Teva Merlin, “LIUM SpkDiariza-
tion: an open source toolkit for diarization,” in CMU
SPUD Workshop, 2010.

[17] Scott Chen and Ponani Gopalakrishnan, “Speaker, envi-
ronment and channel change detection and clustering via
the Bayesian information criterion,” in DARPA Broadcast
News Transcription and Understanding Workshop, 1998.

[18] Douglas A Reynolds, Elliot Singer, Beth A Carlson, Ger-
ald C O’Leary, Jack J McLaughlin, and Marc A Zissman,
“Blind clustering of speech utterances based on speaker
and language characteristics,” in SLP, 1998.

[19] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Hanne-
mann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely, “The Kaldi
speech recognition toolkit,” in ASRU, 2011.
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