
An initial investigation on optimizing tandem speaker verification and
countermeasure systems using reinforcement learning

Anssi Kanervisto1, Ville Hautamäki1, Tomi Kinnunen1, Junichi Yamagishi2

1University of Eastern Finland, Finland.
2National Institute of Informatics, Japan.

{anssk, villeh, tkinnu}@cs.uef.fi, jyamagis@nii.ac.jp

Abstract
The spoofing countermeasure (CM) systems in automatic
speaker verification (ASV) are not typically used in isolation of
each other. These systems can be combined, for example, into
a cascaded system where CM produces first a decision whether
the input is synthetic or bona fide speech. In case the CM de-
cides it is a bona fide sample, then the ASV system will consider
it for speaker verification. End users of the system are not in-
terested in the performance of the individual sub-modules, but
instead are interested in the performance of the combined sys-
tem. Such combination can be evaluated with tandem detection
cost function (t-DCF) measure, yet the individual components
are trained separately from each other using their own perfor-
mance metrics. In this work we study training the ASV and CM
components together for a better t-DCF measure by using rein-
forcement learning. We demonstrate that such training proce-
dure indeed is able to improve the performance of the combined
system, and does so with more reliable results than with the
standard supervised learning techniques we compare against.

1. Introduction
Automatic speaker verification (ASV) systems attempt to ver-
ify if a given speech utterance matches the claimed identity [1].
Alone such systems are susceptible to malicious attacks via re-
play attack [2] or speech synthesis [3], where an attacker at-
tempts to fool the ASV system with crafted audio samples. To
combat this, spoofing countermeasure (CM) systems aim to de-
tect these malicious samples from genuine, “bona fide” sam-
ples. These systems can then be used along with ASV systems
to detect and discard access attempts with e.g. synthetic speech,
to improve the security of the system [3].

The ASV and CM systems are trained in isolation from each
other, and later combined by running test trials through both
systems. To measure performance of such a combined system,
the authors of [4] proposed tandem detection cost function (t-
DCF) to evaluate the performance of the combined system per-
formance. This performance metric takes into account different
error situations that arise from having two different systems and
assigns different costs for these errors. It is a generalization of
the widely adopted detection cost function (DCF) [5] involving
an extra, “spoof” class and two (rather than one) systems being
evaluated.

This work was partially funded by the Academy of Finland
(projects no. 313970 and 309629) and JST CREST Grant (JP-
MJCR18A6, VoicePersonae project, Japan), with computing resources
from IT Center of Sciences (CSC). This research was carried out when
the first author was at the National Institute of Informatics (NII) of Japan
in 2019. We thank Cheng-I Lai for providing code used as a reference
in this work.

The original ASV and CM systems are not trained to mini-
mize the t-DCF metric: they are trained to minimize the errors
in their respective tasks, completely oblivious of the existence
of the other systems and the final use-case. Our aim is to im-
prove the metric of the final task, namely the t-DCF. Unfortu-
nately, to compute t-DCF, one has to compute error-rates with
hard decisions, which is a non-differentiable operation, prevent-
ing updating model parameters with gradient descent. One ap-
proach for optimizing count-based metrics relies on “softening”
the counts with soft (differentiable) versions, e.g. by methods
based on maximal figure-of-merit [6, 7] or using hinge-loss to
approximate error counts [8, 9]. While shown to be effective
optimization techniques, these methods involve functions that
tend to require tuning of parameters for efficient learning [7].

Meanwhile, policy gradients [10] and REINFORCE algo-
rithm [11] offer a generic framework for optimizing functions
in an end-to-end fashion by sampling the function. They are
the basis of reinforcement learning methods (e.g. [12, 13]),
which provide state-of-the-art performance. Policy gradient -
based methods have also been applied to situations where loss
functions depend on sampled variables [14, 15]. REINFORCE
provides provably zero-bias estimate of the gradient of the ob-
jective function and does not have parameters to tune but suffers
from the high variance in the estimated gradients [15].

We propose to optimize tandem system with ASV and CM
systems to perform secure speaker verification using the REIN-
FORCE algorithm. We pre-train disjoint ASV and CM systems
which are then fine-tuned for the spoofing-robust speaker veri-
fication task with REINFORCE using rewards derived from the
t-DCF cost parameters. We then compare these against stan-
dard supervised approaches for fine-tuning such systems. Our
novelty is two-fold. First, the use of REINFORCE on a system
of multiple individual parts (ASV and CM) allows us to ana-
lyze how individual components change during training. Sec-
ond, this is the first attempt of optimizing t-DCF directly for
spoofing-robust speaker verification system.

2. Tandem Detection Cost Functions
An automatic speaker verification system compares enrollment
and test utterances in terms of their speaker similarity and takes
a hard ACCEPT (same speaker) or REJECT (different speaker)
action. As a binary any classifier, ASV systems are prone to two
different types of errors, false alarms (false accepts) and misses
(false rejections). Since the relative severity of each error de-
pends on the application, the performance of an ASV system is
often gauged using the so-called detection cost function (DCF)
which weights the two errors as [5],

DCF = ρtarCmissPmiss + ρnonCfaPfa

= ρtarCmissPmiss + (1− ρtar)CfaPfa
(1)

ar
X

iv
:2

00
2.

03
80

1v
2

 [
ee

ss
.A

S]
 8

 A
pr

 2
02

0

where ρtar, ρnon are the prior probabilities of genuine (target)
and impostor (nontarget) users; the second line is obtained
by assuming that there are only target and nontarget classes
(ρtar + ρnon = 1). Further, Cmiss, Cfa > 0 are the costs of a
miss and a false alarm, and Pmiss, Pfa are the two error rates
of the evaluated system, obtained by hard-counting of errors.
The cost parameters (Cmiss, Cfa, ρtar) are set in advance by the
evaluator and remain fixed in a given evaluation set-up.

While (1) is well suited for performance assessment of ASV
systems used by humans only, it does not factor in the impact of
spoofing attacks. As ASV systems are easily fooled by spoof-
ing attacks, CMs are necessary in retaining the trustworthiness
of ASV systems. Here, CM is defined as another binary classi-
fier that aims at discriminating bona fide (human) and spoofed
speech utterances. A typical design is to place a CM in front
of an ASV system as a human/spoof gate. While conventional
ASV systems have two possible errors, the cascaded system
may now experience four different types of errors: (a) a target
user is accepted by the CM but rejected by the ASV system; (b)
a nontarget user gets accepted by both systems; (c) a spoofing
attack gets accepted by both systems; (d) a target user is rejected
by the CM. With this motivation, the authors of [4] extended the
DCF to a tandem DCF (t-DCF), defined as1,

t-DCF = Cmiss · ρtar(Pa + Pd)

+ Cfa · ρnon · Pb

+ Cfa,spoof · ρspoof · Pc.

(2)

where P• denote the error rates of the four cases noted above
(obtained by treating the CM and ASV decisions independent),
ρspoof is the prior probability of a spoofing attack and Cfa,spoof is
the cost of falsely accepting a spoofing attack.

Both (1) and (2) have primarily been cast for the purposes
of evaluation but not optimization. All the involved error rates
needed for computing these metrics are obtained by counting er-
rors, leading to generally non-differentiable optimization prob-
lem. We could design a “soft t-DCF” using approximations for
the hard error-counts [6, 8, 7], but this would require select-
ing and tuning the parameters of the approximations or require
complex derivations. Instead, we opt for reinforcement learn-
ing methods, as they offer a simple, plug-and-play algorithm to
this problem which we can apply almost directly on this tandem
system to train for better t-DCF.

3. Reinforcement learning
In this section we will cover the terminology and base concepts
required for the REINFORCE algorithm, the core of the tandem
optimization studied in this work.

3.1. Background on reinforcement learning

Reinforcement learning aims to solve problems formulated as
Markov decision processes (MDPs) [16]. A MDP consists of
five distinct components at different timesteps t ∈ N: states
st ∈ S, available actions at ∈ A(s), transition dynam-
ics st+1 ∼ p(st+1|st, at), rewards rt = R(st, at, st+1)
and finally a policy which provides a distribution over actions
π(at|st). The MDP begins in some state s0 ∼ p0(s), followed
by sampling an action a0 ∼ π(a0|s0) which is then used to
evolve the MDP by one timestep s1 ∼ p(s1|st, at). In the pro-
cess MDP provides reward r0 = R(s0, a0, s1). This process

1The definition (2) differs slightly from [4] in terms of how the cost
parameters are defined but the other ingredients remain the same (re-
lated manuscript under preparation).

continues until a terminal state sT is reached, where T ∈ N
denotes length of the episode. One game from beginning to
the terminal state is called an episode, and the experienced se-
quence (s0, a0, r0, s1, a1, r1, s2 . . . sT) is called a trajectory.
It is common to assume that the transition dynamics is not avail-
able. We do not know, for example, how pixels of the screen of
an Atari game change per action [17], and thus, we have to play
it to understand its dynamics.

The goal of reinforcement learning is to find an optimal pol-
icy π∗ that obtains the highest possible expected return over all
episodes, i.e. π∗ = argmaxπ E[

∑T
t=0 rt], where the expec-

tation goes over all initial states and all possible trajectories,
which depend on the policy π. There may be more than one
optimal policy. One family of solutions for this problem are
so-called policy gradient methods [16], which is the core of our
work due to their similarity with gradient-based learning used
in end-to-end deep learning. Other methods, like value-based
learning (e.g. deep Q-learning [17]), could also be used in this
work but as they contain more moving components, we opt for
policy gradient methods for their simplicity and previous use in
supervised learning [15, 14].

3.2. Policy gradients and REINFORCE

Policy gradient methods use the gradient of the objective func-
tion E

[∑T
t=0 rt

]
to perform gradient ascent to find better poli-

cies. If the policy πθ is represented by parameters θ (e.g. the
weights of a deep neural network), the policy gradient theorem
[10] states that2

∇θE

[
T∑
t=0

rt

]
= E

[
T∑
t=0

∇θ log π(at|st)

(
T∑
t=0

rt

)]
(3)

where∇θ• denotes the vector of all partial derivatives of • w.r.t
θ, i.e. the gradient. With the gradient we can then do gradient-
ascent to maximize the objective E

[∑T
t=0 rt

]
directly, i.e. in-

crease expected episodic reward, by updating the policy πθ .
Looking at the right-hand side of (3) we see that this gradi-

ent changes the probability of actions (log π), weighted by how
good the episode was (sum of rewards). If our environment
only has one action per episode, the term on the right-hand side
reduces to∇θπ(a0|s0)r0. Now, if the reward r0 is negative, up-
dating with this gradient will decrease the probability the taken
action a0 in state s0, or informally “do not do that”. If the re-
ward is positive, gradient says to “do it more”. In plain words,
we encourage or discourage the actions we tried, based on the
reward gained. Much like a pet dog being trained to sit on com-
mand, our policy enjoys its virtual cookies and learns to repeat
actions that lead to these cookies.

One instance of the policy gradient methods is the REIN-
FORCE algorithm [11], which iteratively updates the policy pa-
rameters by estimating the gradient in (3), and then updates
the policy with gradient ascent. Using Atari game “Pong” as
an example: the policy takes the role of the player, plays one
episode of the game and either wins (

∑
t rt = 1) or loses

(
∑
t rt = −1). We collect the states and actions policy chose

during the game, and after the game we can use these in (3)
to estimate the gradient and update the policy. If policy won
the game, this update will encourage to take the actions it took

2While [10] derives this for state-action values (not covered here),
this also works for sum of episodic returns (used here) and various other
choices of value [13].

Algorithm 1: Optimizing a tandem system with REIN-
FORCE

Input: Pre-trained ASV πasv and CM πcm with
combined parameters θ, dataset D, reward
function R, mini-batch size B;

while training do
Initialize loss L ← 0
for i ∈ {1, 2, . . . B} do

Sample one trial sasv, scm, âasv, âcm ∼ D
Sample actions (binary decisions).
aasv ∼ Bernoulli(πasv(sasv))
acm ∼ Bernoulli(πcm(scm))
Combine for tandem action.
atandem ← aasv ∧ acm

Compute probability of the tandem action.
ptandem ←{

πasv(sasv)πcm(scm), atandem = 1

1− πasv(sasv)πcm(scm), atandem = 0

Compute reward (Section 4.2).
r ← R(atandem, âasv, âcm)
Accumulate policy gradient losses.
L ← L+ 1

B
(log ptandem)r

end
Backpropagate to obtain gradient∇θL and update

parameters θ with gradient ascent.
end

during the single game. Likewise, if it lost, the update will dis-
courage taking those actions. This is proven to have zero bias
when estimating the gradient, but its high variance makes learn-
ing difficult [16], which is a continuing subject of studies within
reinforcement learning research (see e.g. [12, 13]).

4. Optimizing tandem systems with policy
gradients

In this section we cover the process of optimizing both ASV and
CM systems working as one tandem system for a reduced t-DCF
by using the REINFORCE algorithm with policy gradients.

4.1. Optimizing tandem system with REINFORCE

The process of automatic speaker verification can be seen as a
simple MDP with only two possible actions and one transition:
ACCEPT or REJECT. Same applies to the countermeasure sys-
tem. For each episode the system (policy) receives its input
(state) and decides on whether to accept or reject the trial (take
an action). It is then rewarded depending on whether the deci-
sion was right or not. In the case of multiple systems working
in tandem (ASV and CM), we can model them as one big policy
that provides one final action. The final action is a logical-and
of the individual actions, corresponding to the parallel mode
of system combination described in [4]. With this setup we
can now update both systems with gradient ascent by applying
the REINFORCE algorithm, where policy gradient theorem (3)
allows us to backpropagate through the accept/reject decisions
and logical-and operation.

The training procedure is detailed in the Algorithm 1. The
ASV and CM systems πasv and πcm map their respective in-
puts sasv and scm to probabilities for accepting the trial, de-
noted here by p(ASV accepts trial) = πasv(sasv). The individ-
ual actions aasv, acm ∈ {0, 1} are then sampled individually
from the Bernoulli distributions with the respective probabili-
ties, and the tandem action atandem ∈ {0, 1} for accepting the

trial is a logical-and of the individual actions. In the process
we obtain the probability of the tandem action ptandem. With the
ground-truth labels âasv and âcm we can then assign a reward
R(atandem, âasv, âcm) to this episode, discussed below. These
rewards are then used to accumulate losses that reflect policy
gradient (3) over a mini-batch. Finally, we use the automatic
differentiation tools of PyTorch [18] to compute gradients of
the accumulated loss and apply gradient descent to update all
parameters of both systems.

The major thing to note here is the sampling of actions:
instead of a fixed threshold like done in typical ASV systems,
the systems’ actions are randomly picked according to proba-
bilities they output3. However, in evaluation and final use-case
we would still use a fixed threshold, and sampling is only used
during the training phase. The motivation for this is clearer
from reinforcement learning side: if we always play the same
move in same situation while learning chess, we never explore
other strategies that would be available after taking different
moves. On the other hand, if we always try different actions,
we never exploit the knowledge we already have and explore
already known strategies further. By sampling actions, as in
Algorithm 1, we balance between exploration and exploitation.
This too is an active field of research in reinforcement learning
[16, 19].

4.2. Reward functions

We still have to decide our reward functionR(atandem, âasv, âcm),
which defines the optimization target. We include three simple
reward functions commonly used in the reinforcement learning,
and one derived from the t-DCF cost-model.

Simple: Arguably the simplest solution is R(•) = 1 re-
ward for success (correct decision) and R(•) = −1 reward for
failure (incorrect decision). This is a common reward model
in reinforcement learning, and it was used to define the goal of
winning the opponent while mastering Go [20] and Starcraft II
[21] with reinforcement learning.

Reward: Another common reward model is to reward only
success with R(•) = 1 and give no explicit penalty for failure.
This reward model is common in tasks where there is no ex-
plicit way to fail, e.g. navigating a maze to find a goal [19]. For
our purposes this may not be ideal: incorrect actions do not lead
into any updates (zeroed out by the reward), and positive reward
of correct action keeps pushing those scores higher/lower with-
out limits, which may lead to overfitting in terms of very sharp
predictions. If the initial systems often picks incorrect actions,
this would also lead to small number of samples with non-zero
gradients and thus noisy updates and/or slow learning.

Penalize: More intuitive solution for our purposes is only
penalizing incorrect decisions with R(•) = −1, and with no
reward for correct decisions. Think of a deterministic case with
distribution of target scores, nontarget scores and a fixed thresh-
old. If a sample is on the wrong side of the threshold, this re-
ward model would push it towards the correct side. If sample is
already on the right side, nothing happens. Meanwhile reward
model would do the opposite: move correct scores further away
from threshold, but not move the incorrect samples towards the
other side of the threshold. For this reason, we expect this re-
ward function to work better than reward.

t-DCF: Previous reward functions separate only between

3This is a referred to as stochastic policy. A thresholded ASV sys-
tem would be a deterministic policy, a special case of policy which
is used in some of the reinforcement learning methods (e.g. Deep Q-
learning [17]).

ASV CM Target Nontarget Spoof

Accept Accept 0 −Cfaρnon −Cfa,spoofρspoof
Reject −Cmissρtar 0 0

Reject Accept −Cmissρtar 0 0
Reject −Cmissρtar 0 0

Table 1: The reward-function derived from t-DCF cost function.
Note that there are no positive rewards, only penalties.

the correct and incorrect decisions, but we can also define re-
wards based on individual ground truths, as done in the t-DCF
described in Section 2. This is where we optimize more di-
rectly for t-DCF by using its cost parameters. Recall that RE-
INFORCE operates on individual trials, and for each sample we
compute separate reward. If we compute the t-DCF (2) of an in-
dividual trial, at most one of the P• term remains with value of
one, along with the corresponding C• and ρ• terms. Repeat
this for all the possible combinations of trials (target, nontarget
and spoof) and possible predictions, and we obtain t-DCFs for
individual trials. These rewards (negative of t-DCF) are summa-
rized in the Table 1. This reward function is similar to penalize
reward function with parameters that allow weighting different
error situations differently.

Note that all of the above reward functions have the same
goal and thus the same optimal policy: “predict the correct ac-
cept/reject decision no matter the input”. In that case, does it
make sense to define different reward functions? In reinforce-
ment learning this type of reward shaping [22] can be used to
speed up the learning process, depending on the environment.
In our scenario the target/nontarget samples could be insepara-
ble, due to choice of system architectures, features or data alone.
If so, the reward function would bias training towards rejecting
spoof samples than overly accepting, if the cost of false-accept
is higher than false-reject, for example.

4.3. Related work

REINFORCE, or also called “score function estimator” [15], is
no stranger to supervised learning. It has been used to e.g. com-
pute gradient through loss metric that requires generating a se-
quence of characters [14]. The version of REINFORCE used in
this work is the simplest version, but multiple alternatives have
been proposed over the years with stabler learning, summarized
by [15] along with their proposed method (differentiable soft-
max operation).

The reinforcement learning model used here for the tandem
ASV-CM setup and training is not the only one available, either.
One could, for example, model the situation as a multi-agent
setup with multiple individual policies [23], or use the cascaded
setup where CM first has to accept the trial before passing it
to the ASV [4]. Our focus is on studying the applicability of
REINFORCE on optimizing such tandem systems in terms of
t-DCF, and thus opt for the simplest approach.

5. Experimental setup
Here we cover the corpora, features (front-end), neural net-
work architectures and training procedures used in the exper-
iments. Before tandem-training we pre-train the ASV and
CM systems separately. We repeat all experiments three times
and report averages. This is common in reinforcement learn-
ing as stochastic nature of e.g. REINFORCE training of-
ten leads to different results between runs [24]. Experiment
code is available at https://github.com/Miffyli/
asv-cm-reinforce.

Partition Male Female Bona fide Spoof
Train 8 12 2,580 22,800
Dev 8 12 2,548 22,296
Eval 30 37 7,355 63,882

Table 2: Statistics of the ASVSpoof19 corpus (logical access)
for training spoofing countermeasure systems, with the number
of speakers by gender.

5.1. Corpora and features

Main corpus used in this work is ASVSpoof19 dataset (logical
access scenario) [3], which provides labels for speaker verifi-
cation and spoof samples, generated using different techniques.
We will use ASVSpoof19 corpus for training countermeasure
systems and for the tandem training later. Statistics of the por-
tion used for training independent ASV and CM is summarized
in the Table 2.

ASVSpoof19 does not contain enough data to train a reli-
able speaker verification system based on deep neural networks,
which is why we include VoxCeleb1 [25] data for pre-training
it. We use the training and trial list provided by the authors to
train our system. This list contains 1,211 individual speakers
with 148,642 utterances for training, and additional 40 speakers
and 4,874 utterances for testing. For each utterance we extract a
x-vector with Kaldi using a pre-trained model4 [26]. All the fol-
lowing speaker verification systems use these x-vectors of size
512 as an input.

Following ASVSpoof2019 challenges’ baseline results
with CQCC features [27], we extract CQCC features for all the
utterances in the ASVSpoof2019 dataset. We use the same set
of parameters as used by the ASVSpoof19 CQCC baseline sys-
tem5. The features for the CM system are thus feature matrices
of N × 60, N depending on the utterance length. Note that,
for better performance in this corpus, ASVSpoof19 challenge
participants experimented with multiple different features with
improved results [28, 29]. CQCC features alone may fall short
in terms of raw performance, but they are readily available and
designed for spoof detection [27].

5.2. Evaluation metrics

We evaluate tandem system using the normalized minimal
t-DCF with the same cost parameters and form as in the
ASVSpoof19 challenge [3]. We fix the ASV threshold to its
equal error rate (EER), and sweep over CM thresholds for
minimal, normalized t-DCF. This t-DCF value ranges from
zero (perfect system) to one (CM accepts all spoof sam-
ples). Note that this t-DCF is only used for evaluation, not
for tandem optimization. Performance of individual systems
are evaluated with EER on their respective tasks. Unless
otherwise mentioned, all t-DCF and EER values are com-
puted over ASV protocols of the ASVSpoof19 dataset (tri-
als in ASVspoof2019.LA.asv.dev.gi.trl.txt6), in-
cluding the performance of the CM system.

5.3. Speaker verification system

The deep neural network for ASV is presented in the Fig. 1,
which follows the architecture presented in [31], where authors

4Model downloaded from http://kaldi-asr.org/
models/m7

5 https://www.asvspoof.org/asvspoof2019/
asvspoof2019_evaluation_plan.pdf

6Available in the ASVSpoof19 corpus at https://datashare.
is.ed.ac.uk/handle/10283/3336

https://github.com/Miffyli/asv-cm-reinforce
https://github.com/Miffyli/asv-cm-reinforce
http://kaldi-asr.org/models/m7
http://kaldi-asr.org/models/m7
https://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
https://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
https://datashare.is.ed.ac.uk/handle/10283/3336
https://datashare.is.ed.ac.uk/handle/10283/3336

ASV model

X-vector
(dim. 512)

X-vector
(dim. 512)

Concatenate

Score

Shared parameters

"FF" = Fully connected (dense) layer
"TD" = Time Dilated layer

"Mean pool." = Average pooling over time

FF 512

FF 256

FF 256

FF 512

FF 256

FF 256

FF 512

FF 1

(Dropout)

FF 512

(Dropout)

CM model

CQCC
(dim. N x 60)

Concatenate

CQCC
(dim. N x 60)

Score

TD [-2, 2]TD [-2, 2]TD [-2, 2]

TD [-2, 2]TD [-2, 2]TD {-2, 2}

TD [-2, 2]TD [-2, 2]TD {-3, 3}

TD [-2, 2]TD [-2, 2]TD {0}

TD [-2, 2]TD [-2, 2]TD {0}

FF 256

Mean pool.

(Dropout)

FF 256

(Dropout)

FF 256

TD [-2, 2]TD [-2, 2]TD [-2, 2]

TD [-2, 2]TD [-2, 2]TD {-2, 2}

TD [-2, 2]TD [-2, 2]TD {-3, 3}

TD [-2, 2]TD [-2, 2]TD {0}

TD [-2, 2]TD [-2, 2]TD {0}

FF 256

Mean pool.

(Dropout)

FF 256

(Dropout)

FF 256

FF 256

(Dropout)

FF 256

(Dropout)

FF 1

Figure 1: Neural network architectures for ASV (left) and CM
(right) models. All hidden layers use ReLU activations. Blue
boxes represent “siamese” modules and green “discriminator”
modules. ASV system is a classification back-end with fixed em-
beddings, while CM system contains both front and back-ends.
Time dilated layers follow the notation of [30], and CM model
is a lighter version of X-vector model described in [26].

used mutual-information maximization to train the network. All
training procedures only update this back-end of speaker verifi-
cation (siamese and discriminator module), while the front-end
x-vectors remain fixed. Each training sample consists of two
input features and a {0, 1} target. If both features (x-vectors)
originate from the same speaker, the target is 1, otherwise 0.
Vectors are sampled from the VoxCeleb1 speaker verification
list [25], and the network is updated with mini-batches of size
64, each containing equal amount of samples with targets 0 and
1 to avoid class-imbalance in the training. The network param-
eters are updated to minimize the cross-entropy loss between
sigmoided output of the network and the target labels using
Adam [32], with learning rate of 0.001 for 60 epochs, and with
L2-regularization weight of 5 · 10−5 and no dropout. These
hyper-parameters were chosen through a grid-search on the de-
velopment set of ASVSpoof19 over L2-regularization weights
{0, 10−5, 5 · 10−5, 10−4}, dropout rates {0, 0.25, 0.5, 0.75}
and different training lengths of [5, 60] epochs. We observed
no benefit from increasing layer widths.

After the training on VoxCeleb1 corpus, we adapt to
ASVSpoof19 corpus by fine-tuning parameters with the CM
training list (ASVspoof2019.LA.cm.trn.txt) for 20
epochs, using Adam with learning rate 0.0001. This reduced the
relative EER by 24% on the ASVSpoof19 evaluation set. The
three repetitions reached EERs of 9.74%, 10.73% and 8.90%
in the evaluation set. This is a high error-rate compared to e.g.
system used in the ASVSpoof19 challenge which had an EER
of 2.28% with x-vectors and PLDA back-end [3]. However,

ASV CM

AND

Accept/Reject

Independent systems,
same labels

ASV+CM
dataset

X-vectors CQCCs

ASV CM

Accept/Reject

AND

Accept/Reject

Accept/Reject

Independent systems,
separate labels

ASV
dataset

CM
dataset

X-vectors CQCCs

ASV CM

ASV+CM
dataset

ASV CM

AND

Accept/Reject

Accept/Reject

REINFORCE

X-vectors CQCCs

ASV CMASV CM

Figure 2: Methods for optimizing tandem systems explored in
this work, along with the baseline where the systems are only
trained separately. “ASV+CM dataset” refers to dataset with
only tandem accept/reject labels. Dashed lines represent flow
of training information (i.e. backpropagation).

our focus is not to reach low error-rates, rather to have an initial
system which we then further optimize later with reinforcement
learning.

5.4. Spoofing countermeasure system

CM system uses similar network as ASV, presented in the
Fig. 1. The siamese module uses an architecture similar to the
x-vector network [26], but with smaller layers. All training pro-
cedures update both the front-end (siamese) and back-end (dis-
criminator). We use the same mutual-information maximiza-
tion training [31] as for ASV: if both two sampled utterances
are bona fide samples, the target is 1, otherwise it is 0. No L2-
regularization or dropout was used, and training was halted af-
ter 10 epochs. These hyper-parameters were also chosen by the
same grid-search on ASVSpoof19 development set, with range
of parameters in the case of ASV system. For scoring evalua-
tion trials, we average the embedding features of all bona fide
samples and use it as the second input when testing if trial sam-
ple is bona fide sample or not. Embedding vector is obtained
from the output of the siamese module. We observed a slightly
lower average performance without the siamese architecture, in
both CM and tandem training.

The three repetitions reached EERs of 7.25%, 11.75% and
7.06% on the evaluation set. The high error-rate of the second
repetition indicates that the training of this system is sensitive to
when exactly training is stopped. We speculate this is due to the
“average bona-fide vector” described above, instead of using a
more common network with one input and a single scalar output
for classification.

5.5. Tandem training

With pre-trained systems we combine them in parallel fashion
to create a spoof-robust speaker verification, which we then op-
timize. This optimization affects all the parameters represented
in Fig. 1 (back-end for ASV, front and back-end for CM). Our
main focus is on REINFORCE-based tandem optimization de-
tailed in Section 4, which we will study more in depth experi-
mentally and compare against baseline methods. All methods
explored here are summarized in Fig. 2.

All methods use ASVSpoof19’s development set’s
gender-independent trial list for the tandem-optimization
(ASVspoof2019.LA.asv.dev.gi.trl.txt), which
contains the necessary ASV and CM labels for each trial. This
file list contains 10 different speakers with 2,548 bona fide and

Development Evaluation
Method t-DCF % t-DCF %
Initial .0142 (.0029) 0.0 .2315 (.0547) 0.0

Independent
IM-separate .0182 (.0103) 19.5 .2248 (.1065) -7.8

IM-same .0306 (.0089) 131.7 .2629 (.0693) 13.6
REINFORCE

Simple .0076 (.0023) -42.0 .1690 (.0359) -26.5
Penalize .0074 (.0015) -45.8 .1729 (.0318) -24.5
Reward .0075 (.0019) -43.1 .1737 (.0332) -24.2
t-DCF .0073 (.0011) -45.6 .1725 (.0290) -24.3

Table 3: Results of tandem training, averaged over three repeti-
tions with standard deviation in the parenthesis. The “%” col-
umn shows the average, relative change in the t-DCF compared
to the initial model in percentages. Note that the development
set was used for training.

22,296 spoof samples7. Training batches are constructed as
in the pre-training phase, described in the previous sections.
To avoid catastrophic forgetting and/or destructive updates
due to high variance of the REINFORCE training [15], all
the methods use stochastic gradient descent with learning rate
0.0001 and mini-batch size 64, with total of 50 epochs of
training. Each mini-batch contains roughly equal amount of
target and nontarget sample.

Independent models, separate labels. The pre-trained
ASV and CM systems were not trained with the data avail-
able in this tandem-training phase. For a fair comparison with
REINFORCE-based method we fine-tune the pre-trained ASV
and CM with their respective labels using cross-entropy loss.
Note that there is no tandem training here, we merely use the
new data available to tune the systems. This will be abbreviated
“IM-separate”.

Independent models, same labels. Similar to the fine-
tuning above, we train the ASV and CM systems with cross-
entropy loss, but this time the target labels represent tandem
decision (target only if sample is bona fide and speaker is tar-
get speaker). That is, both systems are trained to do the task
of the other one, with ASV learning to discard spoof samples
and CM learning to reject nontarget speakers. We believe that
with a slow learning rate this keeps systems in the range of their
original tasks, but also utilizes their unique models/features for
the other task. ASV’s x-vector embeddings could contain some
features that make it easy to distinguish synthetic speech, for
example. This is will be abbreviated “IM-same”.

REINFORCE. For the REINFORCE method described in
Section 4, we include experiments with the four explained re-
ward functions simple, penalize, reward and t-DCF. For t-DCF
reward we use the same cost-parameters used in the evaluation:
Cmiss = 1, Cfa = Cfa,spoof = 10, ρtar = 0.95 · 0.99, ρnon =
0.95 · 0.01 and ρspoof = 0.05.

6. Results and Discussion
Table 3 summarizes the average t-DCFs before and after the tan-
dem optimization with different methods. REINFORCE with
different reward functions is able to reach the highest reliable
improvement, with t-DCF reward function having least vari-
ance in its results. Interestingly, training with cross-entropy,
the performance degrades in the training set, but in the evalua-
tion set the performance either improves (IM-same) or degrades
(IM-separate).

In the repetition two the t-DCF increased from 0.3087 to
0.3741 with IM-separate in the evaluation set, while in all RE-

7Note that this is a separate file list from countermeasure partitions
listed in the Table 2.

INFORCE runs the t-DCF reduced regardless of the initial pa-
rameters. Without this outlier repetition the IM-separate ob-
tained an average t-DCF decrease of 22%, placing it to the
similar levels with REINFORCE methods. For IM-same the
same treatment still leads to an increased t-DCF of 14%. This
suggests that REINFORCE-based training offers robust tandem
training regardless of what the initial parameters are.

To further analyze how the ASV and CM systems evolved
during the training, Fig. 3 shows how performance changed
over training. The high variance of the performance between
consecutive steps is common for REINFORCE [24]. REIN-
FORCE training with all reward functions improves the t-DCF
over time, but interestingly ASV performance decreases on the
evaluation set. This ASV result is a recurring theme over all the
training methods and might be due to limited number of speak-
ers in the training set. With the t-DCF reward function, t-DCF
improves in same degree as with other tested reward functions,
but CM EER only reduces by an average 2%, while for the other
methods this is closer to 10%. This suggests that the REIN-
FORCE training with rewards derived from the cost-parameters
learns to optimize for a specific operating point, and/or train
systems to “cooperate together”, without improving the indi-
vidual systems in their separate tasks.

Similar to IM-same training setup, we hypothesise REIN-
FORCE training allows systems to learn “each others’” tasks.
To test this hypothesis, we evaluate ASV’s performance on
CM’s task and vice-versa, swapping the ground-truth labels
while computing the EER. With all reward functions tested,
ASV’s EER in the CM task drops by relative 2% and CM’s EER
in the ASV task drops by relative 10% in the development set.
In the evaluation set the EERs drop by average relative 1.5%
both ways. The larger decrease of CM’s error in ASV on the
development set might be due to overfitting, as the training list
does not contain many speakers. While not large improvements,
this supports our hypothesis that the separate systems learned to
do better in each other’s tasks, which in turn contributes to the
decreased t-DCF. Especially ASV’s support in detecting spoof
samples helps, as the t-DCF evaluation metric used here is sen-
sitive to CM performance.

By studying the detection error tradeoff (DET) curves of
the individual systems before and after tandem optimization
(Fig 5), we see that CM system’s DET curve does not improve
(move towards the left-lower corner) overall but improves in
specific areas and degrades in others. In contrast, ASV’s DET
curve either increases or decreases steadily over the range. With
IM-separate and IM-same, the CM FRR increased at CM FARs
under ≈ 10% in all repetitions, but at higher FRRs the FAR
decreased. Fig. 5c shows an example of a situation where IM-
separate only decreased the overall performance. In REIN-
FORCE based learning, the error-rates decrease around a spe-
cific spot with FRR ≈ 1% and/or FAR ≈ 10% (Figures 5a and
5b). This also suggests that the training schemes optimize for
specific operating points, rather than learning to separate the
target/nontarget classes from each other. Intuitively this is un-
derstandable, as e.g. t-DCF defines the operating by setting how
much we allow false-accepts compared to false-rejections with
its cost-parameters.

While discussing policy gradient optimization in the Sec-
tion 4, we speculated that the REINFORCE algorithm would
“sharpen” the scores, moving them towards infinity without
bounds. Fig. 4 demonstrates the evolution of scores predicted
by ASV and CM systems during one of the repetitions with RE-
INFORCE Simple reward function. The scores indeed spread
out without clear separation happening. However, in cross-

0 10000 20000

60

40

20

0

20

De
ve

lo
pm

en
t s

et
Re

la
tiv

e
ch

an
ge

 (%
)

REINFORCE
Simple

0 10000 20000

60

40

20

0

20

REINFORCE
Penalize

0 10000 20000

60

40

20

0

20

REINFORCE
Reward

0 10000 20000

60

40

20

0

20

REINFORCE
t-DCF

0 10000 20000

20

0

20

40

60

Independent models
Same labels

0 10000 20000

20

0

20

40

60

Independent models
Separate labels

0 10000 20000
Number of updates

60

40

20

0

20

Ev
al

ua
tio

n
se

t
Re

la
tiv

e
ch

an
ge

 (%
)

ASV EER
CM EER
min t-DCF'

0 10000 20000

60

40

20

0

20

0 10000 20000

60

40

20

0

20

0 10000 20000

60

40

20

0

20

0 10000 20000

20

0

20

40

60

0 10000 20000

20

0

20

40

60

Figure 3: Performance metrics over tandem optimization with REINFORCE, evaluated on development (training) and evaluation sets
(first and second row, respectively). Y-axis shows the change in the metric relative to the model before tandem optimization. Curves are
averaged over three experiments, with shaded region representing standard deviation. REINFORCE training reliably improves t-DCF
over training, while cross-entropy (“Independent models”) based methods cause spikes in the error-rates

Figure 4: Evolution of ASV and CM scores during REINFORCE
Simple training in one of the repetitions, from the start to the
end of training regimen. ASV scores are on the X-axis and CM
scores on Y-axis. Scores are scaled towards higher magnitudes
with no clear separation occurring.

entropy based methods (IM-separate and IM-same), the scores
first clump up together in the first few updates after which they
begin to spread out and separate. We suspect that this is due
to cross-entropy moving scores based on how large their er-
ror was (loss is higher if error is high), causing initial errors
to have a large loss and thus larger changes in the parameters.
Meanwhile, REINFORCE-based learning has a fixed step-size
per sample, independent of how far-off the prediction was. This
suggests REINFORCE-based fine-tuning might be stabler than
the standard cross-entropy learning, at the cost of REINFORCE
training requiring more training steps.

7. Conclusion
Speaker verification systems together with a spoofing counter-
measures are trained separate from each other, yet they are eval-
uated as one “tandem” system. In this work, we demonstrated
how reinforcement learning can be used to optimize such spoof-
robust speaker verification tandem system with multiple, indi-
vidual components. Our results indicate that this REINFORCE
method out-performs comparable fine-tuning methods of super-
vised learning, while retaining the individual systems intact for
their respective tasks. Curiously, we found that this tandem
optimization led to the separate systems learning to do each
other’s tasks. Further, the optimization led to reduced error-
rates at a specific threshold. Overall, we see a 20% relative
decrease in relative t-DCF after tandem optimization, but with
ASV error-rates increasing by relative 10%. This suggests the

10 1

100

101

102

Fa
lse

 R
ej

ec
tio

n
Ra

te
 (%

) ASV

Before
After

10 1 100 101 102

False Acceptance Rate (%)

10 1

100

101

102

Fa
lse

 R
ej

ec
tio

n
Ra

te
 (%

) CM

Before
After

(a) Simple

10 1

100

101

102

ASV

10 1 100 101 102

10 1

100

101

102

CM

(b) t-DCF

10 1

100

101

102

ASV

10 1 100 101 102

10 1

100

101

102

CM

(c) IM-separate

Figure 5: DET curves of ASV and CM systems before and after
tandem training, evaluated on the evaluation set and trained on
same initial parameters. These figures were chosen to highlight
the differences in the results of different training procedures.
Where REINFORCE based training is able to improve CM’s
performance, cross-entropy training only manages to decrease
this.

systems learned to cooperate for better tandem performance,
rather than just improving in their separate tasks.

This is but an initial study on using such methods on tandem
systems in speaker verification and related topics. For example,
we did not study the effect of dataset bias on the REINFORCE
training, and how it would change the operating point we are
optimizing for. We also used a single set of models and datasets;
future work should be replicated on alternative ASV and CM
models and datasets. Specifically, what would happen if the
pre-trained systems already had near-perfect error-rates? Would
such tandem-optimization still improve the system as a whole?

REINFORCE training could also be studied further with
e.g. alternative sampling with differentiable distribution known
as Gumbell-softmax [15], which results in less variance than
REINFORCE. One could also create a “soft t-DCF” (i.e. differ-
entiable t-DCF) which could be optimized directly without RE-
INFORCE, something we hinted at in the introduction. While

many questions remain, we are motivated to study this topic
further in the light of the positive results achieved here.

8. References
[1] Douglas A. Reynolds, “Speaker identification and veri-

fication using gaussian mixture speaker models,” Speech
Communication, August 1995.

[2] Tomi Kinnunen, Md Sahidullah, Héctor Delgado, Massi-
miliano Todisco, Nicholas Evans, Junichi Yamagishi, and
Kong Aik Lee, “The asvspoof 2017 challenge: Assessing
the limits of replay spoofing attack detection,” in Inter-
speech, 2017.

[3] Massimiliano Todisco, Xin Wang, Ville Vestman,
Md Sahidullah, Hector Delgado, Andreas Nautsch, Ju-
nichi Yamagishi, Nicholas Evans, Tomi Kinnunen, and
Kong Aik Lee, “Asvspoof 2019: Future horizons in
spoofed and fake audio detection,” in Interspeech, 2019.

[4] Tomi Kinnunen, Kong Aik Lee, Héctor Delgado, Nicholas
Evans, Massimiliano Todisco, Md Sahidullah, Junichi Ya-
magishi, and Douglas A Reynolds, “t-dcf: a detection cost
function for the tandem assessment of spoofing counter-
measures and automatic speaker verification,” in Odyssey,
2018.

[5] Niko Brümmer and Johan Du Preez, “Application-
independent evaluation of speaker detection,” Computer
Speech & Language, 2006.

[6] Ivan Kukanov, Ville Hautamäki, Sabato Marco Sinis-
calchi, and Kehuang Li, “Deep learning with maxi-
mal figure-of-merit cost to advance multi-label speech at-
tribute detection,” in IEEE Spoken Language Technology
Workshop, 2016.

[7] Sheng Gao, Wen Wu, Chin-Hui Lee, and Tat-Seng Chua,
“A maximal figure-of-merit (mfom)-learning approach to
robust classifier design for text categorization,” TOIS,
2006.

[8] Aleksandr Sizov, Kong Aik Lee, and Tomi Kinnunen,
“Direct optimization of the detection cost for i-vector-
based spoken language recognition,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 2017.

[9] Christopher M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics), Springer-
Verlag, Berlin, Heidelberg, 2006.

[10] Richard S Sutton, David A McAllester, Satinder P Singh,
and Yishay Mansour, “Policy gradient methods for re-
inforcement learning with function approximation,” in
NIPS, 2000.

[11] Ronald J Williams, “Simple statistical gradient-following
algorithms for connectionist reinforcement learning,” Ma-
chine learning, 1992.

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov, “Proximal policy optimiza-
tion algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[13] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel, “High-dimensional continuous
control using generalized advantage estimation,” in ICLR,
2016.

[14] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu, “Seq-
gan: Sequence generative adversarial nets with policy gra-
dient,” in AAAI, 2017.

[15] Eric Jang, Shixiang Gu, and Ben Poole, “Categorical repa-
rameterization with gumbel-softmax,” in ICLR, 2017.

[16] Richard S Sutton and Andrew G Barto, Reinforcement
learning: An introduction, MIT press, 2018.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al., “Human-level control through deep re-
inforcement learning,” Nature, 2015.

[18] Adam Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library,” in NeurIPS, 2019.

[19] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and
Trevor Darrell, “Curiosity-driven exploration by self-
supervised prediction,” in ICML, 2017.

[20] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al., “Mastering the game of go with deep neu-
ral networks and tree search,” Nature, 2016.

[21] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al., “Grandmaster level in starcraft ii using
multi-agent reinforcement learning,” Nature, 2019.

[22] Andrew Y Ng, Daishi Harada, and Stuart Russell, “Pol-
icy invariance under reward transformations: Theory and
application to reward shaping,” in ICML, 1999.

[23] Craig Boutilier, “Planning, learning and coordination in
multiagent decision processes,” in Proceedings of the
6th conference on Theoretical aspects of rationality and
knowledge, 1996.

[24] Peter Henderson, Riashat Islam, Philip Bachman, Joelle
Pineau, Doina Precup, and David Meger, “Deep reinforce-
ment learning that matters,” in AAAI, 2018.

[25] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a
large-scale speaker identification dataset,” in Interspeech,
2017.

[26] David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur, “X-vectors: Ro-
bust dnn embeddings for speaker recognition,” in ICASSP.
IEEE, 2018.

[27] Massimiliano Todisco, Héctor Delgado, and Nicholas
Evans, “Constant q cepstral coefficients: A spoofing coun-
termeasure for automatic speaker verification,” Computer
Speech & Language, 2017.

[28] Galina Lavrentyeva, Sergey Novoselov, Andzhukaev
Tseren, Marina Volkova, Artem Gorlanov, and Alexandr
Kozlov, “Stc antispoofing systems for the asvspoof2019
challenge,” 2019.

[29] Bhusan Chettri, Daniel Stoller, Veronica Morfi, Marco
A Martı́nez Ramı́rez, Emmanouil Benetos, and Bob L
Sturm, “Ensemble models for spoofing detection in au-
tomatic speaker verification,” in Interspeech, 2019.

[30] Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudan-
pur, “A time delay neural network architecture for efficient
modeling of long temporal contexts,” in ISCA, 2015.

[31] Mirco Ravanelli and Yoshua Bengio, “Learning speaker
representations with mutual information,” in Interspeech,
2019.

[32] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in ICLR, 2015.

	1 Introduction
	2 Tandem Detection Cost Functions
	3 Reinforcement learning
	3.1 Background on reinforcement learning
	3.2 Policy gradients and REINFORCE

	4 Optimizing tandem systems with policy gradients
	4.1 Optimizing tandem system with REINFORCE
	4.2 Reward functions
	4.3 Related work

	5 Experimental setup
	5.1 Corpora and features
	5.2 Evaluation metrics
	5.3 Speaker verification system
	5.4 Spoofing countermeasure system
	5.5 Tandem training

	6 Results and Discussion
	7 Conclusion
	8 References

