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ABSTRACT

Automatic speaker verification (ASV) systems in prac-
tice are greatly vulnerable to spoofing attacks. The latest
voice conversion technologies are able to produce perceptu-
ally natural sounding speech that mimics any target speak-
ers. However, the perceptual closeness to a speaker’s iden-
tity may not be enough to deceive an ASV system. In this
work, we propose a framework that uses the output scores of
an ASV system as the feedback to a voice conversion system.
The attacker framework is a black-box adversary that steals
ones voice identity, because it does not require any knowl-
edge about the ASV system but the system outputs. Exper-
imental results conducted on ASVspoof 2019 database con-
firm that the proposed feedback-controlled voice conversion
framework produces adversarial samples that are more decep-
tive than the straightforward voice conversion, thereby boost-
ing the impostor ASV scores. Further, the perceptual eval-
uation studies reveal that converted speech do not adversely
affect the voice quality from the baseline system.

Index Terms— black-box attacks, automatic speaker ver-
ification, voice conversion, feedback control

1. INTRODUCTION

Automatic Speaker Verification (ASV) systems have enabled
many real-world applications [1–5]. Such systems for are fac-
ing increasing threats from spoofing attacks for unauthorized
access [6, 7]. In general, such spoofing attacks are grouped
under four major categories, namely, impersonation, replay,
Voice Conversion (VC) and Text-To-Speech (TTS) synthe-
sis [8]. To safeguard the ASV systems from spoofing attacks,
anti-spoofing countermeasures have become critically impor-
tant [8, 9].

From the the attackers’ point of view, the most effective
way to perform attack is within the ASV system [8]. How-
ever, it generally requires system level access, which is not
easily possible in practice. Alternatively, the spoofing attacks
can performed at the input signal level by VC or TTS. The
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current VC and TTS systems are generally developed with
the objective of improving the perceptual quality and simi-
larity, which makes the generated speech to sound closer to
the target [10,11]. However, perceptual similarity may not be
enough to deceive ASV systems as they don’t perceive in the
same way as humans [12].

The black-box attacks represent an advance level of
spoofing attack using synthetic speech [13–15]. In such
attacks, the attacker does not require the knowledge of ei-
ther internal functionality of a system or training data. The
attacker rather needs to observe the output of black-box for
a given input [14]. The strategy of black-box attacks deals
with training a substitute model using machine learning tech-
niques to evade the target system by considering the outputs
of black-box. Such attacks were evaluated on computer vi-
sion tasks [14]. We believe they have become the spoofing
adversary to ASV systems.

Recent studies [16, 17] show that ASV system can be ex-
ploited to perform assist voice mimicry attacks. The results
however showed that even there exists a similarity between
voice of an attacker and the target speaker, mimicks still can
not attack the ASV system successfully. It is also found from
their studies that untrained impersonators do not show a high
threat to an ASV system, but the use of an ASV system to
attack another ASV system is a potential threat. To bring the
previous studies a step forward, we consider training a VC
system as the black-box adversary to attack the ASV systems.

In this work, we propose a feedback-control VC system
based on Phonetic PosterioGram (PPG) VC approach to per-
form attacks to an ASV system. It assumes that we don’t have
any system level access to the ASV system but the ASV out-
put scores. Then the VC network is trained with feedback
from the output score of the black-box ASV system. The ob-
jective function of this substitute network is modified to have
a joint cost based on the VC and the black-box ASV output.
Such feedback-controlled VC can steal one’s voice identity
by simply observing the output scores of the ASV system. To
the best of our knowledge, black-box attacks on ASV systems
through feedback-controlled VC have not been investigated
yet. The framework of performing black-box attacks on ASV
highlights the novelty of the current work.
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2. PPG-BASED VOICE CONVERSION
FRAMEWORK

Voice conversion aims to modify the source speaker’s voice
to sound like that of the target speaker without changing the
linguistic content. Such techniques can be used to generate
the voice of any target speakers to attack ASV systems. Gen-
erally, a conversion function is trained with parallel data from
source and target speakers [18–26]. Recently, various tech-
niques also have been proposed to achieve non-parallel data
VC [27, 28]. Among non-parallel data attempts, one of the
successful approaches is PPG-based VC [29–31]. It models
the relationship between the PPG features, that is called the
linguistic feature, to the acoustic feature. As the PPG feature
is considered to be speaker independent, the source speaker
information is not required in the training process. Hence,
PPG-based VC technique is suitable for many to one con-
version, which relates to the attack scenario, where an un-
known attacker pretends to be the target speaker using con-
verted voice.

2.1. PPG-based Voice Conversion

PPG-based VC framework consists of two stages: training
and conversion.

During training, PPG and aocustic features are first ex-
tracted from the target speaker, denoted as X = [x1, · · · ,xN ]
and Y = [y1, · · · ,yN ], respectively. N denotes the number
of feature frame. As X and Y are extracted from the same
utterance, these two feature sequence are initially aligned.
Then, the feature mapping of the target speaker is trained
by a conversion network with a criterion of minimizing the
mean squared error (MSE) between target and predicted fea-
tures. Given a predicted acoustic feature sequence denoted as
Ŷ = [ŷ1, · · · , ŷN ], the MSE can be computed by

LossV C =
1

N
(Y − Ŷ)>(Y − Ŷ). (1)

During conversion, the trained conversion model is used
to generate the converted acoustic features for given PPGs
from any source speaker. Finally, a vocoder is used to recon-
struct the speech signal from the acoustic features.

2.2. Limitation for ASV Attacks

The VC performance is typically evaluated in terms of per-
ceptual quality and similarity by human listeners [29, 30].
However, improved perceptual quality may not always cor-
relate with an improved ASV score as far as spoofing attacks
are concerned. Such observations have been reported in previ-
ous works [12, 16]. From the attackers’ point of view, a joint
objective function that includes the ASV score as the feed-
back will directly optimize the VC outputs to become more
deceptive to the system.

3. BLACK-BOX ATTACKS ON ASV USING
FEEDBACK-CONTROLLED VC

This section discusses the proposed framework of performing
black-box attacks on ASV using feedback-controlled VC. The
ASV system acts as a black-box that provides feedback to the
VC system to have the desired output.

3.1. ASV System as a Black-Box

The progress in the field of ASV research has witnessed ma-
jor breakthrough in the recent years. It has evolved a lot from
classical GMMs to factor analysis and deep learning mod-
els [1, 32, 33]. In this work, we consider a ASV system with
i-vector speaker models as a black-box [32]. Although re-
cent studies on x-vectors have gained attention in the com-
munity [33], the i-vector based system is still popular in the
community due to its effectiveness under controlled condi-
tions. An i-vector is a compact representation that projects
the GMM mean supervector of an utterance to a lower di-
mensional space that contains the dominant speaker charac-
teristics. We call the ASV system as a black-box because the
attacker doesn’t have any access to internal algorithms except
the output scores.

3.2. Feedback-controlled VC

The objective of the feedback-controlled VC is to adjust the
converted voice to be more deceptive for the ASV black-box.
It is assumed that the attacker has the knowledge of the ASV
output score for each input trial. However, the attacker does
not need to have the understanding of the ASV system.

In our proposed feedback-controlled VC, an ASV feed-
back is included into the training process to update the VC
model. Fig. 1 shows the training process of the feedback-
controlled VC system. Two types of losses are used to up-
date the conversion model by minibatch stochastic gradient
descent. For each minibatch, the predicted acoustic features,
Ŷ, is first obtained with given input PPGs, X, as described
in Section 2.1. The MSE loss of VC, LossV C , can be calcu-
lated by Eq. (1). Simultaneously, we generate the converted
speech with Ŷ. An ASV score, denoting the similarity be-
tween i-vectors of converted and target speech, is obtained by
feeding the converted speech to the black-box ASV system.
The LossSV is calculated by normalizing it between [0, 1],
followed by its transformation in the negative scale as an-
other loss. Then the two parts of losses are combined with
a weighted ratio α to update the conversion network. The
combined loss is defined as

Loss = (1− α)× LossV C + α× LossSV , (2)

4. EXPERIMENTS

This section describes the database and experimental setup.
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Fig. 1. The block diagram of the training stage for the feedback-controlled voice conversion and ASV system. LossV C and
LossSV denote the loss from conversion model and ASV feedback respectively. The weighted sum of LossV C and LossSV is
used to update the conversion model.

4.1. Database

The experiments are conducted on the logical access subset
of ASVspoof 20191 corpus that deals with synthetic speech
attacks [34]. For VC system training, 6 speakers form devel-
opment set are selected as target speakers, including 3 male
(LA 0070, LA 0071 and LA 0073) and 3 female (LA 0069,
LA 0072 and LA 0074) speakers. 120 utterances from each
speaker are used for training, where the size of training and
validation sets are fixed as 100 and 20 utterances, respectively.
42-dimensional PPG features are extracted by the PPG extrac-
tor [30] as VC system input. We then extract 80-dimensional
mel-filterbank features from 513-dimensional spectrogram as
VC system output. The Griffin-Lim vocoder [35] is used for
speech signal reconstruction. All audio files are sampled at
16 kHz for VC.

For ASV attack experiment, 67 speakers from the evalu-
ation set are selected, with 20 utterances from each speaker.
These speakers form the imposter set for our studies totalling
1,340 non-target trials against each target speaker. The same
1,340 utterances are used as source speech for two VC sys-
tems with and without ASV feedback. The two sets of con-
verted trials are then considered to perform attacks to the ASV
system. In addition, we consider 120 genuine trials from each
of the 6 target speakers to obtain the genuine scores. We note
that all audio files are resampled at 8 kHz for ASV studies.

4.2. Experimental Setup

• PPG-VC: It refers to the PPG-based VC system without
ASV feedback [29]. The network contains two Bidirec-
tional Long Short-Term Memory (BLSTM) layers with 512
hidden units of each layer. The network input is PPG fea-
tures (42-dim); while the dimension of output is 240, con-
sisting of the mel-filterbank (80-dim) with its dynamic and
accelerate features.

• PPG-VC-FC: It refers to the proposed feedback-controlled

VC. We use the same network setting as that of PPG-VC
system. The network is updated with the combined loss
from both VC and ASV systems. Empirically, the weighted
ratio α is set to 0.7 according to the observations on the
validation set.

For the training of all the models, the minibatch size is set
to 5, while the momentum and learning rate are set as 0.9 and
0.002, respectively.

We use i-vector based system for ASV studies [32]. The
attacker uses this system as a black-box to feed the output
score to the proposed feedback-controlled VC. The standard
Kaldi2 implementation of i-vector is used in this work. The
system uses mel frequency cepstral coefficient (MFCC) as
acoustic features and energy based voice activity detection
for feature selection. The Switchboard and NIST SRE cor-
pus 2006-2012 are used to train the i-vector extractor of 400
speaker factors. The extractor is then used to derive 400-
dimensional i-vector that represents the utterances of every
speaker by dominant speaker representation. In this work, we
used cosine distance between the train and the test i-vectors
to generate the ASV score for authentication of a trial. We
consider equal error rate (EER) that provides the trade-off be-
tween the false alarm and miss probability as the metric to
report results.

5. RESULTS AND ANALYSIS

In this section, we report the results for the black-box attacks
performed on the ASV system. Apart from the studies with
the attacks, perceptual studies are also conducted.

5.1. ASV Studies with Black-box Attacks

Table 1 shows the performance comparison for ASV systems
under different attacks, which include imposters, PPG-VC

1https://datashare.is.ed.ac.uk/handle/10283/3336
2http://kaldi-asr.org/



Table 1. Performance in EER (%) for ASV system under
different attacks on evaluation set of ASVspoof 2019 corpus.
XXXXXXXXXXSubset

Attacks Imposter PPG-VC PPG-VC-FC

Male 2.62 25.00 26.67
Female 2.38 31.60 32.90
Overall 2.72 29.25 30.73

and proposed PPG-VC-FC. The performance are reported for
male and female speakers separately as well as the overall
result. We observe that the ASV system perform very effec-
tively when the imposter trials are used. However, the per-
formance decreases by large margin when the PPG-VC based
VC attacks are performed. It is observed that our proposed
PPG-VC-FC based system further decreases the performance
showing the vulnerability of ASV systems to black-box at-
tacks. In order to have detailed investigation, we observe the
score distributions of different systems with two examples.
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(a) ASV score distribution of a male target (LA_0071)
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(b) ASV score distribution of a female target (LA_0069)

Fig. 2. ASV score distributions for a male (LA 0071) and a
female (LA 0069) target speaker. PPG-VC and PPG-VC-FC
legends represent scores from baseline VC and our proposed
feedback-controlled VC, respectively.

Fig. 2 (a) and (b) show examples of the score distributions
for a male (LA 0071) and a female (LA 0069) target speaker.
We observe that for both male and female speaker, the gen-
uine and imposter scores generated from the ASV system are
clearly separated that suggests its effectiveness for verifying
a claimed identity. It is found that PPG-VC system can yield
ASV scores close to those of the genuine target samples. In
addition, we observe that our proposed PPG-VC-FC further
enhances the ASV scores by shifting the score distributions to
the right. The results clearly show that PPG-VC-FC heightens
the security threat to the ASV system.

In summary, we observe that the PPG-VC-FC system ef-
fectively shifts the ASV output scores towards those of the
target speakers. While the experiments in this paper are con-
ducted on the back-box ASV system, it is worth studying how
the same feedback-controlled mechanism interacts with anti-
spoofing countermeasures as well.

0 10 20 30 40 50 60 70 80 90 100

PPG-VC
PPG-VC-FC
No preference

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

PPG-VC
PPG-VC-FC
No preference

Fig. 3. Perceptual evaluation results in terms of both qual-
ity and similarity. (a) Results of quality preference tests with
95% confidence intervals for PPG-VC and PPG-VC-FC. (b)
Results of similarity preference tests with 95% confidence in-
tervals for PPG-VC and PPG-VC-FC.

5.2. Perceptual Evaluation

We further perform perceptual evaluation on the attacks gen-
erated from conventional VC attacks and our proposed black-
box. This may provide some insights into how humans per-
ceive the deceptiveness of converted speech.

The AB and ABX preference tests are conducted to as-
sess the speech quality and speaker similarity respectively.
During tests, each paired samples A and B are randomly se-
lected from the proposed PPG-VC-FC and baseline PPG-VC,
respectively. Each listener is asked to choose the sample with
better quality/similarity or no preference. For each test, 20
sample pairs are randomly selected from the 1,340 paired
samples. We invite 20 subjects to participate in both tests.

Fig. 3 (a) and (b) present the results of quality and simi-
larity preference tests with 95% confidence respectively. It is
observed that for both quality and similarity tests the identifi-
cation rates of PPG-VC and PPG-VC-FC fall into each others
confidence intervals. This indicates that they are not signifi-
cantly different in terms of speech quality and speaker iden-
tity. In addition, most of the listeners could not differentiate
between the two. It shows that the feedback-controlled VC is
able to attack the ASV system while maintaining the speech
quality and similarity.

6. CONCLUSIONS

In this work, we study black-box attacks on ASV systems
with a feedback-controlled VC system. Although the vul-
nerability traditional spoofing attacks to ASV has been es-
tablished, the black-box attacks to machine learning poise
a greater threat. We use ASV system outputs as the feed-
back to increase the deceptiveness of the converted voice.
The studies conducted on ASVspoof 2019 corpus suggest that
the proposed feedback-controlled VC system is able to en-
hance the ASV scores of the converted speech that makes
it more deceptive towards authentication against the target
speakers. Moreover, according to the subjective test results,
we find that feedback-controlled VC maintains the perfor-
mance in terms of speech quality and speaker similarity for
the generated speech.
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