
Analysis of Deep Feature Loss based Enhancement for Speaker Verification

Saurabh Kataria, Phani Sankar Nidadavolu, Jesús Villalba, Najim Dehak

Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD, USA
{skatari1,snidada1,jvillal7,ndehak3}@jhu.edu

Abstract
Data augmentation is conventionally used to inject robustness
in Speaker Verification systems. Several recently organized
challenges focused on handling novel acoustic environments.
Deep learning based speech enhancement is a modern solution
for this. Recently, a study proposed to optimize the enhance-
ment network in the activation space of a pre-trained auxiliary
network. This methodology, called deep feature loss, greatly
improved over the state-of-the-art conventional x-vector based
system on a children speech dataset called BabyTrain. This
work analyzes various facets of that approach and asks few
novel questions in that context. We first search for optimal
number of auxiliary network activations, training data, and en-
hancement feature dimension. Experiments reveal the impor-
tance of Signal-to-Noise Ratio filtering that we employ to create
a large, clean, and naturalistic corpus for enhancement network
training. To counter the “mismatch” problem in enhancement,
we find enhancing front-end (x-vector network) data helpful
while harmful for the back-end (Probabilistic Linear Discrim-
inant Analysis (PLDA)). Importantly, we find enhanced signals
contain complementary information to original. Established by
combining them in the front-end, this gives ~40% relative im-
provement over the baseline. We also do an ablation study to
remove a noise class from x-vector data augmentation and, for
such systems, we establish the utility of enhancement regard-
less of whether it has seen that noise class itself during train-
ing. Finally, we design several dereverberation schemes to con-
clude ineffectiveness of deep feature loss enhancement scheme
for this task.

1. Introduction
Supervised deep learning based speech enhancement made
significant progress in the last decade. Notable works in-
clude masking [1] and mapping [2] based approaches, Speech
Enhancement Generative Adversarial Network (SEGAN) [3],
Deep Feature Loss (DFL) [4], end-to-end metric optimiza-
tion [5], and a Transformer based approach [6, 7]. Meanwhile,
active research exists in the robustness of Speaker Verifica-
tion (SV) systems [8, 9, 10, 11]. Another reason for interest
in speech enhancement arises from the notion that it is consid-
ered as a modern solution to improve noise robustness in SV
systems [10, 12, 13]. Such studies demonstrate that an explicit
speech enhancement processing is beneficial to the state-of-the-
art (SOTA) conventional x-vector and Probabilistic Linear Dis-
criminant Analysis (PLDA) based SV system [14]. We refer to
this methodology as task-specific enhancement. Prior work re-
vealed its benefit for other tasks like Speaker Diarization [15],
Language Recognition [16], and Automatic Speech Recogni-
tion (ASR) [17].

Building on perceptual loss [18], [4] proposed to learn

speech enhancement using a pre-trained auxiliary network to
obtain (deep feature) loss (Section 2). Authors observed that
the usual supervised training with time-domain loss gives poor
enhancement performance on low Signal-to-Noise Ratio (SNR)
test signals, as confirmed with speech enhancement metrics like
Perceptual Evaluation of Speech Quality (PESQ) and Signal-
to-Distortion Ratio (SDR). Therefore, they suggested to instead
minimize the deviation of auxiliary network activations of en-
hanced and (reference) clean signals. Here, enhanced signals
refer to the output of the enhancement network (Figure 1).

Recently, [10] proposed a test-time feature denoising ap-
proach based on [4] and reported large gains over the SOTA
data augmented x-vector based SV system. Since the conven-
tional x-vector system can tackle clean signals such as in the
Speakers In The Wild (SITW) dataset [14, 19], authors chose
DFL technique for its potential to handle low SNR signals. Due
to their primary focus on final SV performance, they chose the
auxiliary network as speaker classification/embedding network.
Such enhancement preserves speaker information. They re-
ported results on a single-channel wide-band (16 KHz) dataset
called BabyTrain, which consists of daylong recordings of chil-
dren speech in noisy and reverberant environments [20]. The
main contribution of this study is to explore in-depth various
facets of DFL, ask some novel analysis-oriented questions, and
present evaluation on real data (BabyTrain). This study is,
therefore, similar in motivation to [21]. We now describe the
significance of all experiment sections.

Section 5.1 reproduces the gains observed with the DFL
based enhancement, as done in [10]. Furthermore, it judges the
utility of activations from the deeper and, especially, the last
layer (i.e. speaker embedding layer) of the auxiliary network.
Motivation for this comes from the common knowledge that a
convolutional network contains high level information such as
speaker identity primarily in the initial layers [22]. [4] used only
first few layers and our preliminary experiments on their setup
revealed degradation by incorporating deeper layer activations.
However, their data setting was small (on VCTK corpus [23])
and a much larger data setting such as ours is better suited to
investigate this.

Section 5.2 investigates the choice of training data for en-
hancement and auxiliary network. For training enhancement
network, it is imperative to have a clean, large, and naturalistic
corpus. For this, [10] chose a (high) SNR-filtered version of
VoxCeleb [24, 25]. In DFL training, activations of noisy sig-
nals come from auxiliary network (Equation 1). Hence, it re-
mains an open question if a stronger auxiliary network i.e. one
trained with (noisy) data augmentations is superior. Training
data choice is important to us because we focus on BabyTrain
and large “in the wild” public data releases such as SITW [19],
VoxCeleb [24], and CN-Celeb [9] do not explicitly account for
children speech.

ar
X

iv
:2

00
2.

00
13

9v
2

 [
ee

ss
.A

S]
 2

7
A

pr
 2

02
0

Section 5.3 asks whether it is beneficial to use higher di-
mensional features in the enhancement network. For unifor-
mity, we start with same features (40-dimensional log Mel-
filterbank (LMFB)) for the enhancement, auxiliary, and x-
vector network. Then, we quantify the effect of increasing fea-
ture dimension for the former network while keeping it fixed
for the others. This idea of using different features for different
networks is promising because most feature-domain enhance-
ment studies work with spectrogram features. They have higher
dimension than the standard 40-D LMFB features [14] and we
experiment with them too.

Section 5.4 explores whether enhancement of PLDA and x-
vector network data brings improvement on top of simple test
set enhancement scheme. Enhancement of data other than test
sets can, potentially, counter the distortion introduced by en-
hancement and reduce the mismatch among test, PLDA, and
x-vector network data. This is a notable problem in speech
enhancement [17, 26, 27]. Note that enhancing x-vector data
means training x-vector network with enhanced features.

Section 5.5 considers a different viewpoint to Sec-
tion 5.4 and asks whether enhanced signals contain use-
ful/complementary information to original signals. We inves-
tigate this by including both enhanced and original signals in
PLDA and x-vector data. Such analysis should provide insight
into the nature of enhanced signals. It is worthwhile to do as
our enhancement setup is in (filterbank) feature domain and it
is implausible to calculate time-domain metrics like SDR and
PESQ for analysis.

Section 5.6 tests the effectiveness of enhancement when a
noise class is missing from data augmentation of x-vector net-
work. While designing a generic x-vector based SV system, it is
a common practice to mix clean data with several noise classes
such as music, babble, and general environmental noises. We
use this particular notion of data augmentation in this study.
This may be not be optimal for the deployed environment and
even cause performance degradation. Thus, enhancement as
a solution to robustness of SV is attractive - provided the en-
hancer has good generalization property. This section quanti-
fies this generalization. In this “leave-one-out” analysis, we,
separately, consider the cases when enhancement has or has not
seen the missing class. This analysis is akin to finding harmful
and/or superfluous noise class during data augmentation and,
thereby, similar in motivation to ablation and pruning work in
deep learning [28, 29].

Section 5.7 addresses an important extension to [10]: ef-
fectiveness of DFL enhancement for dereverberation for SV.
Weighted Prediction Error (WPE) [30] is widely regarded as
SOTA dereverberation technique. Recently, a Generative Ad-
versarial Network (GAN) based domain-adaptation work out-
performed it in a large scale setting [31, 32]. We design sev-
eral dereverberation schemes based on DFL. Several of such
schemes combine denoising since dereverberation (alone) may
be ineffective for final performance gains.

2. Deep Feature Loss
Perceptual loss or Deep Feature Loss [18, 4] refers to the ex-
traction of loss from a pre-trained auxiliary network by com-
paring its activations for enhanced and reference clean signal.
To obtain this, we manually pre-select few hidden layers of the
auxiliary network. Main idea is to enhance while retaining high
level properties of signal. This property depends on the choice
of the auxiliary task. With a speaker embedding/classification
network (in our case), enhancement preserves speaker informa-

Figure 1: A schematic of deep feature loss scheme

tion. Mathematically, DFL using j hidden layers of auxiliary
network is:

LDFL,[j](Fn, Fc) =

j∑
i=1

LDFL,i(Fn, Fc)

=

j∑
i=1

||ai(Fc)− ai(e(Fn))||1,1.

(1)

Also,

LDFL,emb = LDFL,[5] + Lemb. (2)

Here, Fn and Fc refers to noisy and clean feature matrices of
size D×T , D is the feature dimension, T is number of frames,
j is the number of hidden layers considered for DFL computa-
tion, i is the index for such layers, a(·) is the auxiliary network,
e(·) is the enhancement network. “1,1” is l1 loss for matrix. A
corresponding visual description is in Figure 1. The maximum
value of j is L = 5. They refer to 5 equidistant hidden layers
preselected in our auxiliary network. We handle final layer acti-
vations exclusively by the loss denoted by LDFL,emb. LFL refers
to the usual feature loss i.e. without using auxiliary network.
Importantly, we do not use x-vector network itself for extract-
ing DFL because it may be not be optimal as noted in Section
5.2.

3. Neural Networks Architectures
3.1. Enhancement network

We choose Convolutional Neural Network (CNN) based Con-
text Aggregation Network (CAN) from [10] except with higher
number of channels (90). It is inspired by CAN in [4]. Its main
features are linearly increasing dilations (1 to 8), eight convo-
lution layers, Adaptive Batch Normalization (BN), LeakyReLU
activations, and three Temporal Squeeze Excitation (TSE) [10]
connections along with residual connections.

Final layer linearly maps the output to input dimension and
a subsequent logarithm operation predicts the Time-Frequency
(TF) mask [1]. To mimic Signal Approximation (SA) loss [1],
we add this log-domain mask to the original input (multiplica-
tion in linear domain) to predict the final enhanced features. We
found this global skip connection significantly helpful in our
preliminary experiments. The network has a context length of
73 frames and 10.2M number of parameters. Since the main
feature of CAN is high context, we tried increasing its receptive
field but observed degradation in our preliminary experiments.

3.2. Auxiliary network

The auxiliary network used in this work is the 16KHz version
ResNet-34 network described in [33, 34, 14]. We select this
network due to its good performance on SV [33]. It is a 2D
CNN based ResNet-34 residual network [35] with Learnable
Dictionary Encoding (LDE) pooling [36] and Angular Softmax
loss function [37, 38]. The dictionary size of LDE is 64 and the
network has 5.9M parameters.

3.3. x-vector network

We choose Extended TDNN (E-TDNN) introduced in [39].
E-TDNN greatly improves upon Time-Delay Neural Network
(TDNN) by interleaving dense layers with convolution layers
and employing a (slightly) wider temporal context. Total train-
able parameters are 10M. A summary of its exact specification
is in [14]. [10] prefers a larger Factorized TDNN (F-TDNN)
network due to its superior performance than E-TDNN. Since
several of our experiments require re-training of the x-vector
network, we choose E-TDNN to facilitate faster experimenta-
tion. Note that E-TDNN gives competitive performance [14]
and, therefore, is suitable for our analysis-oriented work.

4. Experimental Setup
4.1. Dataset details

We combine VoxCeleb1 and VoxCeleb2 [40, 24, 41] to create
voxceleb. We, then, concatenate utterances from the same video
to create voxcelebcat (or vc). This gives us 2710 hrs of rel-
atively clean audio with 7185 speakers. voxcelebcat_div2 (or
vc_div2) refers to a random 50% subset of voxcelebcat. We use
a SNR estimation algorithm called Waveform Amplitude Dis-
tribution Analysis (WADA-SNR) [25] to retain top 50% clean
samples from voxcelebcat to create voxcelebcat_wadasnr (or
vc.w). This is 1665 hrs of audio with 7104 speakers.

To create noisy counterpart, we use noise utterances from
MUSAN [42] and DEMAND [43] corpora. We make the re-
verberant counterpart using impulse responses of small and
medium size rooms from the Aachen Impulse Response (AIR)
database [44]. A 90-10 split gives us the training and valida-
tion lists for the enhancement system. Lastly, using noise files,
we corrupt voxcelebcat to form voxcelebcat_combined (vcc).
Its size is three times as that of voxcelebcat. “libri” refers
to LibriSpeech corpus [45]. Unless specified otherwise, we
train the auxiliary network and x-vector network with voxcele-
bcat_wadasnr and voxcelebcat_combined respectively.

For evaluation on real data, we choose BabyTrain corpus
which is based on the Homebank repository [20]. It consists
of day-long children speech in uncontrolled noisy and rever-
berant environments. Recordings are in the presence of several
(dynamic) number of background speakers. Training data for
diarization and detection (adaptation data) has duration of 130
and 120 hrs respectively. For evaluation, enrollment is 95hrs
and has 595 speakers, while test data is 30 hrs with 158 speak-
ers. The classification of enrollment and test utterances is as
follows. test>=n and enroll=m refers to test and enrollment
utterances of minimum n and equal to m seconds from the
speaker of interest respectively with n ∈ {0, 5, 15, 30} and
m ∈ {5, 15, 30}. For enrollment utterances, time marks of the
target speaker are present but not for the test utterances. There
may be multiple speakers present in the test utterances. Data
split description and respective scripts were devised in JSALT

Table 1: Baseline results
EER test>=30s test>=15s test>=5s test>=0s mean

no-enh 5.78 8.78 12.34 12.71 9.90
LDFL,[5] (*) 5.14 7.17 11.02 11.41 8.68
LFL 6.28 8.90 12.35 12.71 10.06

LDFL,[5] + LFL 5.66 8.11 11.40 11.79 9.24
LDFL,[5] + Lemb 5.38 7.84 11.07 11.47 8.94
LDFL,[4] 5.63 7.96 11.26 11.62 9.12
LDFL,[3] 5.32 7.75 10.83 11.18 8.77
LDFL,[2] 5.93 8.36 11.79 12.16 9.56
LDFL,[1] 5.73 8.38 11.84 12.19 9.54

minDCF test>=30s test>=15s test>=5s test>=0s mean
no-enh 0.255 0.386 0.492 0.499 0.408
LDFL,[5] (*) 0.204 0.333 0.441 0.448 0.357
LFL 0.239 0.370 0.478 0.485 0.393

LDFL,[5] + LFL 0.218 0.343 0.452 0.459 0.368
LDFL,[5] + Lemb 0.210 0.331 0.439 0.447 0.357
LDFL,[4] 0.213 0.342 0.452 0.459 0.367
LDFL,[3] 0.215 0.334 0.441 0.449 0.360
LDFL,[2] 0.218 0.338 0.446 0.453 0.364
LDFL,[1] 0.215 0.334 0.441 0.448 0.360

2020 workshop and are available online1.

4.2. Training details

We train enhancement network with batch size of
32, learning rate of 0.001 (exponentially decreas-
ing), 6 epochs, Adam optimizer [46], and 500
frames (5s audio). Its code is available online as
“DFL_TSEResCAN2d_SmallContext_LogSigMask_BNIn”2.
Unless otherwise stated, input features are un-normalized 40-D
LMFB features. We train the auxiliary network with batch size
of 128, number of epochs as 50, optimizer as Adam [46], learn-
ing rate of 0.0075 (exponentially decreasing) with warmup [6],
and sequences of 800 frames (8s audio). Since this network
is a CNN, we use mean-normalized LMFB features which
have spatial information contrary to Mel-Frequency Cepstrum
Coefficient (MFCC) features. To account for this normalization
mismatch with the enhancement network, we insert an online
mean normalization between them during DFL training. For
x-vector network training, we use Kaldi [47] scripts with
40-D LMFB features which have silence removed and are
mean-normalized.

4.3. Evaluation details

The PLDA-based back-end consists of a 200-D Linear Discrim-
inant Analysis (LDA) with generative Gaussian SPLDA [33].
Additionally, we use a diarization system since BabyTrain con-
sists of babble noise (background speakers). For this, we
followed the Kaldi x-vector Callhome diarization recipe [48].
Details are in the JHU-CLSP diarization system as described
in [33]. Note that, in general, “enhancement of test set” refers
to enhancing test, enroll, and adaptation data. For the final
evaluation, we use standard metrics like Equal Error Rate (EER)
and minimum Detection Cost Function (minDCF) at target prior
p = 0.05 (NIST SRE18 VAST operating point [49]). Except
Kaldi based x-vector training, we develop all framework using
Hyperion library3 and Pytorch [50].

1https://github.com/jsalt2019-diadet
2https://github.com/jsalt2019-diadet/

jsalt2019-diadet/blob/master/egs/sitw_noisy/
v1.pyfb/steps_pyfe/enh_models/models.py

3https://github.com/jsalt2019-diadet/hyperion

https://github.com/jsalt2019-diadet
https://github.com/jsalt2019-diadet/jsalt2019-diadet/blob/master/egs/sitw_noisy/v1.pyfb/steps_pyfe/enh_models/models.py
https://github.com/jsalt2019-diadet/jsalt2019-diadet/blob/master/egs/sitw_noisy/v1.pyfb/steps_pyfe/enh_models/models.py
https://github.com/jsalt2019-diadet/jsalt2019-diadet/blob/master/egs/sitw_noisy/v1.pyfb/steps_pyfe/enh_models/models.py
https://github.com/jsalt2019-diadet/hyperion

Table 2: Choice of training data for enhancement and auxil-
iary network. “vc” is VoxCeleb, “vc.w” is 50% WADASNR-
filtered VoxCeleb, “vc_div2” is 50% random subsampled Vox-
Celeb, “vcc” is VoxCeleb with 3x augmentations, “libri” is Lib-
riSpeech.

EER test>=30s test>=15s test>=5s test>=0s mean
no-enh 5.78 8.78 12.34 12.71 9.90

vc.w-vc.w (*) 5.14 7.17 11.02 11.41 8.68
vc.w-vc 5.63 8.12 11.37 11.74 9.22
vc.w-vcc 5.19 7.81 11.02 11.39 8.85
vc-vc.w 5.33 7.87 11.17 11.57 8.99
vc-vc 5.62 8.25 11.63 12.00 9.38
vc-vcc 5.43 8.16 11.44 11.80 9.21

vc_div2-vc.w 5.29 8.10 11.51 11.89 9.20
libri-vc.w 6.00 9.08 12.68 13.06 10.21

minDCF test>=30s test>=15s test>=5s test>=0s mean
no-enh 0.255 0.386 0.492 0.499 0.408

vc.w-vc.w (*) 0.204 0.333 0.441 0.448 0.357
vc.w-vc 0.215 0.335 0.444 0.451 0.361
vc.w-vcc 0.210 0.330 0.440 0.447 0.357
vc-vc.w 0.220 0.344 0.450 0.457 0.368
vc-vc 0.226 0.345 0.453 0.460 0.371
vc-vcc 0.222 0.349 0.456 0.463 0.373

vc_div2-vc.w 0.204 0.335 0.444 0.451 0.359
libri-vc.w 0.232 0.357 0.464 0.471 0.381

5. Experiments
5.1. Baseline results

In Table 1, we reproduce the claims of [10]. Last column refers
to the mean metric value per row. We organize results for EER
and minDCF separately. Boldface result signify the best value
achieved per column per metric. Note that x-vector network is
trained with augmentation in all cases and enhancement is ap-
plied on adaptation data, enrollment, and test utterances. That
is, we use the default test-time enhancement scheme as men-
tioned in Section 4.3.

“no-enh” refers to the case when enhancement is not used
in the SV pipeline. LDFL,[5] refers to the results obtained with
DFL using all L = 5 intermediate hidden layers of the aux-
iliary network. We note relative improvement of 12.3% and
12.5% for EER and minDCF respectively w.r.t. “no-enh”. Fea-
ture loss leads to lesser gains contrary to degradation caused in
[10]. This variation is perhaps due to use of a different x-vector
network in this work. Combining it with DFL gives better re-
sults. We note that adding auxiliary network speaker embed-
ding layer loss (LDFL,[5] +Lemb) does not lead to improvement.
This suggests that all hidden activations from auxiliary network
need not be useful for final performance. Using lesser number
of layers in DFL does not lead to consistent observation. Nev-
ertheless, LDFL,[5](∗) gives best performance for both metrics
and it serves as the baseline for this work. These baseline re-
sults are present in all results tables under different names but
all denoted by (*).

Importantly, note that results under “test>=0s” represent fi-
nal average performance on BabyTrain. “mean” refers to the
weighted mean performance with higher weight for longer test
trials. In practice, it is uncommon to have very small test ut-
terances. Therefore, for this practical significance, we consider
“mean” for final model comparisons in this work. For simplicity
in reading all tables, reader may focus on “mean” performance.

5.2. Choice of training data for enhancement and auxiliary
network

Table 2 presents the results obtained with different choice of
training data for enhancement and auxiliary network. Here,

Table 3: Enhancement with mismatch between enhancement
and x-vector/aux. network acoustic features. First column indi-
cates enhanced features, x-vec/aux. networks always use 40D
LMFB.

EER test>=30s test>=15s test>=5s test>=0s mean
no-enh 5.78 8.78 12.34 12.71 9.90

LMFB-40D (*) 5.14 7.17 11.02 11.41 8.69
LMFB-80D 6.46 10.14 13.83 14.22 11.16

LMFB-100D 6.43 9.76 13.40 13.79 10.85
LMFB-120D 6.84 10.14 13.77 14.17 11.23

spectrogram-256D 5.72 8.91 12.49 12.84 9.99

minDCF test>=30s test>=15s test>=5s test>=0s mean
no-enh 0.255 0.386 0.492 0.499 0.408

LMFB-40D (*) 0.204 0.333 0.441 0.448 0.357
LMFB-80D 0.276 0.444 0.546 0.553 0.455

LMFB-100D 0.284 0.436 0.539 0.545 0.451
LMFB-120D 0.288 0.446 0.546 0.552 0.458

spectrogram-256D 0.242 0.390 0.492 0.498 0.406

training data for enhancement network refers to the clean data
counterpart required for creating training pairs for supervised
learning. A preliminary WADA-SNR analysis of VoxCeleb
(“vc”) revealed the presence of several low SNR signals. For
this reason, we use SNR estimation to retain top 50% clean ut-
terances from “vc” to form “vc.w”. The second column of Table
2 specifies the training data for enhancement and auxiliary net-
work (separated by “-”) respectively.

We make few prominent observations. First, by comparing
enhancers trained with “vc” and “vc.w” as enhancement net-
work training data, we find using full VoxCeleb (“vc”) harmful
for both metrics. This suggests “vc” may not be clean enough
for training enhancer and some filtering may be necessary. Sec-
ond, using “vc_div2” in place of “vc.w” degrades EER, which
suggests a SNR-based filtering is better than random subsam-
pling. Third, to test the hypothesis that a cleaner data (Lib-
riSpeech) helps further, we find that it gives worst performance.
This establishes the superiority of VoxCeleb, perhaps, due to
its diverse and spontaneous conversation nature, which is con-
trary to the read speech nature of LibriSpeech. Fourth, in our
DFL formulation, we obtain activations of noisy samples from
the auxiliary network (Equation 1). We do not observe gains by
using a stronger auxiliary network (trained with “vc” or “vcc”).
This is contrary to the popular notion that even clean test files
benefit from data augmentation [51]. This indicates that using
x-vector network for deep feature loss extraction may not be op-
timal, as hinted in Section 2. To sum up, we obtain best results
with SNR-filtered VoxCeleb for both networks (“vc.w-vc.w”).

5.3. Enhancement with mismatch between enhancement
and x-vector/aux. network acoustic features

Table 3 presents the results by varying the feature used in the
enhancement network. Result rows specify the feature dimen-
sion against the name of the feature. Features (40-D LMFB) for
the auxiliary and x-vector network remain unchanged. A train-
able linear layer bridges enhancement and auxiliary network to
handle the mismatch of the feature dimensions for these net-
works. This bridge comes before the global skip connection
of the enhancement network. We note that all higher dimen-
sional feature models result in similar level of degradation ex-
cept for spectrogram which leads to lesser degradation. As an
additional evidence, we observed higher variance in the train-
ing and validation losses for these networks. This degradation
is perhaps because learning with higher dimensional features
require more data. A fair comparison study should, correspond-
ingly, vary the training data amounts but we do not investigate

Table 4: Effect of enhancing PLDA and/or x-vector data on top
of test set enhancement

EER test>=30s test>=15s test>=5s test>=0s mean
no-enh 5.78 8.78 12.34 12.71 9.90
test (*) 5.14 7.17 11.02 11.41 8.68

PLDA,test 4.93 7.58 10.93 11.34 8.70
train,test 5.36 8.01 11.25 11.63 9.06

train,PLDA,test 6.74 10.23 14.27 14.71 11.49

minDCF test>=30s test>=15s test>=5s test>=0s mean
no-enh 0.255 0.386 0.492 0.499 0.408
test (*) 0.204 0.333 0.441 0.448 0.357

PLDA,test 0.211 0.340 0.449 0.456 0.364
train,test 0.199 0.315 0.425 0.432 0.343

train,PLDA,test 0.295 0.443 0.551 0.558 0.462

that. Another option to avoid degradation could be to use same
higher-dimensional features for all three networks. However,
that leads to increased training complexity and, possibly, worse
performance as apparent by the popularity of low-dimensional
features like 40-D LMFB in SOTA SV systems [14].

5.4. Effect of enhancing PLDA and/or x-vector data on top
of test set enhancement

Table 4 presents the results for systems with enhancement of
PLDA and/or x-vector train data (“train”) on top of test, en-
roll, adaptation data enhancement (“test”). First column lists
the datasets that undergo enhancement processing. We find en-
hancing PLDA data (slightly) harmful. Enhancing x-vector data
gives best minDCF, while enhancing x-vector and PLDA data
gives worst performance, even worse than the case of no en-
hancement. This suggests that PLDA is susceptible to enhance-
ment processing. This finding is contrary to the notion that en-
hancement of all datasets solve the mismatch problem [27].

5.5. Augmentation with enhanced features

In Table 5, “test (*)” and “PLDA,test” (from Table 4) repre-
sent enhancement of test set and test set along with PLDA data
respectively. To gain insight into the nature of enhanced sig-
nals, we investigate if they contain complementary informa-
tion to original signals. “aug-in-PLDA” refers to including en-
hanced signals with original (non-enhanced) in PLDA data. In
Section 5.4, we noted that training PLDA with enhanced data
gives worse performance compared to training with original
data. Here, combining them causes further degradation.

The next experiment is “aug-in-train”, which refers to train-
ing x-vector data with original as well as enhanced data. This
doubles the training data and time but, nevertheless, counts for
a fair investigation since we train all x-vector networks till con-
vergence and don’t introduce any new data here. Note that
we assign same speaker label to enhanced signal as the orig-
inal. Doing this bring huge (relative) improvements of ~40%
in both metrics. This strongly establishes our hypothesis that
enhanced signals contain useful complementary information.
This is a novel finding albeit computationally expensive. “aug-
in-train,PLDA” is an extension of “aug-in-train”. It refers to
inclusion of enhanced and original signals in x-vector as well
as PLDA data. This leads to some degradation with respect to
“aug-in-train”. Thus, it is our consistent observation that PLDA
is susceptible to enhancement processing and it is best trained
with unenhanced data. It is useful to reiterate that in our en-
hancement schemes, test set is always enhanced.

5.6. Leave-one-out noise class in x-vector data

Table 6 summarizes the findings for this experiment. Like previ-
ously, “no-enh” and “test-enh (*)” serve as reference results. In

Table 5: Augmentation with enhanced features
EER test>=30s test>=15s test>=5s test>=0s mean

no-enh 5.78 8.78 12.34 12.71 9.90
test (*) 5.14 7.17 11.02 11.41 8.68

PLDA,test 4.93 7.58 10.93 11.34 8.70
aug-in-PLDA 5.31 8.06 11.48 11.87 9.18
aug-in-train 3.34 4.99 7.53 7.92 5.95

aug-in-train,PLDA 3.38 5.13 7.78 8.19 6.12

minDCF test>=30s test>=15s test>=5s test>=0s mean
no-enh 0.255 0.386 0.492 0.499 0.408
test (*) 0.204 0.333 0.441 0.448 0.357

PLDA,test 0.211 0.340 0.449 0.456 0.364
aug-in-PLDA 0.219 0.350 0.459 0.466 0.374
aug-in-train 0.128 0.209 0.300 0.309 0.237

aug-in-train,PLDA 0.132 0.215 0.307 0.315 0.242

Table 6: Leave-one-out noise class in x-vector data. Each block
leaves one noise type from x-vector training. The first row in
each block is without enhancement, “enh-unseen” trains enh.
without the left-out noise, “enh-seen” trains enh. with all noises.

EER test>=30s test>=15s test>=5s test>=0s mean
no-enh 5.78 8.78 12.34 12.71 9.90

test-enh (*) 5.14 7.17 11.02 11.41 8.68
noise 7.36 10.90 15.02 15.44 12.18

enh-unseen 5.88 9.59 13.51 13.93 10.73
enh-seen 6.30 9.87 13.97 14.38 11.13

music 4.99 7.01 9.93 10.28 8.05
enh-unseen 4.42 6.52 9.54 9.96 7.61
enh-seen 4.35 6.38 9.34 9.74 7.45
babble 4.98 7.59 11.04 11.46 8.77

enh-unseen 4.13 6.56 9.61 10.03 7.58
enh-seen 4.07 6.64 9.82 10.26 7.70
chime3bg 5.49 7.66 10.69 11.04 8.72

enh-unseen 4.83 7.48 10.51 10.88 8.43
enh-seen 4.97 7.66 10.70 11.05 8.59

minDCF test>=30s test>=15s test>=5s test>=0s mean
no-enh 0.255 0.386 0.492 0.499 0.408

test-enh (*) 0.204 0.333 0.441 0.448 0.357
noise 0.414 0.525 0.618 0.624 0.545

enh-unseen 0.334 0.474 0.572 0.578 0.489
enh-seen 0.333 0.484 0.586 0.592 0.499

music 0.255 0.355 0.454 0.461 0.381
enh-unseen 0.217 0.327 0.424 0.432 0.350
enh-seen 0.213 0.326 0.425 0.433 0.349
babble 0.247 0.357 0.458 0.465 0.382

enh-unseen 0.213 0.324 0.423 0.431 0.348
enh-seen 0.206 0.320 0.419 0.426 0.343
chime3bg 0.302 0.420 0.523 0.530 0.444

enh-unseen 0.264 0.402 0.509 0.515 0.423
enh-seen 0.257 0.392 0.499 0.506 0.414

our case, we have four, namely, noise, music, babble, chime3bg.
In simulated data settings, usually, introduction of new noise
classes in x-vector data leads to performance gains. However,
these augmentations can be harmful for real data, as established
by the result rows which contain noise class name in first col-
umn. They represent four SV systems with x-vector data miss-
ing one noise class. These results don’t include enhancement
and, thus, are comparable with “no-enh” system which has seen
all noise classes. We find omitting music class in x-vector data
gives best performance on BabyTrain. Similarly, omitting bab-
ble and chime3bg lead to performance better than “no-enh”.
Speculating noise class which can hurt final performance is im-
possible a priori. Therefore, speech enhancement is an appeal-
ing solution for improving robustness.

For all four SV systems, we report the benefit of using our
enhancement scheme. “enh-seen” and “enh-unseen” refer to
cases when enhancement network training has or has not seen
the noise class respectively. Numbers in underline refer to best

performance per SV system. Enhancement helped all four sys-
tems individually. As expected, the enhancement system which
has seen the missing noise class achieves the best performance
(expect for noise). Importantly, this shows that enhancement
helps even when a noise class is missing from x-vector train-
ing, regardless of whether it has seen that noise class itself or
not. However, “test-enh (*)” is worse than the best performance
achieved in this ablation experiment, which reveals that cur-
rent enhancement scheme is not strong enough to counter the
degradation caused by harmful data augmentations. This also
highlights the scope in the improvement of the enhancement
scheme. Lastly, we note that omitting noise (general environ-
mental noises) brings degradation, suggesting the importance
of complex environmental noises in training. Thus, incorporat-
ing noise files from Voices2019 [52], DCASE Challenge4, and
AudioSet [53] can be useful in our framework.

5.7. Handling reverberations
It is unclear if the DFL based supervised enhancement scheme
can work for the dereverberation task. It is also unclear how
much scope for dereverberation is in BabyTrain. In Table 7, we
present results for several dereverberation schemes, some com-
bined with denoising. “WPE” refers to Weighted-Prediction Er-
ror algorithm based pre-processing. It gives minor improvement
over “no-enh”. This suggests that dereverberation is either very
challenging or has less scope in BabyTrain in the first place.
“dereverb” refers to DFL system trained for only dereverbera-
tion, which gives worse performance than “WPE” suggesting
DFL scheme doesn’t work for dereverberation out-of-the-box.
“WPE->denoise” is the denoising system but with WPE pre-
processing. It is minimally better than “denoise”. However, it
is largely better than “dereverb->denoise”, which refers to use
of two DFL systems trained (separately) for the two tasks re-
spectively. “denoise->dereverb” (flipped version of “dereverb-
>denoise”) does not lead to significant difference.

We now describe the joint training schemes. “joint1stage”
refers to DFL system trained for denoising and dereverbera-
tion (jointly) in one go. Training pairs for it contain exam-
ples for denoising, dereverberation, and both. Note that it is
worse than “WPE->denoise” suggesting doing these two tasks
in one-go is hard. “joint2stage” is an assisted modification of
“joint1stage”. In addition to accepting reverberant and noisy
signal input, it accepts another reverberant signal in the mid-
dle of the network and tries to minimise its deep feature loss as
well. This forces the network to first do denoising mimicking
the standard signal model in signal processing. This assisted
scheme did not work, further solidifying our presumption that
combining the tasks of denoising and dereverberation is very
challenging. Since our denoising network has seen few rever-
berant samples (from chime3bg), we tried a double (disjoint) de-
noising scheme (“denoise->denoise”) and find it brings minimal
improvement. Results in this section suggest, finally, that the
current DFL scheme does not work for dereverberation and we
suspect this problem is better solved through domain-adaptation
methodology, as shown recently in [31, 32].

6. Conclusion
Incorporating robustness in Speaker Verification is a challeng-
ing problem. Data augmentation usually handles this. Baby-
Train is an appropriate dataset for this study due to its uncon-
trolled nature and emphasis on children’s speech verification.

4http://dcase.community/

Table 7: Handling reverberations
EER test>=30s test>=15s test>=5s test>=0s mean

no-enh 5.78 8.78 12.34 12.71 9.90
denoise (*) 5.14 7.17 11.02 11.41 8.68

WPE 5.94 8.65 12.20 12.58 9.84
WPE->denoise 5.31 7.76 10.97 11.35 8.85

dereverb 6.31 9.75 13.39 13.76 10.80
joint1stage 5.63 8.33 11.55 11.93 9.36
joint2stage 5.74 9.14 12.82 13.21 10.23

dereverb->denoise 6.35 9.60 12.95 13.35 10.57
denoise->dereverb 6.13 9.11 12.39 12.78 10.10
denoise->denoise 5.26 7.59 10.73 11.11 8.67

minDCF test>=30s test>=15s test>=5s test>=0s mean
no-enh 0.255 0.386 0.492 0.499 0.408

denoise (*) 0.204 0.333 0.441 0.448 0.357
WPE 0.247 0.373 0.480 0.487 0.397

WPE->denoise 0.206 0.330 0.438 0.445 0.355
dereverb 0.242 0.391 0.498 0.504 0.409

joint1stage 0.221 0.344 0.452 0.458 0.369
joint2stage 0.249 0.393 0.501 0.508 0.413

dereverb->denoise 0.249 0.394 0.499 0.506 0.412
denoise->dereverb 0.244 0.386 0.492 0.499 0.405
denoise->denoise 0.205 0.325 0.433 0.440 0.351

Since large data releases do not explicitly account for children
speech, generalization of SV systems to lower age group is an
open question. Deep feature loss is a promising methodology
which, in its current form, works along with data augmentation
in x-vector network. It is shown to bring vast improvements.
Our experiments reveal that this test-time feature denoising ap-
proach is optimal when it utilizes all hidden activations of the
auxiliary network excluding the final layer activations. Search
for best training data combination for enhancement and auxil-
iary network reveals that it is optimal to use top 50% utterances
of VoxCeleb according to their SNR. This satisfies the ideal
requirements of clean, large, and naturalistic nature of data for
training enhancement. Experiments using different features for
enhancement network shows it is best to use same 40-D LMFB
features as in the auxiliary and x-vector network.

An important inquiry into enhancing data other than test
set reveals it is beneficial for the front-end (x-vector network)
while harmful for the back-end (PLDA). To further investigate
into the nature of enhanced signals, we hypothesize, and subse-
quently confirm, that they contain information complementary
to the original signals. We combine both signals in front-end
and/or back-end to establish this. The newly trained x-vector
network with combined data turns out quite powerful as demon-
strated by ~40% relative improvements over the baseline. We
also make a consistent observation that PLDA is susceptible
to enhancement processing. The leave-one-out analysis solid-
ifies the notion that DFL enhancement is effective even when
a noise class is missing from the training data of enhancement
and/or x-vector network. Importantly, we show the limitation
of data augmentation by demonstrating the degradation caused
by including certain noise classes. Surprisingly, they turn out to
be common noise classes used in practice. Finally, we design
several dereverberation schemes combining WPE, denoising,
and dereverberation in either joint or disjoint fashion. Exten-
sive evaluation suggests ineffectiveness of DFL enhancement
for dereverberation while speculating domain-adaption as supe-
rior methodology.

We also speculate that findings of this work can vary with
the choice of the x-vector network and the evaluation database.
Nevertheless, the analysis reported here provides further insight
into the deep feature loss based Speaker Verification and ad-
dresses its advantages, weaknesses, and extensions.

http://dcase.community/

7. References
[1] DeLiang Wang and Jitong Chen, “Supervised speech sep-

aration based on deep learning: An overview,” IEEE/ACM
Transactions on Audio, Speech, and Language Process-
ing, vol. 26, no. 10, pp. 1702–1726, 2018.

[2] Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee, “A re-
gression approach to speech enhancement based on deep
neural networks,” IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP), vol. 23, no.
1, pp. 7–19, 2015.

[3] Santiago Pascual, Antonio Bonafonte, and Joan Serra,
“Segan: Speech enhancement generative adversarial net-
work,” arXiv preprint arXiv:1703.09452, 2017.

[4] Francois G Germain, Qifeng Chen, and Vladlen Koltun,
“Speech denoising with deep feature losses,” arXiv
preprint arXiv:1806.10522, 2018.

[5] Jaeyoung Kim, Mostafa El-Kharmy, and Jungwon Lee,
“End-to-end multi-task denoising for joint sdr and pesq
optimization,” arXiv preprint arXiv:1901.09146, 2019.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” in Ad-
vances in neural information processing systems, 2017,
pp. 5998–6008.

[7] Jaeyoung Kim, Mostafa El-Khamy, and Jungwon Lee,
“Transformer with gaussian weighted self-attention for
speech enhancement,” arXiv preprint arXiv:1910.06762,
2019.

[8] Joon Son Chung, Arsha Nagrani, Ernesto Coto, Weidi
Xie, Mitchell McLaren, Douglas A Reynolds, and
Andrew Zisserman, “Voxsrc 2019: The first vox-
celeb speaker recognition challenge,” arXiv preprint
arXiv:1912.02522, 2019.

[9] Yue Fan, Jiawen Kang, Lantian Li, Kaicheng Li, Haolin
Chen, Sitong Cheng, Pengyuan Zhang, Ziya Zhou,
Yunqi Cai, and Dong Wang, “Cn-celeb: a challeng-
ing chinese speaker recognition dataset,” arXiv preprint
arXiv:1911.01799, 2019.

[10] Saurabh Kataria, Phani Sankar Nidadavolu, Jesús Vil-
lalba, Nanxin Chen, Paola García, and Najim De-
hak, “Feature enhancement with deep feature losses for
speaker verification,” arXiv preprint arXiv:1910.11905,
2019.

[11] Yanpei Shi, Qiang Huang, and Thomas Hain, “Robust
speaker recognition using speech enhancement and atten-
tion model,” arXiv preprint arXiv:2001.05031, 2020.

[12] Daniel Michelsanti and Zheng-Hua Tan, “Conditional
generative adversarial networks for speech enhancement
and noise-robust speaker verification,” arXiv preprint
arXiv:1709.01703, 2017.

[13] Suwon Shon, Hao Tang, and James Glass, “Voiceid
loss: Speech enhancement for speaker verification,” arXiv
preprint arXiv:1904.03601, 2019.

[14] Jesús Villalba, Nanxin Chen, David Snyder, et al., “State-
of-the-art speaker recognition with neural network embed-
dings in nist sre18 and speakers in the wild evaluations,”
Computer Speech & Language, p. 101026, 2019.

[15] Paola García, Jesus Villalba, Hervé Bredin, Jun Du, Diego
Castan, Alejandrina Cristia, Latane Bullock, Ling Guo,
Koji Okabe, Phani Sankar Nidadavolu, et al., “Speaker
detection in the wild: Lessons learned from jsalt 2019,”
arXiv preprint arXiv:1912.00938, 2019.

[16] Peter Sibbern Frederiksen, Jesús Villalba, Shinji Watan-
abe, Zheng-Hua Tan, and Najim Dehak, “Effectiveness
of single-channel blstm enhancement for language identi-
fication.,” in Interspeech, 2018, pp. 1823–1827.

[17] Neville Ryanta, Elika Bergelson, Kenneth Church, Ale-
jandrina Cristia, Jun Du, Sriram Ganapathy, Sanjeev Khu-
danpur, Diana Kowalski, Mahesh Krishnamoorthy, Rajat
Kulshreshta, et al., “Enhancement and analysis of conver-
sational speech: Jsalt 2017,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5154–5158.

[18] Justin Johnson, Alexandre Alahi, and Li Fei-Fei, “Per-
ceptual losses for real-time style transfer and super-
resolution,” in European conference on computer vision.
Springer, 2016, pp. 694–711.

[19] Mitchell McLaren, Luciana Ferrer, Diego Castan, et al.,
“The speakers in the wild (sitw) speaker recognition
database.,” in Interspeech, 2016, pp. 818–822.

[20] Mark VanDam, Anne S Warlaumont, Elika Bergelson,
et al., “Homebank: An online repository of daylong child-
centered audio recordings,” in Seminars in speech and
language. Thieme Medical Publishers, 2016, vol. 37, pp.
128–142.

[21] Ondřej Novotnỳ, Oldřich Plchot, Ondřej Glembek, Lukáš
Burget, et al., “Analysis of dnn speech signal enhance-
ment for robust speaker recognition,” Computer Speech
& Language, vol. 58, pp. 403–421, 2019.

[22] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit
Das, “Very deep convolutional neural networks for raw
waveforms,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2017, pp. 421–425.

[23] Junichi Yamagishi, Christophe Veaux, Kirsten MacDon-
ald, et al., “Cstr vctk corpus: English multi-speaker cor-
pus for cstr voice cloning toolkit (version 0.92),” 2019.

[24] Arsha Nagrani, Joon Son Chung, Weidi Xie, and Andrew
Zisserman, “Voxceleb: Large-scale speaker verification
in the wild,” Computer Speech & Language, vol. 60, pp.
101027, 2020.

[25] Chanwoo Kim and Richard M Stern, “Robust signal-to-
noise ratio estimation based on waveform amplitude dis-
tribution analysis,” in Ninth Annual Conference of the In-
ternational Speech Communication Association, 2008.

[26] Lukas Drude Jahn Heymann and Reinhold Haeb-Umbach,
“Wide residual blstm network with discriminative speaker
adaptation for robust speech recognition,” in Proceedings
of the 4th International Workshop on Speech Processing
in Everyday Environments (CHiMEâĂŹ16), 2016, pp. 12–
17.

[27] Peidong Wang, Ke Tan, and DeLiang Wang, “Bridg-
ing the gap between monaural speech enhancement and
recognition with distortion-independent acoustic model-
ing,” arXiv preprint arXiv:1903.04567, 2019.

[28] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik, “Rich feature hierarchies for accurate object de-
tection and semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 2014, pp. 580–587.

[29] Song Han, Huizi Mao, and William J Dally, “Deep com-
pression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[30] Tomohiro Nakatani, Takuya Yoshioka, Keisuke Kinoshita,
Masato Miyoshi, and Biing-Hwang Juang, “Blind
speech dereverberation with multi-channel linear predic-
tion based on short time fourier transform representa-
tion,” in 2008 IEEE International Conference on Acous-
tics, Speech and Signal Processing. IEEE, 2008, pp. 85–
88.

[31] Phani Sankar Nidadavolu, Saurabh Kataria, Jesús Vil-
lalba, and Najim Dehak, “Low-resource domain adap-
tation for speaker recognition using cycle-gans,” arXiv
preprint arXiv:1910.11909, 2019.

[32] Phani Sankar Nidadavolu, Saurabh Kataria, Jesús Vil-
lalba, Paola Garcia-Perera, and Najim Dehak, “Unsuper-
vised feature enhancement for speaker verification,” arXiv
preprint arXiv:1910.11915, 2019.

[33] Jesús Villalba, Nanxin Chen, David Snyder, et al., “The
jhu-mit system description for nist sre18,” Johns Hopkins
University, Baltimore, MD, Tech. Rep, 2018.

[34] David Snyder, Jesús Villalba, Nanxin Chen, et al., “The
jhu speaker recognition system for the voices 2019 chal-
lenge,” Proc. Interspeech 2019, pp. 2468–2472, 2019.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[36] Weicheng Cai, Zexin Cai, Xiang Zhang, Xiaoqi Wang,
and Ming Li, “A novel learnable dictionary encoding layer
for end-to-end language identification,” in 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 5189–5193.

[37] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhik-
sha Raj, and Le Song, “Sphereface: Deep hypersphere
embedding for face recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 2017, pp. 212–220.

[38] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang,
“Large-margin softmax loss for convolutional neural net-
works.,” in ICML, 2016, vol. 2, p. 7.

[39] David Snyder, Daniel Garcia-Romero, Gregory Sell,
Alan McCree, Daniel Povey, and Sanjeev Khudanpur,
“Speaker recognition for multi-speaker conversations us-
ing x-vectors,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 5796–5800.

[40] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman,
“Voxceleb2: Deep speaker recognition,” arXiv preprint
arXiv:1806.05622, 2018.

[41] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman,
“Voxceleb: a large-scale speaker identification dataset,”
arXiv preprint arXiv:1706.08612, 2017.

[42] David Snyder, Guoguo Chen, and Daniel Povey, “Mu-
san: A music, speech, and noise corpus,” arXiv preprint
arXiv:1510.08484, 2015.

[43] Joachim Thiemann, Nobutaka Ito, and Emmanuel Vin-
cent, “The diverse environments multi-channel acous-
tic noise database (demand): A database of multichan-
nel environmental noise recordings,” in Proceedings of
Meetings on Acoustics ICA2013. ASA, 2013, vol. 19, p.
035081.

[44] Marco Jeub, Magnus Schafer, and Peter Vary, “A binau-
ral room impulse response database for the evaluation of
dereverberation algorithms,” in 2009 16th International
Conference on Digital Signal Processing. IEEE, 2009, pp.
1–5.

[45] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an asr corpus based on
public domain audio books,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2015, pp. 5206–5210.

[46] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[47] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Hanne-
mann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011
workshop on automatic speech recognition and under-
standing. IEEE Signal Processing Society, 2011.

[48] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and
S. Khudanpur, “X-vectors: Robust dnn embeddings
for speaker recognition,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018.

[49] Seyed Omid Sadjadi, Timothée Kheyrkhah, Audrey Tong,
Craig S Greenberg, Douglas A Reynolds, Elliot Singer,
Lisa P Mason, and Jaime Hernandez-Cordero, “The
2016 nist speaker recognition evaluation.,” in Interspeech,
2017, pp. 1353–1357.

[50] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al., “Py-
torch: An imperative style, high-performance deep learn-
ing library,” in Advances in Neural Information Process-
ing Systems, 2019, pp. 8024–8035.

[51] David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur, “X-vectors: Ro-
bust dnn embeddings for speaker recognition,” in 2018
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[52] Mahesh Kumar Nandwana, Julien Van Hout, Mitchell
McLaren, Colleen Richey, Aaron Lawson, and Maria Ale-
jandra Barrios, “The voices from a distance challenge
2019 evaluation plan,” arXiv preprint arXiv:1902.10828,
2019.

[53] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman,
Aren Jansen, Wade Lawrence, R Channing Moore, Manoj
Plakal, and Marvin Ritter, “Audio set: An ontology and
human-labeled dataset for audio events,” in 2017 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2017, pp. 776–780.

	1 Introduction
	2 Deep Feature Loss
	3 Neural Networks Architectures
	3.1 Enhancement network
	3.2 Auxiliary network
	3.3 x-vector network

	4 Experimental Setup
	4.1 Dataset details
	4.2 Training details
	4.3 Evaluation details

	5 Experiments
	5.1 Baseline results
	5.2 Choice of training data for enhancement and auxiliary network
	5.3 Enhancement with mismatch between enhancement and x-vector/aux. network acoustic features
	5.4 Effect of enhancing PLDA and/or x-vector data on top of test set enhancement
	5.5 Augmentation with enhanced features
	5.6 Leave-one-out noise class in x-vector data
	5.7 Handling reverberations

	6 Conclusion
	7 References

