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Abstract
The depth of the neural network is a vital factor that affects its
performance. Recently a new architecture called highway net-
work was proposed. This network facilitates the training pro-
cess of a very deep neural network by using gate units to con-
trol a information highway over the conventional hidden layer.
For the speech synthesis task, we investigate the performance of
highway networks with up to 40 hidden layers. The results sug-
gest that a highway network with 14 non-linear transformation
layers is the best choice on our speech corpus and this high-
way network achieves better performance than a feed-forward
network with 14 hidden layers. On the basis of these results,
we further investigate a multi-stream highway network where
separate highway networks are used to predict different kinds
of acoustic features such as the spectral and F0 features. Re-
sults of the experiments suggest that the multi-stream highway
network can achieve better objective results than the single net-
work that predicts all the acoustic features. Analysis on the out-
put of highway gate units also supports the assumption for the
multi-stream network that different hidden representation may
be necessary to predict spectral and F0 features.

Index Terms: speech synthesis, deep neural network

1. Introduction
Parametric speech synthesis aims at predicting speech acoustic
features such as spectral and F0 features based on the input lin-
guistic specification of text (in the case of Text-to-Speech) or
conceptual representation of a potential sentence (in the case of
Concept-to-Speech) [1]. This parametric method has achieved
great performance by leveraging statistical models such as the
hidden Markov model (HMM) [2].

Recently, this HMM-based framework was complemented
or replaced by various methods using the neural network [3][4].
The claimed advantage of a neural network is its ability to ex-
tract structural features from the input data when the network
is deep enough [5]. However, for speech synthesis, the com-
parison between HMM and deep feed-forward neural networks
(DNN) with up to 5 hidden layers showed that increasing the
depth of the network did not promise better performance for all
kinds of acoustic features, especially, for the F0 features [3].
These results may be due to the difficulty in training the deep
network since the authors showed later that a DNN with 7 hid-
den layers achieved consistently better performance than previ-
ous systems when the rectifier linear activation function (ReLU)
[6] was utilized to facilitate the training process [7].

Thus, we can infer that, if the difficulty of training DNN can
be further alleviated, deeper neural network may be more effi-
cient than ‘shallow’ models. Although recent research showed

that a DNN with 5 hidden layers could extract phonemic infor-
mation from the input spectral features for speech recognition
[8], whether a similar network is sufficient to extract linguistic
features from the text for speech synthesis is unknown. Ad-
ditionally, the neural network for speech synthesis computes a
single hidden representation and then transforms it into spectral
and F0 features at the output layer. Considering the differences
between spectral and F0 features, we wonder whether sharing
the same hidden representation is the best strategy.

In this paper, we investigate the above questions using a
neural network called highway network [9]. The highway net-
work utilizes trainable gate units to merge the output of a con-
ventional non-linear transformation layer with its input. It al-
lows the input information to flow directly to the output with-
out non-linear transformation. Similarly, gradients can also be
propagated backwards through the highway without attenua-
tion, which eases the gradient vanishing problem. For image
classification, a very deep highway network with more than 100
hidden layers has achieved excellent performance [10]. Another
reason to leverage the highway network is that the gate units can
be used to inspect the usefulness of the hidden layers. Typically,
the gate units will favor the information on highway if the hid-
den layer is ‘useless’.

On the depth of the neural network, our experiments show
that a highway network deep enough (with 14 non-linear trans-
formation layers) but not deeper could improve the accuracy
of predicted acoustic features than the relatively shallow net-
works. On the basis of the result, we present a multi-stream
highway network, where multiple highway networks sharing a
common input hidden vector are used to predict spectral and F0
features separately. The analysis on the output of the highway
gate units suggests that the spectral and F0 features may not
necessarily share the same hidden representation in the neural
network. Experimental results also show that the multi-stream
highway network performs better than the single-stream high-
way network and DNN that predict all the acoustic features.

Section 2 of this paper discusses the highway network and
Section 3 presents the multi-stream highway network. Section
4 show the experiments, including the influence of the depth on
the performance of the highway network, analysis on the gate
unit and the performance of the multi-stream highway network.

2. Highway Network
A neural network with a single hidden layer can be easily
trained by the random initialization and back-propagation al-
gorithm. However, the same strategy does not guarantee a well-
trained network when the number of hidden layer increases.
This difficulty can be alleviated by several approaches, includ-
ing pre-training with generative models [5][11].
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Figure 1: Computation flow in one highway block

Recently, researchers have proposed a new neural network
architecture called highway network [9]. This new type of net-
work is based on the classical feed-forward neural network.
Similarly, each hidden layer in the highway network will trans-
form the input vector x as

H(x) = f(WHx+ bH), (1)

where f(.) is the non-linear activation function, WH is the
transformation matrix and bH is the bias vector. However, the
highway network incorporates a new type of nodes called gate
unit to compute a control vector

T (x) = σ(WTx+ bT ). (2)

The activation function here is the sigmoid function σ(x) =
1

1+e(−x) . Then, the gate merges the output of the hidden layer

H(x) with the input x as

y = H(x)� T (x) + (1− T (x))� x. (3)

Here, the � denotes the element-wise multiplication. This
transformation from x into y is conducted in a single highway
block, as Figure 1 shows.

The parameters in the gate are trainable. When the output
of the gate approaches zero, x can be directly propagated for-
wards (y ≈ x). In this case, the gradient can also be propagated
backwards without attenuation introduced by the hidden layer.
Thus, very deep network can be trained without special training
strategy. The highway block can be more complex by introduc-
ing another gate C(x) to replace (1 − T (x)) in Equation 3. It
can also be simplified by eliminating all the gates and directly
computing the output as y = H(x) + x. This simplified resid-
ual network have been used in an image classification task [10].

Note that, H(x) can be the non-linear transformation con-
ducted by multiple hidden layers. Besides, the dimension of
H(x) should be identical to T (x) and x. If the dimension
doesn’t match, additional transformation can be incorporated
to change the dimension of x.

3. Multi-stream Highway Network for the
Speech Synthesis Task

3.1. Motivation

Similar to the application in image classification, a highway
network can be directly utilized for the speech synthesis task.
This network will transform the input linguistic specification by
highway blocks and then map the transformed hidden represen-
tation into spectral and F0 features as Figure 2 shows. Because
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Figure 2: The single-stream (left) and multi-stream (right) high-
way network for speech synthesis. MGC and BAP denote mel-
generalized cepstral coefficients and band aperodicity, respec-
tively.

all the acoustic features are predicted by a single network, we
call it a single-stream network.

A drawback of the single-stream structure is the unbalanced
dimension of spectral and F0 features [12]. Another drawback
is that the same hidden representation is utilized to predict the
spectral and F0 features. Training this single-stream network
with spectral and F0 features as targets is a Multitask Learn-
ing (MTL) task [13]. Although the theory of MTL argues that
shared representation can improve the generalization ability of
the model for every task involved, a prerequisite for this advan-
tage is that those tasks should be related with each other. For ex-
ample, MTL is beneficial when the system predicts perception-
based spectral features and normal spectral features simultane-
ously [14]. For Text-to-Speech (TTS), the spectral features are
highly correlated with the identity of segmental units in the in-
put text. However, the F0 features are not only influenced by the
segmental units (e.g. lexical stress) but also by supra-segmental
aspect such as the syntactic structure and discourse context of
the text [15]. While the identity of segmental units can be eas-
ily retrieved from the input linguistic specification, linguistic
information related to F0 prediction is not directly accessible.
Thus, complex computation may be required to extract the use-
ful information from the text. Besides, TTS systems usually
provide the speech synthesizer with so-called prosodic features.
These automatically inferred noisy features may also require ad-
ditional transformation. Thus, different hidden representations
may be necessary to predict F0 and spectral features.

3.2. The structure of a multi-stream network

To examine the above argument, we present a multi-stream
highway network shown in Figure 2. Near the input end, a linear
projection layer transforms the input vector into another vector
of a certain dimension. Then, multiple highway networks pre-
dict spectral and F0 features separately.

By separating the highway network for each data stream,
the influence of the unbalanced dimension can be alleviated.
Besides, the multi-stream structure disentangles the non-linear
transformation for spectral and F0 streams. Because the gate
units are trainable, the number of non-linear transformation lay-
ers for each feature stream can be dynamically adjusted in a
data-driven approach. Thus, it’s more flexible than the single-
stream structure. Because the activation of the hidden layer is
controlled by the gate units, analysis on the output of these gate
units can tell whether F0 and spectral features must share simi-
lar hidden representation.
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Figure 3: Results of the preliminary test on single-stream feed-forward network (DS) and highway network (HS) on the test set. Each
highway block in HS contains two hidden transformation layers with tanh activation function.

4. Experiments
4.1. Corpus preparation and system notation

The speech database for experiments contains 12072 English
utterances (16 hours) recorded by a female speaker in a neutral
news reading style. Both the test and validation set contained
500 randomly selected utterances. Mel-generalized cepstral co-
efficients (MGC) of order 60, a one-dimensional continuous F0
trajectory, the voiced/unvoiced (V/U) condition, and band ape-
riodicity of order 25 were extracted for each speech frame by
the STRAIGHT vocoder [16]. The delta and delta-delta com-
ponents of the acoustic features except the voiced/unvoiced con-
dition were also extracted. The Flite toolkit [17] was used for
all the systems to conduct the grapheme-to-phoneme conversion
and prosodic prediction for both the training and test sets. These
phonemic, syntactic and prosodic feature were encoded into a
vector of 382 dimension as the input to the neural network.

Three kinds of systems listed in Table 1 were involved in
experiments. The toolkit for training the neural network was
modified on the basis of the CURRENNT library [18]. Pre-
training was not used in experiments.

4.2. Preliminary test on the depth of the highway network

This experiment tested HS systems with 2 to 20 highway blocks.
Every block had 2 hidden transformation layers with tanh acti-
vation function. Thus, the deepest HS included 40 transforma-
tion layers in total. Layer size of the transformation and gate
layers was set to 382 in order to avoid the transformation on the
dimension of the input data. Bias of the gate was initialised as
-1.5 while other parameters were randomly initialized.

Objective results on the test set are shown in Figure 3. The
comparison among HS groups shows that the RMSE on the
MGC generally decreased with the increasing number of high-
way blocks. However, the RMSE gradually increased after the
number of highway blocks was larger than 14. This result sug-
gests that, although deeper network is helpful in spectral acous-
tic features modelling, the depth can not be increased infinitely
without over-fitting to the data.

As reference systems, DS systems with 4 and 14 hidden lay-
ers were trained. The layer size of the shallow DS was set to 512
following our previous experiments while that of the deep DS
was set to 382. The results demonstrates that DS with 14 hidden
layers achieved similar performance as the best HS. Note that
DS with 14 hidden layers was trained based on the initializa-
tion strategy in [19]. Thus, it can be inferred that either a better
initialization strategy or a carefully designed network such as
the highway network can help the training process of deep net-
works, at least for the spectral modelling of the speech synthesis
task.

Table 1: Experimental systems involved in experiments.

Notation Definition

HS Single-stream highway network
HM Multi-stream highway network
DS Single-stream deep feed-forward network

On F0 prediction, HS with 14 transformation layers per-
formed better than other networks. But generally the improve-
ment was not consistent with the depth of the network. Particu-
larly, highway networks with 14 to 20 non-linear transformation
layers can be worse than the DS system with only 4 hidden lay-
ers. This gap is quite different from that in the MGC prediction.

4.3. Experiments on multi-stream highway networks

Based on the results of the preliminary experiment, we tested
the performance the multi-stream structure HM against HS and
DS when the number of hidden transformation layer for all sys-
tems was fixed as 14. Following the argument in Section 3, HM
adopted three highway networks for MGC, F0 and BAP fea-
tures. To compare the performance, experimental systems with
different sizes of the hidden (and gate) layer were trained. Be-
cause HM adopted multiple sub-networks, the layer size of each
sub-network can be adjusted more flexibly. Thus, as shown in
Table 2, HM systems with different configurations of layer size
were trained .

The results are shown in in Figure 4. The comparison be-
tween DS and HS indicates that the highway network can per-
form better than the traditional feed-forward network when the
number of model parameters is comparable. Interestingly, the
RMSE on MGC increased when the layer size of DS and HS
was increased to 1024. But the performance on F0 prediction
did not degrade.

Compared with HS, HM achieved better performance on
F0. This result can partially supports that F0 prediction in the
single-stream structure may be affected by the unbalanced di-
mension of spectral and F0 features. However, HM’s perfor-
mance on MGC stream can not surpass HS when the total num-
ber of parameters is comparable. One possible reason is that the
size of the network for MGC stream in HM is always smaller
than the size of HS. If HS devotes most of the model capacity
to model MGC features, its performance on MGC prediction
is expected to be better than HM. Note that, a fair comparison
on MGC prediction is impossible because the exact number of
hidden units devoted by HS for MGC modelling is unknown.

However, the performance of HM on MGC prediction can
be improved by increasing the layer size of the MGC sub-
network, which is shown by comparison between HM1 and
HM2. Increasing the layer size from HM2 to HM3 resulted in
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Figure 4: Performance of the multi-stream highway network (HM) against the single-stream highway (HS) and feed-forward network
(DS) on the test set. All systems contained 14 hidden transformations layers. The number associated with every HS and DS system is
the layer size of the network. Definition of HM1 to HM4 is listed in Table 1. For reference, the number of parameter of the DS with 4
hidden layers and 512 units per layer is 1.1e+06.

Table 2: The network structure of HM systems in Figure 4.

Layer size of the sub-network
Notation MGC stream F0 stream BAP stream

HM1 256 256 256
HM2 382 256 256
HM3 512 382 256
HM4 768 512 256

in further improvement. However, when the layer size of F0
sub-network was increased to 512, HM4’s performance on the
F0 prediction degraded, which may suggest the layer size below
512 is sufficient for F0 modelling on the utilized corpus. In gen-
eral, the network structure of HM can be adjusted in a flexible
way. If the layer size is carefully chosen, HM can achieve bet-
ter overall performance than HS. Subjective evaluation on the
experimental systems can not be conducted on time. However,
synthetic samples can be accessed online 1.

4.4. Interpreting the results using the highway networks

To interpret the performance of the HM systems, we plotted and
analyzed the output of the gate units in HM1 for the test set. Fig-
ure 5 shows the results for all the data frames corresponding to
phoneme /a/. Figure 5(a)-(b) shows the output of the gate units
in the sub-network for MGC. Because the bias of the gates was
set to -1.5 and model parameters were randomly initialized, the
output of the gate units were around 0.2 (≈ 1

1+exp(1.5)
) before

the training process began. After the 1st training epoch, as Fig-
ure 5(a) shows, the output of the gate was still about 0.2. Note
that the variance of the gate output in block 1 was large because
the input to that block was not bound by the shared linear pro-
jection layer. After the last training epoch, the gate output in the
block 1 approximated a binomial distribution, which indicates
that the first highway block may derive sparse representation for
the MGC stream.

This binomial distribution can observed in the second high-
way block. In the following blocks, the gate output approxi-
mated the distribution of a bell shape. This trend indicates that
the highway blocks near the output of the network conduct a
complex transformation based on the weighted sum of the input
and output of the non-linear transformation layers. Note that,

1Synthetic samples, scripts and CURRENNT for highway network
training can be found on http://tonywangx.github.io/.

the gross histograms for different phonemes are similar. But the
distribution in each dimension of the gate output was different.

The distribution of gates’ output in the F0 sub-network, as
Figure 5(c)-(d) shows, was different from that in the MGC sub-
network. In block 1, only a few dimensions of the gates’ output
approached 1.0. In the following highway blocks, the gate out-
put was dominated by the mode near 0.2, and the bias of those
highway blocks after model training was still similar to the ini-
tial value. These results indicated that the highway blocks were
only slightly tuned. But this ‘lazy’ network seemed to be more
effective for F0 modelling than the single-stream highway and
normal feed-forward network. Thus, these results suggest that
the different hidden representations may be beneficial to model
these different kinds of acoustic features.

An inspection on the gate output of HS is shown in Figure
6. Although we can not differentiate the hidden representation
for spectral and F0 streams, the distribution of gate output re-
sembled that of the spectral stream in Figure 5(b). Because the
dimension of the spectral features, including MGC and BAP,
was much larger than that of the F0 features, this observation
may support the assumption that the hidden representation for
the spectral features dominate the single-stream structure.

5. Conclusion
By leveraging gate units that control information flow over the
conventional hidden transformation layer, the highway network
provides a good way for training a deep neural network. In
this paper, we investigated the use of the highway network for
the speech synthesis task. Experimental results show that a
highway network with 14 non-linear transformation layers can
achieve better performance than a feed-forward network with 4
to 5 hidden layers.

The highway network can also be utilized to analysis the
performance of the neural network. Typically, the distribution
of the gate output in the highway network indicates that differ-
ent non-linear transformations may be preferred to derive hid-
den representation for spectral and F0 prediction. Accordingly,
a multi-stream highway network, in which separate highway
networks are utilized for predicting spectral and F0 features,
can achieve better performance for F0 modelling while yield
similar performance on the spectral part.

It is not surprising that different representations are required
to predict spectral and F0 features. For the future work, the
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Figure 5: Histogram of the output of gates units in highway blocks of the multi-stream highway network HM1 (7 highway blocks).
(a)-(b) show the gates in the sub-network for MGC; (c)-(d) for F0. block 1 is near the input layer while block 7 is linked to the output.
The data were generated given all the input data of phoneme /a/ in the test set.
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Figure 6: Histogram of the gates output T (x) of network HS with 14 hidden layers and 1024 layer size after the last training epoch.
The data were generated for all the frames of phoneme /a/ in the test set .

sensitivity measure defined in [20] may tell what kind of infor-
mation contributes to spectral and F0 modelling. Fine analy-
sis on the contribution of different input information to spectral
and F0 modelling is also interesting [8]. Besides the normal
feed-forward network, it is also possible to combine highway
pass with recurrent neural network as what Zhang et al. did for
speech recognition task [21].
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