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Abstract  As the basis of data management and analysis, data quality issues have increasingly 
become a research hotspot in related fields, which contributes to optimization of big data and 
artificial intelligence technology. Generally, physical failures or technical defects in data collectors 
and recorders cause anomalies in collected data. These anomalies will strongly impact on 
subsequent data analysis and artificial intelligence processes; thus, data should be processed and 
cleaned accordingly before application. Existing repairing methods based on smoothing will cause 
a large number of originally correct data points being over-repaired into wrong values. The 
constraint-based methods such as sequential dependency and SCREEN cannot accurately repair 
data under complex conditions since the constraints are relatively simple. A time series data 
repairing method under multi-speed constraints is further proposed based on the principle of 
minimum repairing. Then, dynamic programming is used to solve the problem of data anomalies 
with optimal repairing. Specifically, multiple speed intervals are set to constrain time series data, 
and a series of candidate repairing points are formed for each data point according to the speed 
constraints. Next, the optimal repair solution is selected from these candidates based on the 
dynamic programming method. With regard to the feasibility study of this method, an artificial 
dataset, two real datasets, and another real dataset with real anomalies are employed for 
experiments in case of different rates of anomalies and data sizes. Experimental results 
demonstrate that, compared with the existing methods based on smoothing or constraints, the 
proposed method has better performance in terms of RMS errors and time cost. In addition, the 
investigation of clustering and classification accuracy with several datasets reveals the impact of 
data quality on subsequent data analysis and artificial intelligence. The proposed method can 
improve the quality of data analysis and artificial intelligence results. 
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1 Introduction 

Amid the development and popularization of information technology, massive data have been 
accumulated in all walks of life through corresponding information systems, providing basic data 
support for big data and artificial intelligence technology. Data management and analysis 
technology is indispensable as a basic support to give full play to the advantages and improve the 
efficiency and application of the big data and artificial intelligence technology. As is known to all, 
sensors, terminal recorders and other devices will be affected by subjective and objective factors 
during acquisition, transmission and recording of data. Within physical and technical constraints, 
the final data quality will be impaired. Then it cannot accurately characterize the real world, failing 
to promote the optimization of artificial intelligence technology. Removing anomalies for higher 
data quality can further optimize artificial intelligence in data link through data management and 
analysis, advancing the development in the artificial intelligence field. 

1.1 Background 
At the moment, the cost and risk caused by poor data quality should not be underestimated, 

and it has remained as an important subject in the field of data management to effectively identify 
and repair anomalies in data. With the progress in technology, the cost of data storage and 
transmission has dropped sharply. Meanwhile, the development of big data and artificial 
intelligence technology enlightens people as to constantly tap the enormous potential of data. 
Human society, especially in the industrial field, tends to store the data records that can be 
generated as much as possible. Usually, they are mostly time series data, namely a series of data 
points including time stamps. 

Time series data generally exists in people’s daily life and industrial fields, such as driving 
routes, temperature changes, and stock trends. Since the points in most time series data vary with 
time, Zhang et al.[1] put forward the SCREEN method based on speed constraints to repair 
anomalies in time series data. In this method, the speed constraint range [smin, smax] ([minimum 
speed, maximum speed]) restricts the change speed of data, and the data points beyond the speed 
constraint range are regarded as anomalies and then repaired. However, this method is only 
applicable to a single-speed constraint, namely that the range of speed is between a minimum and 
a maximum. In actual data, the speed change of data can be subject to multiple constraint intervals. 
For instance, the speed is likely to change in the intervals of min max

1 1[ , ]s s or min max
2 2[ , ]s s  ( max min

1 2s s< ). 
If the change speed is only constrained to min max

1 1[ , ]s s , many normal points constrained by 
min max
2 2[ , ]s s  will be treated as anomalies for repairing. Similarly, if the change speed is only 

restrained to min max
2 2[ , ]s s , the normal points constrained by min max

1 1[ , ]s s  will also be regarded as 
anomalies, resulting in excessive cleaning. In addition, if the change speed is limited to min max

1 2[ , ]s s , 
the anomalies between ( max min

1 2,s s ) will be regarded as normal points free of repair. In either case, 
the quality of data repair will be considerably reduced. 

Example 1: The company supervises the fuel consumption data of vehicles for analysis of the 
consumption situation, encouraging safe drive and reducing the cost. In this time series data, two 
behaviors, fuel consumption and refueling, are included, as shown in Figure 1. Since the vehicle 
consumes fuel during driving, the oil level in the fuel tank presents a downward trend as a whole. 
Nevertheless, it is inevitable that the vehicle will bump during driving, and the measurement of oil 
level in the oil tank will oscillate within a small range. Therefore, in the process of fuel 
consumption, the oil level maintains a dynamic downward trend. The specific speed constraint is 
[−1, 1], namely that the change in the oil level per unit time fluctuates by 1 cm up and down 
(according to the real data, the unit time is set to 5 s in this example). On the contrary, in the 
course of refueling, the oil level grows sharply. The specific speed constraint is [20,70], namely 
that the oil level increases by 20–70 cm per unit time during refueling. The speed of data change 
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will be abnormal if that between two data points in a given time window is outside the ranges of 
[−1,1] and [20,70], and there must be abnormal data in these two data points. As shown in Figure 1, 
blue data indicate anomalies. 

 
 
 
 
 
 
 
 
 
 

Figure 1  Example of fuel consumption data 

To fully illustrate the difference between multi-speed constraints and single-speed constraint, 
this paper selects 100 data points from 34 220 in the above-mentioned fuel consumption dataset 
for repair. In this data, if the speed constraint is set as [−1,1] without careful consideration, the 
refueling behavior is treated as abnormal data to be repaired, as shown in Figure 2. Due to the 
refueling behavior at 15:09, many normal values are misjudged as abnormal for over-repair; 
similarly, if the speed constraint is [20,70], substantial fuel consumption behaviors will be 
regarded as abnormal data, also leading to over-repair. If the speed constraint [−1, 70] is adopted, 
most data is regarded as normal; however, the anomalies within the speed constraint of (1,20) 
cannot be accurately identified and repaired. As shown in Figure 2, owing to an anomaly at 15:12, 
subsequent correct values are falsely repaired. 

 
 
 
 
 
 
 
 
 
 

Figure 2  Repairing with SCREEN and multi-speed constraints 

Consequently, this paper mainly studies the quality of time series data and repairs the 
anomalies in time series data through multi-speed constraints. 

1.2 Major contributions 
The primary contributions of this paper are as follows: 
(1) Multi-speed constraints and repaired results are defined. The speed constraint mentioned 

in this paper is not limited to a single range between the maximum and the minimum; instead, it 
has multiple intervals of speed, making the constraints more specific and precise. The repaired 
results are defined specific to a given window, which can be flexibly extended to the whole time 
series in application, thus making the repair method more widely applicable. 

(2) A time series data repairing method under multi-speed constraints is proposed, and the 
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corresponding algorithm is given. Within multi-speed constraints, the repairing range and 
candidate repairing points of the objects are given. Besides, with regard to each candidate point, a 
more specific repairing range is generated for the subsequent time in the given window, and then 
the subsequent candidate points are further screened to determine the final candidate repairing 
points. Finally, the candidate points determined at each time in the given window are stored based 
on the graph, so as to be repaired with the dynamic programming method. 

(3) The theorem and its proof are put forward for the dynamic programming-based repair 
with multi-speed constraints, providing a theoretical support for the repairing method. Theorem 1 
demonstrates that an optimal repairing path can be identified at the candidate repairing point, 
minimizing the sum of repairing distance in the window. In addition, when the candidate repairing 
point generated by the subsequent point relative to the current point is not in the final repairing 
range, Theorem 2 also reveals that the corresponding constraint point can be selected as the new 
candidate repairing point to ensure the minimum repairing distance. 

(4) The dynamic programming-based repair is compared with SCREEN in a special case of 
single-speed constraint. In this case, the results from the method under multi-speed constraints 
proposed in this paper are consistent with those obtained by SCREEN in determining the 
constraint range and candidate repairing points. Noteworthy, the repair method proposed in this 
paper will be equivalent to or better than SCREEN, because the method under multi-speed 
constraints identifies the optimal repairing path according to dynamic programming in the given 
candidate points. 

(5) Experiments are performed with an artificial dataset, two real datasets and a dataset with 
real anomalies in terms of RMS errors, clustering and classification accuracy, and time cost, and 
the proposed method is compared with existing methods including SCREEN. The results 
demonstrate that the method under multi-speed constraints in this paper performs the best in 
repairing, with a good trade-off between the effect and time cost. Additionally, this paper verifies 
the classification accuracy by multiple time series datasets with classification labels. From the 
results of accuracy, the method under multi-speed constraints can provide a solid data support for 
subsequent research and processing including data analysis and artificial intelligence. 

1.3 Structure 
Section 2 of this paper provides the basic definitions related to this study. It explains the time 

series, multi-speed constraints and repaired results, and offers the formal definition of the problem, 
namely repairing conditions and goals. In Section 3, a dynamic programming-based repair method 
under multi-speed constraints is developed, including specific description, theoretical proof, 
special case analysis and specific algorithms. In Section 4, the proposed method is compared with 
the existing methods regarding repair effect, time cost, and clustering and classification accuracy 
through an artificial dataset, two real datasets and a dataset with real anomalies. In particular, the 
classification accuracy is compared with multiple datasets. The related work is introduced in 
Section 5, and finally, the work of this paper is analyzed and summarized in Section 6. 

2 Fundamental Definition 

As the data support for big data and artificial intelligence technology, industrial big data are 
becoming a hot spot in data-related research fields, and this paper mainly studies the industrial 
time series data. For convenience of description, this section provides definitions of time series, 
time stamp, speed constraints, multi-speed constraints and repaired results. 

2.1 Time series 
A time series refers to a series of data points containing time stamps. To be specific, in a data 
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series x = x[1], x[2],…, the data point x[i] indicates the ith data point, and each data point x[i] has a 
time stamp t[i]. x[i] is abbreviated as xi and t[i] as ti for simplicity. 

2.2 Multi-speed constraints 
In a constraint interval of speed min max[ , ]r r rs s s= , min

rs  is the minimum speed, while max
rs  is 

the maximum speed. 
The multi-speed constraint S refers to a set of constraint intervals sr (r=1, 2, …, m), namely 

S={s1, s2,…, sm}. In a given time window w, if the time series x follows the multi-speed constraint 
S, any data points xi and xj satisfy S. And if xi and xj satisfy S, any data points xi and xj in the 
window w satisfy a certain-speed constraint sr among the multi-speed constraints, namely 

min max0 , j i
j i r r

j i

x x
t t w s s

t t
≤ ≤ ≤

−
< −

−
 

In Figure 3, in a given window w, the constraint interval S includes two sub-intervals
min max

1 1 1[ , ]s s s= and min max
2 2 2[ , ]s s s= , and a data point pair (x1, x2) is within the constraint interval 

min max
1 1 1[ , ]s s s= , namely 

min max2 1
1 1

2 1

x xs s
t t

−
≤ ≤

−
 

Similarly, (x1, x3) is within the constraint interval min max
2 2 2[ , ]s s s= . As such, the above two pairs 

of data points are all under the multi-speed constraint S, but (x1, x4) neither satisfies s1 nor s2, 
namely that the data pair (x1, x4) does not satisfy S. 

 
 
 
 
 
 
 
 
 

Figure 3  Example of multi-speed constraints 

2.3 Repaired results 
The repaired result x′ means that within a given window w, the data point xi on the time stamp 

ti is repaired into ix′ , and the time stamp remains unchanged after repair, i.e., i it t′ = . According to 
the principle of minimum repairing, the final repairing distance can be defined as 

( , ) | |, , 1, , , 0k
i i k i ki k

x x x x i k k k t t t wω∆ ω+

=
′ ′= − = ≤ ≤+ ≤+ +∑   

From Figure 3, x4 is repaired into 4x′ , and the time stamp is still t4. The final repairing distance 
in this window is  

2.4 Problems 
Given a time series x, the time window is w with ω+1 data points and the starting point xk. 

The speed constraint range of each xj in the window and the multi-speed constraint are illustrated 
as S={s1, s2,…, sm}, min max[ , ]r r rs s s= , where r=1, 2,…, m. The repair under multi-speed constraints 
refers to finding a repair result x′ in the window w. Then each point in the repaired window meets 
the multi-speed constraints and the repairing distance is the minimum, namely 

min | |, , 1,..., , 0k
j k j kj k jx x j k k k t t t wω ω+

=
≤ ≤ ≤′− = + + +∑  

where the speed constraint range of each xj in the window is obtained by multi-speed 

1 4
4

4( , ) | | | | .i iix x x x x x∆
=

′ ′ ′= − = −∑
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constraints on other points before xk and in the same window of xj. If no data point before xk shares 
the same window with xj, then the constraint range of xj is not set. Specific methods are detailed in 
Section 3.1. 

3 Dynamic Programming-based Repairing 

According to the above definitions, this section further elaborates the proposed repairing 
method. Overall, if the time series data is repaired under speed constraints, the range of 
multi-speed constraints on data should be first determined. In addition, the candidate repairing 
points of each data point can be given for repair selection. At last, the final repairing point is 
selected by the dynamic programming method to complete the repair. 

3.1 Speed constraint range 
Parameters are given as the multi-speed constraint S, the window w, the starting data point xk 

in the window and each point in the window, xk, xk+1, xk+2, …, xk+ω, with 0<tk+ω−tk≤w. This paper 
determines the corresponding speed constraint range to figure out whether each data point in the 
window xj (tk≤tj≤tk+w) and the aforementioned data points xi (ti<tj≤tj−w) in the same window as 
them meet the multi-speed constraints in Section 2.2. 

To illustrate multi-speed constraints more distinctly, this section first studies the data point xj. 
The constraint range of xj is solved by other data points xi (tj–w≤ti<tk ≤ tk + w) in its same window 
but not in the given window w. Then the speed constraint range of each xj in the window 
mentioned in Section 2.4 is solved as the following. 

For convenience of description, the definitions of
jk nx − are given in this paper. When xj 

(tk≤tj≤tk+w) is the last point in a window, 
jk nx − is the first point in the window. 

ix′ (i=k−1, k−2, …, k−nk) is the previous point of xk in the same window (when xk is the last 
point in a window,

kk nx − is the first point in the window, 0
kkk k nit t t t w−− ≤ − ≤< ). According to 

Formulas (1)–(2), a speed constraint range min max
, , , ,[ , ]i k r i k rx x

 
is generated by ix′ for xk. Then with 

Formula (3), the speed constraint ranges for each ix′ are intersected to generate the constraint range
const
, ,j rX and finally with Formula (4), the multi-speed constraint ranges of xk are combined into the 

set const .kX It is indicated by the gray area in Figure 4. 
 
 
 
 
 
 
 
 
 

Figure 4  Range of multi-speed constraints 

Similarly, ix′ (i=k −1,k − 2,…,k − nk) is the previous point of xk+1(except for the points in the 
given window w) in the same window (when xk+1 is the last point in a window,

1kk nx
+− is the first 

point in this window,
1110

kk i k k nt t t t w
++ −+ − ≤ − ≤< ). Then the constraint range c n t

1
o s

kX = will be generated 
by ix′ for xk+1, indicated by the blue area of Figure 4. 

ix′  (i=k−1, k−2, …, k−nk+2, 2220
kk i k k nt t t t w

++ −+ − ≤ − ≤< ) is the previous point of xk+2 (except for 
the points in the given window w) in the same window. Then the constraint range c n t

2
o s

kX + will be 
generated by ix′ for xk+2. In the example of Figure 4, the aforementioned points in the same window 
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with xk+2 are all in the given window w, so the speed constraint range of xk+2 is not generated at this 
time. 

In the same way, the speed constraint range of all points (xk, xk+1, xk+2,…, xk+ω) in the window 
w is determined: 

                                (1) 

 max max
, , ( )i j r i r k ix x s t t′= + −                               (2) 

 1const max
, , , , ,

min ,[ ]
k

k
j r i j r i j ri k n

X x x−

= −
=


                             (3) 

 const const
,1

m
j j rr

X X
=

=


                               (4) 

where 

3.2 Candidate repairing points 
The relationship between data points and speed constraints reveals that the speed constraint S 

can be combined with the data point xi (tk≤ti<tk+w) to restrict the range of subsequent points xj 

(tk≤tj<tk+w). Similarly, the speed constraint S can also be integrated with xj (tk≤tj<tk+w) to reversely 
deduce the approximate range of the aforementioned data points xi (tk≤ti<tk+w) in the same window, 
namely the candidate repairing points of xi. Next, this paper gives a specific method to determine 
the candidate repairing points. 

xi (xk+1,xk+2,…,xk+ω), tk<ti≤tk+ω≤tk+w indicates the subsequent points of xk in the given window 
w, and the candidate point set of xk can be generated according to Formulas 
(5)–(6): 

minmin { ( ) | , ,1 }i j r i j k i j kX x s t t t t t t w k i j k r mω= + − < + < +≤ ≤ ≤ ≤ ≤ ≤
      

 (5) 

max max{ ( ) | , ,1 }i j r i j k i j kX x s t t t t t t w k i j k r mω= + − < + < +≤ ≤ ≤ ≤ ≤ ≤            (6) 

In the same way, the candidate point set min max
1 1 1{ }k k kX X x+ + +∪ ∪ of xk+1 in this window can be 

generated on the basis of its subsequent points (xk+2, …, xk+ω). As such, the candidate repairing 
point set Xi of each data point xi (i =k, k+1, …, k+ω) in the window w can be obtained, and the 
candidate repairing point set Xk+ω of xk+ω only includes the point itself, as indicated in Figure 5. 
 

 
 
 
 
 
 
 
 
 

Figure 5  Capture of candidate repairing points in a given window 

Then, according to the speed constraint range const
iX in Section 3.1, the candidate repairing 

points are re-screened by Formula (7), and the candidate repairing point set Xi within the speed 
constraint range is finally determined: 

max com si nn t{ | ,{ } }i i i i i i i iX x x X X x x X′ ′ ′∈ ∪ ∪ ∈=                       (7) 

min min
, , ( )i j r i r k ix x s t t′= + −

min max { }k k kX X x∪ ∪

0 , , 1 .ω−< − ≤ − ≤ < ≤ ≤ + − ≤ ≤ − < ≤ ≤ +
jj i j k n i k j k jt t t t w t t t t w k n i k k j k
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In Figure 6, the empty circles represent the candidate points determined by the above method, 
while the solid circles depict the original data points. The gray points are invalid candidate points 
beyond the constraint range, and other points are valid. 

Theorem 1. Under multi-speed constraints, among xk and its candidate repairing points, it is 
certain to find the optimal repairing solution .kx′  

Proof ω=|{i|tk<ti ≤tk + w, 1≤i ≤n}| is set as the total number of data points except xk in the 
window starting from xk, and there are 2×ω×r+1 points in the candidate point set Xk of xk. These 
points are sorted to get c1, …, c2×ω×r+1, and cj ≤ cj+1, j=1, …, 2×ω×r+1. 

If kx′ is not a candidate point, namely k kx X′ ∉ , then another repair method can be developed 
on the basis of candidate points kx′′ to minimize the repairing distance. For convenience, this paper 
gives the following definition: 

max min mia nm x

max max mi max max
, , ,

n min min i
,

m n( ), ( ), ( ), ( ),i j j r i k i j j r i k i k k r i k i k k r i kd c s t t d c s t t x x s t t x x s t t′ ′= + − = + − = + − = + − where
max

max
rs

is the maximum speed in the range of multi-speed constraints;
min

min
rs is the minimum speed in the 

range, tk<ti ≤ tk+w. 
Firstly, it is proved that the repaired result kx′ must be within the candidate set, namely

1 2 1ω∗ ∗ +′≤ ≤k rc x c . From Figure 7, it is certain that max
,1≥i ix d ; otherwise, other candidate points will 

be introduced between kx′ and c1. For any 1k cx′ < , other xi points in the window will be repaired to
max
,i kx , and the repairing distance is obviously larger than that to max

,1id , compromising the principle 
of minimum repairing. When 2 1k rx c ω∗ ∗ +′ > , similar results will be obtained. 

Second, it is assumed that 1, [1,2 * * 1]ω+′≤ ≤ ∈ +j k jc x c j r , namely that kx′ is between two 
continuous candidate repairing points, with specific cases as follows: 

(1) If xi is not changed after repairing, namely i ix x′ = , the repairing distance of xi is 0 at this 
time, as shown in Figure 8. 

(2) If it is repaired as max
,i i kx x′ = , then max

, 1+≥i i jx d ; otherwise, new candidate points will be 
introduced between cj and cj+1. It can also be repaired as k jx c′′ = or 1k jx c +′′ = , and then max

,i i jx d′′ = or
max
, 1i i jx d +′′ = , with the corresponding repairing distance as | | | |i i i i j kx x x x c x′′ ′ ′− = − − + , or

| | | |i i i ix x x x′′ ′− = − − 1j kc x+ ′+ , as shown in Figure 9. 
(3) Similarly, if it is repaired as min

,i i kx x′ = , then min
, 1+≤i i jx d , or new candidate points will be 

introduced between cj and cj+1. It can also be repaired as k jx c′′ = or 1k jx c +′′ = , and then min
,i i jx d′′ = or

min
, 1i i jx d +′′ = , with the corresponding repairing distance as | | | |i i i i j kx x x x c x′′ ′ ′− = − + − , or | |i ix x′′− =

1| |i i j kx x c x+′ ′− + − , as shown in Figure 10. 
xi in the above Cases (2) and (3) can be counted to calculate the total repairing distance in the 

window. 
(a) When the number of xi in Case (2) and Case (3) is the same, either of cj and cj+1, which is 

closer to xk, is selected as kx′′ . When cj is chosen, the total repairing distance is
as cj+1 is chosen, the total repairing distance is 

1( , ) ( , ) ( ) ( , );j kx x x x c x x x+′′ ′ ′ ′∆ = ∆ − − < ∆  

(b) When the number of xi in Case (2) is greater than that in Case (3), cj+1 serves as .kx′′ Then 
the total repairing distance is 1 1( , ) ( , ) | | ( , );+ +′′ ′ ′ ′ ′∆ ≤ ∆ − + + − < ∆j k j kx x x x c x c x x x  

(c) When the number of xi in Case (2) is smaller than that in Case (3), cj serves as .kx′′ Then the 
total repairing distance is ( , ) ( , ) | | ( , ).′′ ′ ′ ′ ′∆ ≤ ∆ + − + − < ∆j k j kx x x x c x c x x x  

In summary, k jx c′′ = or 1k jx c +′′ = can be employed to obtain the repaired result x″, making ∆(x, 
x″)≤∆(x, x′). 

Similar results will be obtained for other points xi (xk+1, xk+2, …, xk+ω), tk<ti≤tk+ω≤tk+w in the 
window. 

 
 

( , ) ( , ) ( ) ( , );k jx x x x x c x x′′ ′ ′ ′∆ = ∆ − − < ∆
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Figure 6  Generation of candidate point set Xi according to range const
iX  

 
 
 
 
 
 
 
 
 
 

Figure 7  Impossible case of kx′  smaller than the minimum candidate c1, 1′ ≤kx c  

 

 
 
 
 
 
 
 
 

Figure 8 kx′ between two continuous candidates, 1+′≤ ≤j k jc x c , without repairing xi 

 
 
 
 
 
 
 
 
 
 
 

Figure 9 kx′ between two continuous candidates, max
1 , 1,+ +′≤ ≤ ≥j k j i i jc x c x d
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Figure 10 kx′ between two continuous candidates, min
1 ,,j k j i i jc x c x d+′≤ ≤ ≤  

3.3 Repairing path 
Previous discussion reveals that in the window w starting from xk, each data point xi has a set 

of candidate repairing points within a given speed constraint range. The number of candidate 
points in this set is as ηi. 

As in Section 3.1, parameters are given as the multi-speed constraint S, the window w, the 
starting data point xk in the window, and each point xj (tk≤ tj≤tk + w) in the window has a relation of 
multi-speed constraint with the previous point xi (ti<tj≤tj − w) in the same window; the candidate 
repairing points of each data point can also place a speed constraint range for its subsequent points 
in the window w, as described below. 

Each candidate repairing point , ii dc of xi can generate a speed constraint range min max
, , , ,[ , ]

i id j r d j rx x for 
the subsequent point xj in the same window w according to Formulas (8)–(9): 

min min
, , , ( )

i id j r i d r j ix c s t t= + −                        (8) 

max max
, , , ( )

i id j r i d r j ix c s t t= + −                        (9) 

where tk ≤ ti<tj ≤ tk + w, k≤i <j≤k+ω,1≤di ≤ ηi. 
According to const

,j rX in Formula (3), a new speed constraint range const
, ij dX for xj is determined 

according to Formulas (10)–(12): 

1
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                          (12) 

where tk ≤ ti<tj ≤ tk + w, k ≤ i <j ≤ k + ω, 1 ≤ di ≤ ηi. 
Theorem 2. In the window w with xk as the starting point, if the data point xk has no candidate 

repairing point in the constraint range
1

const
, jj dX

−
, the constraint point closest to the original xj can be 

designated as the candidate. The speed constraint point refers to the boundary point of the 
constraint range determined for xj in the above

1

const
, jj dX

−
, and the repairing distance is the smallest. 

The candidate repairing point set is updated as 
1

cand
, jj dX

−
: 

1

cand
, { },

,  
 

  
j

j j
j d

j j

X X
X

x X−

≠ ∅
′ = ∅
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                           (13) 

where
1

const
, jj j dx X

−
′ ∈ , and the distance from jx′ to xj is the smallest, namely 

1

const
,( , ) min{ ( , ) | },

jj j j j j j dx x x x x X
−

′∆ ∆′ ′= ∈ tk ≤ tj−1<tj≤ tk + w, k≤j −1<j≤k+ω, 1≤dj−1≤ ηj−1 
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Proof Theory 1 demonstrates that there must be an optimal repairing solution when the 
candidate repairing points of xj are within the range 

1

const
, jj dX

−
. 

When candidate repairing points of xj are beyond the range
1

const
, jj dX

−
, the boundary point jx′ of the 

speed constraint range, which is closest to xj, can be selected according to Formula (13), namely
const( , ) min{ ( , ) | }.j j j j j jx x x x x X∈∆′ ′ ′∆ =  It is evident that within the range const

, 1j d j
X

−
, the distance from 

other points to original xj is greater than ( , ),j jx x′∆ so in the repairing path with the previous 
repairing points determined, the selected jx′ is the closest to the original data point under the 
constraints. At this time, the repairing distance is the minimum. 

If the repairing range generated by this candidate point for subsequent points includes the 
existing candidate points, the optimal repairing path can still be selected according to this 
candidate point; on the contrary, if the existing candidate points are not within the repairing range, 
the candidate repairing points of the subsequent points can be generated according to Theorem 2, 
and the repairing distance of this path is the smallest. 

In summary, there is an optimal repairing path among the candidate repairing points 
determined by this theory, which minimizes the repairing distance. 

In Figure 11, from moment tk, for data point xi (tk ≤ ti<tk + w), any of its candidate repairing 
point , ii dc generates a repairing range of min max

, , , ,[ , ]
i id j r d j rx x  for subsequent xj  (tk≤ti<tj≤ tk+w) according 

to Formulas (8)–(9). This range will intersect with the above const
jX according to Formulas (10)–(12) 

to determine a new candidate repairing range const
, ij dX . If one or more candidate repairing points

11, ii dc
++

fall in this range at the next moment ti+1, then one or more candidate points are connected with the 
candidate points , ii dc selected by ti into one or more edges. The weight of the edge is the distance 
between the candidate point

11, ii dc
++ and the original data point xi+1, i.e., 

11 1,( , ).
ii i dx c
++ +∆  If there is no 

candidate repairing point in this range in the next moment, then the speed constraint point closest 
to the original xi is designated as the candidate repairing point

11, ii dc
++ , according to Theorem 2. To 

be specific, the speed constraint point refers to the boundary point of the constraint range 
determined for xi above, and , ii dc is connected with

11, ii dc
++ to form an edge. Similarly, the weight of 

the edge is equivalent to the distance between the candidate point
11, ii dc

++ and the original data point 
xi+1, namely

11 1,( , ),
ii i dx c
++ +∆ as shown in Figure 12. 

 
 
 
 
 
 
 
 
 
 
 

Figure 11  Obtain candidate sets 
1

cand cand
1, 2,,

k kk d k dX X
++ + according to ranges 

1

const const
1, 2,,

k kk d k dX X
++ +  

Furthermore, the above one or more candidate points continue to generate candidate repairing 
ranges for the subsequent xj (ti+1<tj≤tk+w), which intersect with const

, ij dX to form the new candidate 
range

1

const
, ij dX

+
. Then at the next moment ti+2, candidate repairing points are selected within the range

1

const
2, ii dX

++ to generate new repairing edges. In this way, a map of repairing paths is finally shaped, as 
shown in Figure 13. Solid lines indicate the path edges with weight, while dotted lines depict the 
completion of repairing. To obtain the minimum repairing path, this paper adopts the method of 
dynamic programming[3] to select the repairing path. 
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Figure 12  Generate edges for repairing path 

 
 
 
 
 
 
 
 
 
 
 

Figure 13  Repairing paths 

3.4 Special case: single-speed constraint 
This section will illustrate a special case, single-speed constraint, with only one constraint 

interval min max[ , ]r rs s , where r=1. It will be compared with SCREEN which is also based on speed 
constraints. 

3.4.1 Speed constraint range 

As there is only one speed constraint interval, as described in Section 3.1, the previous points 
ix′ (i=k− 1, k − 2,…, k − nk) in the same window of xk will constrain the speed ranges for xk and all 

its subsequent points xj (xk+1, xk+2,…, xk+ω) in the same window w, as shown in Figure 14. The 
speed constraint range is the same as that generated by point in the SCREEN method. 

 
 
 
 
 
 
 

Figure 14  Special case of single-speed constraint 
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3.4.2 Candidate repairing point  

Same as the method of multi-speed constraints, in a single speed interval, the subsequent 
points xi (xk+1, xk+2,…, xk+ω, tk<ti≤ tk+ω≤tk+w) of xk in a given window w will generate candidate 
points of xk, and the candidate point of xk+1 in this window can be generated by its subsequent 
points (xk+2,…, xk+ω). Then, the candidate repairing points of the data points in window w are 
determined, and the candidate repairing point of xk+ω is the point itself. From Figure 14, the above 
candidate repairing points, in a given window w, are consistent with those obtained by the 
SCREEN method.  

3.4.3 Repairing path 

As the same case in multi-speed constraints, in a single speed interval, each data point xi, in 
the window w, can obtain a series of candidate repairing points within a given speed constraint 
range. Each candidate repairing point will constrain the speed range of the subsequent points in the 
same window, and the range is the same as that constrained in the SCREEN method. Within this 
speed constraint range, a repairing path can be formed by selecting candidate points at each time in 
the window w. Since the constraint range is the same, the candidate repairing points are also the 
same as those in the original version of SCREEN. Therefore, among the repairing paths dependent 
on the above candidate repairing points, one must be the same as the repairing path in the original 
SCREEN version. In this paper, the shortest repairing path is chosen according to the dynamic 
programming method, which must be better than or equivalent to the repairing path in the 
SCREEN method. 

3.5 Algorithm 
Algorithm 1 is established according to the above repairing method. 
As described in Algorithm 1, Lines 1–18 preliminarily determine the candidate repairing 

points and the speed constraint range. Among them, Lines 5–10 generate the corresponding range 
set const

iX of multi-speed constraints for each data point xi in the given time window w through the 
aforementioned xj in the same window but outside the given window w according to Formulas 
(1)–(4); from Formulas (5)–(7), Lines 11–17 generate the set Xi of candidate repairing points for 
each xi in a given time window w through the subsequent xj in this window and the above 
constraint range set const

iX . 
Lines 19–36 determine the repairing path. To be specific, Lines 28–29 generate the speed 

constraint range of each subsequent time point in the window w though candidate time points 
according to Formulas (8)–(9), and then determine a new constraint range based on the above set 
of constraint ranges; Lines 30–33 screen out the candidate repairing points at the subsequent time 
according to the new constraint range. Then the corresponding repairing path edges are formed and 
given weights at the same time. At last, the optimal repairing path is solved by the dynamic 
programming method in Line 37. 

The above definition reveals the maximum number of data points in the window is w, and 
Lines 1–18 require time of O(w2) for preliminarily determining candidate repairing points. The 
total number of candidate repairing points generated in the window is (w−1)×r+1 at most, where r 
is the number of speed constraint intervals. As such, Lines 19–36 demand time of O(w2×((w− 
1)×r+1)) for determining the repairing path. Considering the time for dynamic programming 
O(((w−1)×r+1)2), the time complexity of the whole algorithm is O(w3×r). As a locally defined 
algorithm, the multi-speed constraints proposed in this paper can quickly repair big data, providing 
a data basis for subsequent data analysis and artificial intelligence research. 
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Algorithm 1. Dynamic programming based on multi-speed constraints 

Input: sequential time series x, time window w, starting data point xk, and multi-speed constraints S. 
Output: repaired time series x′. 

1. for i←k to n do  // Preliminarily determine candidate repairing points 
2.  if ti>tk+w then 
3.   break; 
4.  end if; 
5.  for j←1 to k do 
6.   if tj<tk－w then 
7.    break; 
8.   end if; 
9.   From xj, generate the speed constraint range of xi, const ,iX as shown in Formulas (1)–(4); 
10.  end for; 
11.  for j←i to n do 
12.   if tj>tk+w then 
13.    break; 
14.   endif; 
15.     Generate the candidate repairing point of xi from xj, as shown in Formulas (5)–(6); 
16.     Generate the set of candidate points Xi based on const

iX , as shown in Formula (7); 
17.  endfor; 
18. endfor; 
19. for i←k to n do // Determine repairing path 
20.  if ti>tk+w then 
21.   break; 
22.  endif; 
23.  for each candidate , ii dc of xi do 
24.   for j←i+1 to n do 
25.    if tj>tk+w then 
26.     break; 
27.    endif; 
28.     Generate the speed constraint range of xj from , ii dc , as shown in Formulas (8)–(9); 
29.     Determine the speed constraint range of xj, const

, ,
ij dX  as shown in Formulas (10)–(12); 

30.    if j←i+1 then 
31.     Determine the candidate repairing range of xj, cand

, ,
ij dX as shown in Formula (13); 

32. Generate the repairing edge between the candidate , ii dc of xi and , jj dc in the candidate set
cand
, ij dX  of xj, and make ,( , )

jj j dx c∆ as the weight; 
33.    endif; 
34.   endfor; 
35.  endfor; 
36. endfor; 
37. Use dynamic programming to determine the optimal repairing path; 
38. return x′; 
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4 Experiment 

To verify the multi-speed constraints proposed in this paper, this section selects multiple 
datasets for experimental evaluation according to corresponding criteria and then compare the 
results with those of other existing methods. Specific experimental conditions, datasets, evaluation 
criteria, existing comparison methods and results are illustrated as follows. 

4.1 Experimental setup 

4.1.1 Conditions 

In this paper, Java language is adopted to implement each part in the following conditions: 
3.1 GHz Intel Core i5 processor and 16 GB 2133 MHz LPDDR3 memory. 

4.1.2 Data 

An artificial dataset and two real datasets are used for experiments in this paper. The artificial 
dataset contains 30000 data points, with main speed constraint intervals between [−10, −8] and 
[0,2]. Real dataset 1, with 34220 data points, indicates fuel consumption of vehicles. As Example 1 
in Section 1.1, the data mainly reflects fuel consumption and refueling: Considering the vibration 
of the fuel tank during the running of a vehicle, the speed range of fuel consumption is set as 
[−1,1]; refueling will make the oil level rise sharply, and the speed range of refueling can be set as 
[10, 70]. Real dataset 2, with a total of 7 962 data points, includes GPS track data, mainly 
collecting people’s walking track and vehicles’ running track. In light of the actual situation and 
collected data, the people walk in a speed range of [0, 10], while vehicles run in a speed range of 
[30, 100]. The above three datasets are all composed of error-free data points. In this paper, the 
method proposed in Ref. [4] is adopted to randomly generate new values as errors to replace the 
original true values into anomalies. As shown in the following experimental results, the anomaly 
rate of 0.1 indicates that 10% of data points are randomly replaced into anomalies. In the real 
dataset of fuel consumption, the input data value, which may be less than 0, represents abnormal 
data, because the lowest oil level in the fuel tank is 0 and cannot be negative. Similarly, the input 
data value may be greater than 70. According to the actual data value, the highest oil level in the 
oil tank is 70, so the data beyond this value can be regarded as anomalies. When the input data 
value is within the range of [0, 70], it can still be regarded as an anomaly, since the randomly input 
data value cannot form a data change speed, within a given range of threshold, with other points in 
the same time window in most cases. Also, in the GPS dataset and the artificial dataset, randomly 
input data values can be regarded as anomalies. Then the effect of multi-speed constraints on 
repairing real anomalies is verified on the basis of a dataset of altitudes, which is collected during 
the running of vehicles underground and on the ground light rail. The collected real data reveals 
many anomalies, and the altitude change at some data points may even be as high as 14 m within 1 
s. Statistics prove 1 398 data points in this dataset, of which 218 are abnormal. After analyzing the 
overall data distribution and rationality, this paper selects [−2, 1.61] and [1.9, 2] as the speed 
constraint range of the data. In addition, to further validate the support provided by this method for 
subsequent data analysis and artificial intelligence research, this paper selects five datasets from 
UCR Time Series Classification Archive (http://www.cs.ucr.edu/~eamonn/time_series_data/), 
including Car, Coffee, BeetleFly, Fish and InlineSkate, to verify the classification accuracy of 
repaired results. 

4.2 Evaluation criteria 
The RMS error[5] serves as the criterion for evaluating repaired results. xtruth is taken as the 

true value of time series, and xrepair as the repaired time series data. ∆(xtruth, xrepair) is taken as the 
distance between xtruth and xrepair to evaluate the similarity between the repaired result and the true 
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value. Smaller ∆(xtruth, xrepair) indicates the shorter distance between the repaired result and the true 
value, namely the more accurate repaired result. 

Additionally, considering that the repaired data will play a basic supporting role in the 
subsequent data analysis and artificial intelligence research, this paper also presents the clustering 
and classification results of the repaired datasets. In this paper, the DBSCAN[6] method is adopted 
to cluster the repaired results, and the KNN method[7] to further classify them. Besides, k-fold 
cross-validation[8] is adopted. The accuracy of clustering and classification in this paper[9] is shown 
by the following formula: 

Data points classified correctlyAccuracy
Total data points

=  

4.3 Existing methods 
The multi-speed constraints proposed in this paper are compared with existing repairing 

methods, including the SCREEN method based on the single-speed constraint, the repairing 
method based on Sequential Dependency[10], and the Holistic[11] repairing method based on 
negative constraints. 

4.4 Experimental results 
Three datasets are selected to verify the repairing methods, and the RMS errors, time cost, and 

clustering and classification accuracy of repairing methods are provided for each dataset in case of 
different anomaly rates (anomalies/total data points) and data sizes. Moreover, the altitude dataset 
with real anomalies is adopted, and RMS errors, time cost, and clustering and classification 
accuracy are repaired by multiple methods. In addition, the classification accuracy of these repairing 
methods is verified by five datasets in UCR time series data. The specific results are as follows: 

(1) Artificial dataset 
From Figure 15(a), the repairing method based on multi-speed constraints proposed in this 

paper performs better than other methods at all rates of anomalies. The trend in results is similar to 
that of the Holistic method, but greatly better than it. 

Figure 15(c) and 15(d) illustrate the clustering and classification accuracy to verify the impact 
of the proposed method on data analysis and artificial intelligence research. The figures reveal that 
the clustering effects of the SCREEN method and the Sequential method decrease significantly 
with the increase in the anomaly rate, even far lower than the clustering result of unrepaired wrong 
data; the proposed method, however, obtains the optimal clustering result, which is close to the 
real result and obviously higher than that of the Holistic method. With regard to classification 
results, similar to the case for RMS errors, the repairing method based on multi-speed constraints 
and the Holistic method are far superior to the SCREEN method and the Sequential method with 
the higher anomaly rate; meanwhile, the method based on multi-speed constraints shows the 
optimal repairing effect as a whole. The experimental results demonstrate that, compared with 
other methods, the repairing method based on multi-speed constraints proposed in this paper 
provides more accurate data basis for data analysis and artificial intelligence research. 

Figure 15(b) reveals the proposed method requires far lower time cost than the Holistic 
method, and the time cost of the proposed method is relatively stable at different anomaly rates. 
Although the time cost of the SCREEN method and the Sequential method is low, the RMS errors 
of the proposed method are much smaller than those of the two methods at each anomaly rate. 
Further observation finds that with the increase in the anomaly rate, the repairing method based on 
multi-speed constraints proposed in this paper, compared with the SCREEN method and the 
Sequential method, has more outstanding advantages regarding RMS errors and accuracy of 
clustering and classification. 
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                    (c)                                         (d) 
Figure 15  Repairing in the artificial dataset at different anomaly rates 

From Figure 16, similar to the repairing results at different anomaly rates, those of the method 
based on multi-speed constraints are optimal for RMS errors in case of different data sizes. 
Besides, the repairing method based on multi-speed constraints and the Holistic method have 
much smaller RMS errors than the other two. 

 
 
 
 
 
 
 
 
 

 
(a)                                       (b) 

 
 
 
 
 
 
 
 
 

(c)                                        (d) 
Figure 16  Repairing in the artificial dataset with different data sizes 

In regard to clustering and classification accuracy, the data with an anomaly rate of 0.05 is 
selected in this experiment. In terms of clustering accuracy, the Sequential method performs worst 
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in repairing results with different data sizes; the method based on multi-speed constraints, however, 
shows the highest clustering accuracy, with the results highly close to those of all correct values. 
With regard to classification accuracy, the SCREEN method shows the lowest results, while the 
method based on multi-speed constraints also has the highest accuracy. At the same time, the 
results of this extended experiment also demonstrate this method can provide better data support in 
different data scales, even big data. Moreover, the method based on multi-speed constraints in this 
paper demands lower time cost than the Holistic method, with a good trade-off between repairing 
effect and time cost. 

(2) Fuel consumption dataset 
The experiment on the real fuel consumption dataset at different anomaly rates reveals the 

results indicated in Figure 17(a). Similar to the artificial dataset, the repairing method based on 
multi-speed constraints proposed in this paper performs better than other repairing methods at 
different anomaly rates. Especially at the anomaly rate greater than 0.1, it is far superior to the 
SCREEN method and Sequential method. According to RMS errors and time cost in Figure 17(b), 
the method based on multi-speed constraints proposed in this paper achieves a proper balance 
between repairing effect and time cost. At a time cost much lower than that of the Holistic method, 
the proposed method performs better in repairing. 

 
 
 
 
 
 
 
 
 

(a)                                      (b) 
 
 
 
 
 
 
 
 
 
 

(c)                                        (d) 
Figure 17  Repairing in the fuel consumption dataset at different anomaly rates 

Furthermore, in terms of clustering accuracy, the repairing method based on multi-speed 
constraints proposed in this paper obtains the clustering results far higher than those of unrepaired 
wrong data. With the increase in the anomaly rate, its clustering accuracy is similar to that of the 
Holistic method, and much higher than that obtained by the SCREEN method and the Sequential 
method. It is worth mentioning that regarding classification accuracy, the repaired results of the 
SCREEN method and the Sequential method are even lower than those of unrepaired wrong data. 
However, the proposed method based on multi-speed constraints and the Holistic method achieve 
the results much higher than those of the unrepaired wrong data; especially when the anomaly rate 
is 0.05, they are quite close to the repairing result of real values. 
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Similar to the experimental results for the artificial dataset, the time cost of the proposed 
method is relatively stable at different anomaly rates; the time cost of the SCREEN method and 
the Sequential method presents a marked increase with the higher anomaly rate. On the whole, the 
repairing method based on multi-speed constraints proposed in this paper is more suitable for 
subsequent data analysis and artificial intelligence research. It can clean the time series efficiently 
in a short time to improve data quality, thus providing a more accurate data basis. 

In addition to the experiments based on the anomaly rate, this paper provides the following 
experiments on real fuel consumption datasets with different data sizes. From Figure 18(a), 
consistent with the experimental results based on the anomaly rate, the repairing method based on 
multi-speed constraints shows the optimal repairing results with regard to different data sizes. 
Specifically, from the clustering accuracy in Figure 18(c), compared with other methods, the 
proposed method achieves the highest accuracy with different data sizes; the repairing results are 
stable, with good extendibility. From the classification accuracy indicated in Figure 18(d), at the 
anomaly rate of 0.05, the proposed method in this paper shows excellent performance on 
classification, and the repairing results are highly similar to the real values and close to 1 in case of 
different data sizes. Figure 18(b) shows that the RMS errors of this method are much lower than 
those in the SCREEN method and the Sequential method at a time cost slightly higher than those 
of the two. Moreover, with RMS errors lower than those of the Holistic method, the proposed 
method greatly reduces the time cost, with the overall difference by two orders of magnitude. 

 
 
 
 
 
 
 
 
 
 

(a)                                      (b) 
 
 
 
 
 
 
 
 
 
 

(c)                                       (d) 
Figure 18  Repairing in the fuel consumption dataset with different data sizes 

(3) GPS dataset 
In Figure 19, the experimental results on the real GPS dataset at different anomaly rates are 

similar to those on the artificial dataset and the real fuel consumption dataset in terms of time cost. 
With regard to the experimental results of RMS errors, Figure 19(a) shows that other existing 
methods obtain similar repairing results for this dataset, and the method based on multi-speed 
constraints is distinctly superior to others. It is worth noting that, in the artificial dataset and the 
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real fuel consumption dataset, the data series are spaced at an equal time interval, and the 
Sequential method considers the numerical distance constraint between two consecutive data 
points. As such, the Sequential method and the SCREEN speed constraint method have similar 
results and trends. In this experiment on the GPS dataset, however, the data series have unequal 
time intervals, so the experimental results of the above two methods are markedly different. 

 
 
 
 
 
 
 
 
 
 

(a)                                    (b) 
 
 
 
 
 
 
 
 
 
 

(c)                                     (d) 
Figure 19  Repairing in the GPS dataset at different anomaly rates 

From Figure 19(c), with regard to clustering accuracy, the clustering results of the proposed 
method are much better than those of the SCREEN method, the Sequential method and unrepaired 
wrong data with the higher anomaly rate, which are also superior to those of the Holistic method. 
Figure 19(d) also clearly displays that the proposed method based on multi-speed constraints 
presents the optimal repairing effect regarding classification accuracy. When the anomaly rate is 
lower than 0.25, the classification accuracy is close to that of real time series data and far higher 
than that of other repairing methods, especially the Sequential method. 

To better reflect the performance of each method, this extended experiment selects the GPS 
dataset at the anomaly rate of 0.05 and provides results regarding different data sizes. From Figure 
20(a), with the larger data sizes, the RMS error of each method has increased more or less, and the 
proposed method based on multi-speed constraints has the smallest increment, proving its optimal 
extendibility. 

In terms of classification accuracy, the repairing method based on multi-speed constraints 
proposed in this paper also achieves the highest result. At the same time, the Sequential method 
has the lowest accuracy, and even with some data sizes (such as less than 2.3k), its classification 
accuracy is far lower than that of the unrepaired wrong data, consistent with the repairing results at 
different anomaly rates and results of RMS errors with different data sizes. As the clustering effect 
on the repairing results of multiple methods is relatively close at the anomaly rate of 0.05, this 
paper selects the data at the anomaly rate of 0.25 for the extended experiment on the clustering 
results, so that the clustering accuracy of each method is clearly presented. From the figures, the 
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clustering accuracy of the proposed method, at a lower time cost, is slightly higher than that of the 
Holistic method, while far higher than that of the Sequential method and the unrepaired wrong 
data. 

With regard to the time cost, Figure 20(b) illustrates that similar to the experiment on the real 
fuel consumption dataset, the time cost of the proposed method, with the smallest RMS errors, is 
within an acceptable range, which is one order of magnitude lower than that of the Holistic method 
as a whole. 

 
 
 
 
 
 
 
 
 
 

(a)                                    (b) 
 
 
 
 
 
 
 
 
 
 

(c)                                      (d) 
Figure 20  Repairing in the GPS dataset with different data sizes 

 (4) Altitude dataset 
To further prove the practicability of the proposed method based on multi-speed constraints in 

real datasets, this paper adopts a variety of repairing methods for the altitude dataset with real 
anomalies, with the final results of RMS errors, clustering and classification accuracy, and time 
cost in Table 1. As indicated in the table, in terms of RMS errors, the repairing method based on 
multi-speed constraints proposed in this paper obtains the most accurate repairing results, with 
smaller RMS errors than those of the Holistic method, the SCREEN method and the SWAB 
method, which is also greatly superior to the Sequential method. Moreover, the proposed method 
behaves better than others regarding clustering accuracy; its classification accuracy is closer to that 
based on correct values; it requires the lowest time cost, far lower than that of the Holistic method 
with relatively good repairing results. 

Table 1  Repairing in the altitude dataset with real anomalies 

Repairing method RMS error Time cost (ms) Clustering accuracy Classification accuracy 
Multi-speed constraints 1.07 2.3 0.70 0.76 

SCREEN 1.34 3.3 0.69 0.75 
Sequential 2.33 4.0 0.63 0.74 

Holistic 1.27 55.2 0.65 0.74 
Wrong values — — 0.59 0.71 
Real values — — 0.75 0.80 
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(5) UCR dataset 
Further verifying the performance of each repairing method in classification can provide a 

data support for applications including data analysis and artificial intelligence. Then this paper 
selects multiple time series datasets with classification labels to verify the effect of the proposed 
method based on multi-speed constraints on subsequent data applications in a more comprehensive 
manner. Figure 21 shows that in different datasets, the proposed method has a desired 
classification result, which is much better than that based on unrepaired wrong data and close to 
the classification accuracy of real values. There are some differences in the number of classes for 
real data among the five datasets in the figure, among which the Car dataset has four classification 
labels, while Coffee and BeetleFly datasets have two. As such, the overall classification accuracy 
is high in these two datasets. On the contrary, there are seven classification labels in Fish and 
InlineSkate datasets, with the overall low accuracy of classification. However, in these two 
datasets, the classification results repaired by each method are much higher than those without 
repairing, demonstrating the important role of data cleaning and repairing in the early stage of data 
applications in the subsequent data analysis and artificial intelligence processes. 

 
 
 
 
 
 
 
 
 
 

 
Figure 21  Classification accuracy in UCR datasets 

5 Related Work 

Amid the impressive progress in big data and artificial intelligence technology, data 
management and analysis technology, as the technical support and foundation, has increasingly 
become a hot issue in related fields. Data quality has attracted increasing attention since it is 
pivotal to promoting data management and analysis technology, optimize the output of big data 
and artificial intelligence, and reduce the restrictions on subsequent analysis and research caused 
by data problems. Ji et al.[12] put forward the query and fault-tolerance mechanism, but this 
mechanism must compromise on fault-tolerance, performance and implementation cost, without 
dealing with the data usage outside the scope of data query. In addition, many researchers have 
introduced a variety of detection and repairing techniques for data anomalies. 

5.1 Repairing methods based on smoothing 
Smoothing-based repairing methods depend on data smoothing technology to reduce 

anomalies. They can reduce noise points and make the data change smoother. Intuitively, smoothed 
data has fewer anomalies. The SWAB smoothing algorithm[13] cleans time series data based on 
linear interpolation[14] and regression[15]. As this algorithm can segment time series, it can support 
online cleaning of time series data. Additionally, the moving average method is often used to 
smooth and repair time series data. Simple Moving Average (SMA) is the unweighted average of 
the last k data, which is applied by the algorithm to repair the next data point. The Weighted 
Moving Average (WMA) adds weights to data points at different positions in the window; for 
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example, the point farther away from the target data points has the lower data weight. Accordingly, 
Exponentially Weighted Moving Average (EWMA)[16] adds exponentially decreasing weights with 
the increase in time and distance, which is suitable for unsteady time series[17–19]. 

The repairing method based on smoothing has serious limitations. To ensure the smoothness 
of time data series, smoothing-based repairing method will over-repair many original correct true 
data near anomalies into wrong errors, and anomalies will greatly compromise the accuracy of 
repairing results. 

5.2 Repairing methods based on constraints 
Most data has a relationship of constraint and dependence between points. Many cleaning 

algorithms based on integrity constraints are available in the field of relational databases. Some 
rules of data constraints, such as Functional Dependency (FD)[20,21], can be applied to data 
cleaning and repairing. Such methods clean the data by solving the minimum repairing, with the 
corresponding results conforming to the given FD constraint rules. However, because the 
constraint relationship is applicable to any pair of tuples, repairing with minimal modifications is 
usually considered as a NP-hard problem[22]. Considering this problem, Beskales et al.[23] proposed 
a data cleaning method based on sampling, the basic idea of which is to extract some samples from 
candidate repairing datasets for data cleaning. In addition, some real datasets cannot be subject to 
the absolute FD constraints. Then, Bohannon et al.[24] introduced the concept of conditions in 
cleaning and repairing based on FD, namely using Conditional Functional Dependency (CFD)[25,26] 
as the constraint to clean data. However, the results of the algorithm are not ideal for time cost, 
because the constraint rules required by this method are massive and complicated. Against the 
background of big data and artificial intelligence, this method fails to provide high-quality data 
support for subsequent technical operations in a quick and accurate manner. 

Generally, in time series data, most of the data values are concrete, and FD, CFD and other 
data constraint rules need to follow strict equality relations. As a result, the repairing method based 
on the above constraints is hard to produce good cleaning and repairing results in time series data. 
Then Fan et al.[27] put forward Matching Dependency (MD), which further relaxed the strict 
equality relations into similarity relations, namely that similarity measure was introduced on the 
left side of constraint rules. Song et al.[28] proposed Differential Dependency (DD), which 
introduced similarity measure to both left and right sides of constraint rules, thus relaxing the 
equality relations between both sides into similarity relations. Furthermore, Lopatenko et al.[29] 
proposed a rule based on Denial Constraint (DC) and then studied the data cleaning and repairing 
method based on DC. Chu et al.[11] also proposed a DC-based Holistic algorithm. 

However, as a technology supporting speed constraints, the Holistic method can only repair 
general table data, failing to serve for online cleaning of stream data. Nowadays, data analysis and 
artificial intelligence technology needs to process massive data, and the Holistic method cannot 
provide corresponding technical support. In this paper, a local repairing method based on 
multi-speed constraints in a given window is proposed to support online cleaning. This local 
method is more conducive to data cleaning in big data environment, which is more convenient for 
subsequent data management and analysis and artificial intelligence research. The experiments 
demonstrate that, compared with the overall cleaning, the proposed method can reduce the time 
cost by two orders of magnitude at most. Moreover, the sequential dependency method cannot 
accurately express speed constraints. The Sequential method mainly focuses on the difference 
between two consecutive data points in a series, but the given dependence is not accurate when the 
time interval between data points is different. The speed constraint-based SCREEN method only 
considers the constraint in a single range. When the speed constraint involves multiple ranges, the 
repairing method will fail to achieve desired results due to insufficient or excessive detection and 
repairing.  
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The multi-speed constraints proposed in this paper consider more specific constraint intervals 
for more accurate repairing results. As Example 1 in Section 1.1, the change in the oil level of 
vehicles is due to two behaviors: fuel consumption and refueling. Considering the vibrations of 
vehicles and the fuel tank, the change speed of the oil level will be within the ranges of [−1,1] and 
[10,70]. The single-speed constraint cannot express such an accurate constraint condition, resulting 
in large errors in repairing results; multi-speed constraints will accurately constrain the data, so it 
can be applied reasonably and widely. As illustrated in Figure 22, this paper uses various constraint 
methods to repair 100 data points in the fuel consumption dataset. It can be observed that the 
Sequential method is similar to the SCREEN method. However, the Sequential method only 
constrains the data distance between two consecutive points, while the SCREEN method also 
considers the speed between the two points (namely the relationship between data values and their 
time stamps), so the latter is more accurate. Nevertheless, since the SCREEN method only sets a 
single-speed constraint, some normal points and anomalies cannot be correctly detected and 
distinguished. When the interval is set to [−1,70], due to an anomaly at 15:12, subsequent correct 
values are corrected by mistake; when it is set to [−1,1], due to refueling at 15:09, most of the 
subsequent normal values will be misjudged as anomalies for over-repair; similarly, if it is set to 
[10,70], almost all the points will be over-repaired, resulting in more serious damage to the data. 
To sum up, the proposed repairing method based on multi-speed constraints can satisfy the 
multi-speed-threshold constraints, with accurate repairing results. Furthermore, the experimental 
results of the above datasets reveal that the proposed method produces better repairing results with 
much lower time cost than the Holistic method. 

 
 
 
 
 
 
 
 
 
 

Figure 22  Repairing by constraint-based methods 

6 Conclusion 

Considering the strong correlation between time stamps and corresponding data values in 
time series, this paper introduces multi-speed constraints based on the speed of data change. In this 
method, the speed constraint interval of each data point in a given window of time series can be 
obtained by multi-speed constraints, and then the time series data can be constrained to detect the 
anomalies. Meanwhile, the multi-speed constraints can generate candidate repairing points for 
each data point in the window through its subsequent points. Then this paper relies on dynamic 
programming to select the optimal repairing path from the above candidate repairing points, with 
the repairing result following the principle of minimum repairing. To verify the above-mentioned 
repairing methods, this paper tests this method and other existing methods through an artificial 
dataset, two real datasets (fuel consumption dataset and GPS dataset) and a dataset with real 
anomalies (altitude dataset). The experimental results demonstrate that, compared with other 
existing repairing methods, the proposed dynamic programming method based on multi-speed 
constraints follows the principle of minimum repairing. Besides, it can cope with complicated data, 
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thus having the smallest RMS errors in case of different anomaly rates and data sizes, with the 
optimal repairing effect. At the same time, since data quality is crucial to the subsequent data 
analysis and artificial intelligence technology, this paper applies multiple datasets to verify each 
method with regard to clustering and classification accuracy. In the experimental results, the 
repairing method based on multi-speed constraints in this paper still shows the optimal repairing 
results, with the highest classification accuracy among all methods. It also obtains ideal results in 
running performance and time cost, which are markedly superior to those of the constraint-based 
Holistic method. 
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