International Journal of Software and Informatics, ISSN 1673-7288 s
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048 International Journa

1JSL, 2022, 12(1): 131-151, doi: 10.21655/ijsi.1673-7288.00278 ijﬁ v gE i
©2022 by Institute of Software, Chinese Academy of Sciences. All rights reserved. By ormatics
i]
Research ;

Article

Branching Strategy Selection Approach Based on
Vivification Ratio

Mao Luo!, Chumin Li'»?*, Xinyun Wu?, Shuolin Li*, Zhipeng Lii*

1 (School of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China)
2 (MIS, University of Picardie Jules Verne, Amiens CS 52501, France)

3 (School of Computer Science, Hubei University of Technology, Wuhan 430068, China)

4 (Aix Marseille Univ., University of Toulon, CNRS, LIS, Marseille CS 60584, France)

Corresponding author: Chumin Li, chu-min.li @u-picardie.fr

Abstract The two most effective branching strategies LRB and VSIDS perform differently
on different types of instances. Generally, LRB is more effective on crafted instances, while
VSIDS is more effective on application ones. However, distinguishing the types of instances
is difficult. To overcome this drawback, we propose a branching strategy selection approach
based on the vivification ratio. This approach uses the LRB branching strategy more to solve
the instances with a very low vivification ratio. We tested the instances from the main track of
SAT competitions in recent years. The results show that the proposed approach is robust and
it significantly increases the number of solved instances. It is worth mentioning that, with the
help of our approach, the solver Maple_CM can solve additional 16 instances for the benchmark
from the 2020 SAT competition.

Keywords satisfiability; conflict-driven clause learning; branching heuristics; clause
vivification

Citation LuoM,LiCM, WuXY,LiSL, Lii ZP. Branching strategy selection approach based on vivification
ratio. International Journal of Software and Informatics, 2022, 12(1): 131-151. http://www.ijsi.org/1673-
7288/278.htm

1 Introduction

The SAT problem consists of finding an assignment to all the variables in a propositional
logic formula ¢ in Conjunctive Normal Form (CNF), to satisfy all clauses in ¢. SAT is the first
problem proven to be NP-complete. Thus, many NP problems can be solved by translating them
into a SAT equivalent or by considering SAT as a core part of the solving process. SAT is widely
used in various areas, especially in the automation of circuits design, including Equivalence
Checking[”, Formal Verification®, Automatic Test Pattern Generation®*, Model Checking,
Logic Synthesis'™, software and hardware checking'®™®!, planning!® '%', and scheduling''"!. SAT
also affects the research of many related decision and optimization problems* >3,

For SAT solving, there are two mainstream types of algorithms: complete algorithms and
incomplete algorithms. Complete algorithms could prove unsatisfiability, while incomplete
algorithms could not prove unsatisfiability but could solve some certain types of satisfiable

Funding items: French Agence Nationale de la Recherche (ANR-19-CHIA-0013-01)
Received 2021-11-21; Revised 2021-12-07; Accepted 2021-12-08; IJSI published online 2022-03-28

http://www.ijsi.org/1673-7288/278.htm
http://www.ijsi.org/1673-7288/278.htm

132 International Journal of Software and Informatics, 2022, 12(1)

instances very efficiently. For complete algorithms, Conflict-Driven Clause Learning (CDCL)
solvers and look-ahead solvers achieve success. CDCL solvers could solve industrial application
SAT instances very fast; look-ahead solvers are able to solve unsatisfiable random SAT instances

efficiently!"®'); recently, the combination of CDCL solvers and look-ahead solvers made a

breakthrough in automated theory proving!'®.

For incomplete algorithms, Stochastic Local
Search (SLS) solvers’>2* and Survey Propagation (SP) solvers are very popular. SLS solvers
show strong complementarity with CDCL solvers on solving a number of important application
SAT instances, e.g., those instances encoded from station repacking!®>®; SP solvers show
great effectiveness on solving very huge-sized random 3-SAT instances (e.g., with one million
variables at the clause-to-variable ratio of 4.2)*"=. This paper focuses on modern CDCL SAT

solvers which are very efficient for real applications.

The core techniques that guarantee the efficiency of the CDCLP*** SAT solver include
unit propagation, clause learning, branching strategy, clause simplification, management for the
database of learnt clauses, restart, lazy data structure, etc. Clause simplification and branching
strategy are among the techniques that gain increasing attention.

The methods based on clause simplification can be categorized into pre-processing and in-
processing. The most effective pre-processing techniques include variants of Bounded Variable
Elimination, Addition or Elimination of Redundant Clauses, Detection of Subsumed Clauses,
and suitable combinations of them> *®!. They aim mostly at reducing the number of clauses,

literals, and variables in the input formula. The most effective in-processing techniques™”

[40,41]

are Local and Recursive Clause Minimization®® **!, On-the-fly Clause Subsumption and

14243 where Local and Recursive Clause Minimization removes redundant
literals from learnt clauses immediately after their creation, On-the-fly Clause Subsumption
efficiently removes clauses subsumed by the resolvents derived during clause learning, and
clause vivification periodically detects and removes redundant literals from clauses by unit

propagation.

clause vivification

Early branching strategies are based on lookahead and choose the next decision variable by
analyzing the clauses not yet satisfied during the searching process. The most classical branching
strategies are MoMs™****1, Dynamic Literal Individual Sum Heuristic (DLIS)™® "1 and UP™¥,
These strategies do not lookback, i.e., they do not learn from what happened in the past to choose
the next branching (decision) variable. More recently, lookback branching strategies have been
introduced in CDCL SAT solvers, consisting in choosing the variables contributing most often
to the recent conflicts. The contribution of the variables to the conflicts is collected during the
clause learning driven by conflicts. VSIDS (Variable State Independent Decaying Sum)®* and
LRB (Learning Rate Branching)™”! are among the best lookback branching strategies. Different
branching strategies may perform quite differently on different categories of instances, and no
strategy outperforms others on all the instances. Many recent CDCL SAT solvers alternatively
use VSIDS and LRB to combine their respective strength, independently of the instance to be
solved. In these solvers, search is usually divided into pairs of phases, and in each pair of phases,
LRB is used to select branching variables in one phase, and VSIDS is used in the other phase.
Note that the two phases in the pair have the same length.

We believe that the use of branching strategies should be instance-dependent. In other
words, when solving some families of instances, VSIDS should be used more often, while when
solving some other families of instances, LRB should be used more often. Unfortunately, it is
not easy to identify the families of instances for which a particular branching strategy should be
used. In this paper, in order to improve the performance of CDCL SAT solvers, we propose to
use the information gathered during clause vivification to decide which branching strategy to use
more often. The approach is based on the observation that VSIDS appears to outperform LRB

Luo M, et al. Branching strategy selection approach based on vivification ratio 133

when clause vivification discovers many redundant literals in learnt clauses, and LRB appears
to outperform VSIDS when clause vivification cannot discover many redundant literals in learnt
clauses.

The paper is organized as follows: Section 2 gives some basic concepts about propositional
satisfiability and CDCL SAT solvers. Section 3 presents some related work on branching
strategies and combination of them. Section 4 gives a detailed analysis of the relationship
between characteristics of different instances with branching strategy and vivification ratio
firstly and then describes our branching strategy selection approach based on vivification ratio,
as well as how it is implemented in general CDCL SAT solvers. Section 5 reports on the in-
depth empirical investigation of the proposed branching strategy selection approach. Section 6
contains the concluding remarks.

2 Preliminaries

In propositional logic, a variable x may take the truth value O (false) or 1 (true). A literal [
is a variable x or its negation —z, a clause C' is a disjunction of literals, a CNF formula ¢ is a
conjunction of clauses, and the size of a clause is the number of literals in it. An assignment of
truth values to the propositional variables satisfies a literal x if it takes the value 1 and satisfies
a literal —x if it takes the value 0. An assignment satisfies a clause if it satisfies at least one of
its literals and satisfies a CNF formula if it satisfies all of its clauses. The empty clause, denoted
by [J, contains no literal and is unsatisfiable, i.e., it represents a conflict. A unit clause contains
exactly one literal and is satisfied by assigning the appropriate truth value to the variable. An
assignment for a CNF formula ¢ is complete if each variable in ¢ has been assigned a value;
otherwise, it is said partial. The SAT problem for a CNF formula ¢ is to find an assignment to
the variables satisfying all clauses of ¢.

Modern state-of-the-art SAT solvers are based on the CDCL (Conflict Driven Clause
Learning) scheme. The core of the scheme is to continuously generate conflicts and record
conflicts through learning clauses. CDCL contains two phases, namely the search phase and the
learning phase.

In the search phase, the most critical method is the Unit Propagation (UP) method, whose
details are described as follows: If there exists a unit clause in ¢, to satisfy this clause, the
only literal [in it must be satisfied by assigning the appropriate truth value to the corresponding
variable. The satisfaction of [implies the falsification of —I. Therefore, removing the literal —[
in other clauses and all clauses containing [does not change the satisfiability of the instance.
After the removal, new unit clauses may appear and some clauses can become empty, i.e., no
literal remains in the clauses. We can repeat this process to simplify the instance further until
there is no unit clause or an empty clause is produced. This procedure is denoted as UP(¢)
which returns a simplified formula that does not contain any unit clause, or a formula containing
an empty clause.

If the UP procedure does not produce any conflict, the search will heuristically select a
variable for assignment to make new UP possible. The selected variable is called decision
variable and its referred literal is decision literal. The level of an assigned variable (by UP or
by decision) is the number of decision variables so far. If all the variables are assigned and no
conflict occurs after repeating the actions decision and UP, the formula ¢ is satisfiable. If an
empty clause is produced during the unit propagation, a conflict occurs.

The learning phase starts after a conflict occurs. The process of conflict generation can be
represented by an implication graph, like the one shown in Figure 1. Each vertex represents the
satisfaction of a literal, marked as [@dl, where [denotes the literal, and dl denotes the decision
level that the literal belongs to. The negation of the literals of incoming edges of a node [Qld

134 International Journal of Software and Informatics, 2022, 12(1)

represents the reason (clause) why UP has set [= 1. For example, vertex x3@3 is propagated
by clause 1 Vx2 V 23 (—x1 A —x2 — x3). When the literals x1 and x> are both assigned 0, x3
must be assigned 1 to satisfy the clause. Conflict clauses are marked as incoming edges to [,
and the level of conflict clauses is named conflict level. A decision literal is shown as a vertex
marked in orange in the implication graph. It does not have any incoming edge. Note that each
decision literal is the starting vertex of its decision level, and the decision literal of the conflict
level is dashed. A Unique Implication Point (UIP) is a vertex that is in the conflict level and
dominates all the paths to the conflict. Figure 1 contains two UIPs z3@3 and —x1@3. Among
them, £3@3 is the UIP closest to the conflict, called first UIP (FUIP), —x:1 @3 is the UIP farthest

from the conflict, called last UIP.

—|X4@3 —|X7@3

X5 @3 |——| X5 @3

Figure1 Example of implication graph

CDCL SAT solvers usually uses the first UIP-scheme for clause learning. Let dl be the
conflict level. All literals of level dl on the path from FUIP to the conflict are called active
literals. For example, in Figure 1, the conflict level is 3,and —z4@3, —25@3, x7@Q3, and ~zg@3
are active literals. In the FUIP scheme, the negation of each literal with level smaller than dl
immediately preceding an active literal, as well as the negation of the FUIP, constructs the learnt
clause. For example, the learnt clause of Figure 1 is ¢ V ~x3. The learnt clause stores the reason
for the conflict and allows to avoid repeating the same assignment in the future. After adding
the learnt clause, the CDCL solver backtracks to the second highest decision level and performs
unit propagation. In Figure 1, it backtracks to level 1, making the learnt clause x¢ V —x3 a unit
clause —x3, and unit clause propagation is performed. If there is a conflict in level 0O, it proves
that the instance is unsatisfiable.

The variables in the learnt clause C' can be partitioned according to their level. The number
of partitions in C is called the Literal Block Distance (LBD)*”. For example, in Figure 1, the
number of levels of the generated learnt clause z¢@Q1 V —z3@3 is 2, so its LBD value is 2. A
small LBD value usually indicates a clause of good quality.

Let C =11V ---Vigbeaclause in ¢, I; (1 < i < k) be a literal in C, and C \ I;
be C in which I; is removed, and ¢’ be ¢ in which C is replaced by C' \ I;. If ¢ and
¢’ are equivalent, i.e., any solution of ¢ is also a solution of ¢’ and vice versa, then I; is
said to be a redundant literal in C. Clause vivification is an effective clause simplification
technique to remove redundant literals in the clauses of ¢, that can be described is as follows.
If UP(¢p U {=l1, -+ ,=li—1,=lit1, -+, —li}) results in an empty clause, then I; is redundant
in C. A clause vivification procedure executing UP(¢ U {—l1, —la, -+, =l;}) constructs an
implication graph, where literals —l1, —ls, - - -, and —l; can be considered as successive decision
literals. For example, suppose that there is a clause x1 V z2 V x6 V X9, such that propagating
successively —x1, 72 and —x¢ forms the implication graph as shown in Figure 1, which implies
a conflict. Since the literal g does not participate in the conflict, the literal g can be deleted
from the clause. The Learnt Clause Minimization (LCM) approach as presented in Ref. [42] is
a clause vivification technique consisting of eliminating redundant literals from learnt clauses.

Luo M, et al. Branching strategy selection approach based on vivification ratio 135

3 Related Work

Branching is a core process of a CDCL SAT solver (see Refs. [34, 44-47, 49, 51-53]). A
good branching strategy allows to quickly find the feasible solution of the problem or proves
unsatisfiability. During the solving process of a CDCL SAT solver, the branching strategy
analyzes the production of conflicts and guides the search process according to the information
gathered during the conflict analysis.

The most successful branching strategy is Variable State Independent Decaying Sum
(VSIDS)P4. 1t computes the score of each variable as follows.

* The score of each variable is initialized to 0.

* In alearning phase, the score of each variable encountered in clause learning is increased

by inc, where inc is a value initialized to 1.

* After each conflict, énc is increased to inc/d, where d is a constant usually fixed to 0.95,

so that recent conflicts count more in the score of the variables.

The real applications usually have a clear community structure: The variables within the
same community are constrained more strongly than those in different communities®*. Keeping
branching on the variables in the same community allows to better analyze the constraint
relationship between them. Therefore, the performance of VSIDS on real application instances
comes from its capacity to focus on the variables involved in recent conflicts within the same
community, because these variables will have high score.

LRB™ is a new branching strategy based on the Multi-Armed Bandit (MAB) framework in
reinforcement learning. The score of each variable is the exponential recency-weighted average
of the awards the variable received in the past, as defined below.

* The score LRB(v) of each variable v is initialized to 0.

* During the search, a variable is frequently assigned a truth value and this assignment can
be canceled later upon backtracking. For variable v, let ¢; be the number of conflicts
produced when v is assigned a truth value, t2 be the number of conflicts produced when
this assignment is canceled, and k be the number of conflicts in which v is involved from
t1 conflicts to ¢ conflicts, then the reward r to v is defined to be k/(t2 — t1) and the
score LRB(v) is updated to be (1 — «) * LRB(v) + « * r, where « is the step-size
parameter whose value is empirically initialized to 0.4 and is decreased by 10~° after
every conflict until it reaches 0.06.

Note that LRB considers the t2 — ¢; conflicts in their entirety, while VSIDS emphasizes
more on the most recent conflicts because inc for VSIDS is increased after every conflict, which
gives LRB stronger global characteristics and VSIDS stronger local characteristics. Because
of this difference between VSIDS and LRB, they perform differently on different instances.
Currently, no strategy obtains good results on all types of instances. Therefore, before solving
an instance, knowing which branching strategy is better for solving it can greatly improve the
performance of the solver. Unfortunately, it is hard to know which branching strategy is better for
an instance before solving it. The general useful approach is to use both strategies in the solver.
For example, the Maple solver uses LRB for the first half of the time limit and uses VSIDS for
the second half. Another solution is to use both strategies alternatively with the phase length
multiplied by a growing coefficient. Apart from the above two approaches, a reinforced learning-
based Multi-Armed Bandit (MAB) framework was proposed recently to combine VSIDS and
History-based Branching Heuristic (CHB)"**!. Note that CHB is the previous version of LRB
without considering learning rate. It selects a proper branching strategy with Upper Confidence
Bound (UCB)™. The solver using this technique ranked the first place in the main track of
SAT Competition 2021. No matter which technique is used, the combined ones always perform

136 International Journal of Software and Informatics, 2022, 12(1)

better than the single branching strategy. In general, although the technique of using VSIDS and
LRB for two half continuous time slots is simple and direct, it performs quite stable for most
cases. And using MAB which self-adaptively chooses the branching strategy according to the
conflicts production is also competitive.

4 Branching Strategy Selection and Learnt Clause Vivification
Ratio

The main purpose of this paper is to explore the relationship between the learnt clause
vivification ratio and the two branching heuristics of VSIDS and LRB by analyzing the
characteristics of two different types of instances. The following part first introduces the
characteristics of the two types of instances, and then analyzes the relationship between the
vivification ratio of learnt clauses and the effectiveness of the branching strategies. Finally,
we introduce the proposed approach in detail based on the above analysis, showing that the
branching strategy selecting approach significantly improves the performance of the solver.

4.1 Two typical classes of SAT instances

In this section, we describe the two types of instances used in this paper: HWMCC instances
generated from real-world EDA applications and PoNo instances crafted from the reduction of
the multiplication of two polynomials.

4.1.1 HWMCC instances

In various EDA applications, one often needs to check the equivalence of two combinatorial
circuits. A common way to do so is to construct a miter circuit from the two original
combinatorial circuits such that the unsatisfiability of the miter circuit implies the equivalence of
the two original circuits. Since each combinatorial circuit can be formulated as a Direct Acyclic
Graph (DAG), in which each internal node of the DAG is one of the seven standard logical
operations (AND, OR, NOT, NAND, NOR, XOR,and NXOR), the miter circuit can be
encoded into a CNF using the rules of Tseitin transformation”® defined in Table 1.

Table1 Encoding logical operations into CNFs

Logical operations Equivalent CNF expression

C = AND(A, B) (mAV-BVC)AN(AV-C)A(BV-C)
C = OR(A, B) (AVBV-C)AN(mAVC)A(-BVC)
C = NOT(A) (mAV-C)A(AVO)

C = NAND(A, B) (mAV-BV-C)AN(AVC)A(BVC)

C = NOR(A, B) (AVBVC)A(mAV=C)A(=BV ()

C'=XOR(A,B) (=AV-BV-C)A(AVBV-C)A(AV-BVC)A(~AVBVC)
C = NXOR(A,B) (=AV—=BVC)A(AVBVC)A(AV =BV -C)A(~AV B-C)

The HWMCC instances used in this paper are from SAT Competition 2017 and are provided
by Armin Biere (the organizer of the Hardware Model Checking Competition®’"). Armin Biere
generated 433 small-scale and 330 large-scale CNF instances from 123 real-world and 12 circuits
using AIGUNROLL from the AIGER tools®®. By analyzing these instances, 41 challenging
ones have been chosen, which cannot be solved within the time limit by any existing solver
before 2017. We use these 41 challenging instances to test the relationship of vivification ratio
and different branching strategies between VSIDS and LRB.

4.1.2 PoNo instances

For comparison, we introduce the PoNo benchmark which contains 38 SAT instances
encoding the problem of multiplying two polynomials of degree n — 1 with ¢ (¢ < n?)
coeflicient products. The initial objective of this encoding is to use SAT solvers to reduce the

Luo M, et al. Branching strategy selection approach based on vivification ratio 137

number of needed coefficient products to multiply two polynomials. We also submitted these
instances to the 2017 SAT Competition®”.
A simple example of polynomial multiplication can be expressed by Equation (1):

(az + b)(cx + d) = acz® + (ad + be)x + bd (1)

The trivial multiplication of two polynomials of degree 1 needs 4 coeflicient products:
{ac, ad, be, bd}. A smart multiplication of the two polynomials needs only 3 coefficient products
{ac, (a + b)(c + d), bd}, as expressed in Equation (2):

(az 4 b)(cx + d) = acz® + ((a + b)(c + d) — ac — bd)z + bd 2)

In Equation (2), we need more addition and subtraction operations than in Equation (1).
However, multiplication is much more costly than addition and subtraction. Thus, we can
multiply two polynomials of degree 1 more quickly using Equation (2) than using Equation (1).

In the sequel, we describe how to encode as a SAT instance the problem of multiplying
two polynomials of degree n — 1 using ¢ (t < n?) coefficient products. When the obtained
SAT instance is satisfiable, the SAT solution gives a way to multiply two polynomials of degree
n — 1 using ¢ coeflicient products. When the obtained SAT instance is unsatisfiable, we know
that more than ¢ coefficient products are needed. We refer to Refs. [60, 61] for other efficient
algorithms for polynomials.

Consider two polynomials of degree n — 1:

2

A(z) = an12" "+ an—22" 2+ -+ a1z +ao

B(z) = by—12" " + by2z™ F 4o + bz + by

Their product is

n—3

A(z) x B(z) = Con—222" "2 4 cop_sx? 4+ x4+ co

We want to compute A(z) x B(x) using t (¢t < n?) coefficient products: Pi, Py, - -+ , P,
where each P, (1 <1 < t) is of the form (ay + ay + -+)(b] + by + ---) with al,ah, -~ €
{@n-1,an-2,"+ ,a0} and b, b5, -+ € {bp_1,bn—_2,--- ,bo}. Addition and subtraction of

these products give the coefficients ¢ (0 < k < 2n — 2) of A(z) x B(z). The problem
becomes to determinate a} and b’; for each product. In order to solve this problem, we first
define the following Boolean variables.
* a; = 1iff a; is involved in product P;.
* b;; = 1iff b; is involved in product P;.
* cp; = 1iff product P, is used to compute cy.
* ;5,1 = 1iff a; and b; are involved in product P, and product F; is used to compute cy.
We then define the clauses, which encode the following properties:
* Tijri = ai A bji A cr
e Foreach ¢ and j (0 < 4,57 < n — 1) and for each k£ (0 < k < 2n — 2) such that
i+ j # k, if a; and b; are involved in product P; (i.e., a;; A bj; is implied) and P, is used
to produce c, then the product of a; and b; should be eliminated by subtraction using
another product P, involving a; and b;. If i + j = k, one product of a; and b; should
remain in cg. So,

¢ e
0, ifi+j5j==%k
injkl mod 2 = ! j.
= 1, otherwise

138 International Journal of Software and Informatics, 2022, 12(1)

We generated 38 SAT instances, using the encoding described above, by varying n and
t. Each combination of n and ¢ gives an instance denoted by NnT¢. The constructed PoNo
benchmark differs from the real-world HWMCC benchmark in many ways, which we will
describe in Section 4.2.

4.2 Observation and motivation

In this section, we present our observations on the differences between HWMMC and PoNo
benchmarks with respect to the learnt clause vivification ratio. We analyze the relationship
between the vivification ratio and the efficiency of the branching strategies on each type of
instances, which constitutes the initial motivation of our proposed approach.

4.2.1 Redundancies and vivification ratio

It is widely known that SAT instances often contain redundancies and eliminating this
redundancy can greatly help solve the SAT instances. The HWMCC instances contain
redundancy in the original CNF formula, because combinatorial circuits can contain redundant
logic gates for efficiency, while the PoNo instances do not contain any redundancy in their
construction. Nevertheless, when solving an instance, a CDCL solver will add learnt clauses
that often contain redundant literals, even for instances that do not contain redundancy initially
like for the PoNo instances.

(1) Size reduction on HWMCC

We test the Maple!®” and Maple_LCM'®*! solvers on the HWMCC instances. The Maple
solver is based on COMiniSatPs®" which is created by applying a series of small diff patches
to MiniSat'®®. The only difference between these two solvers is that Maple_ LCM uses a
learnt clause vivification named LCM simplification method, while Maple does not. Note that
Maple and Maple_LCM were the winners of the main track of SAT Competition 2016 and 2017
respectively. Table 2 presents the ratio of original redundant literals (denoted as redundant_ratio)
and the vivification ratio (denoted as vivi_ratio) on learnt clauses by LCM for each instance.

We use the following method to detect redundant literals in each original or learnt clause
of each instance:

@ set all literals in the clause to be false, except the literal to be checked.

@ perform unit propagation (UP).

® if UP produces an empty clause (conflict), the checked literal is redundant in the clause.

The ratio of redundant literals in the initial CNF formula is computed before starting the
instance solving by summing up the number of all detected redundant literals in all original
clauses and dividing the obtained sum by the total number of literals in these clauses, and
the ratio of redundant literals in learnt clauses is similarly computed among all learnt clauses
until the end of the instance solving. These redundant literals are removed from their clauses
once detected, performing clause vivification. So the ratio of redundant clauses is also called
vivification ratio.

We observe from Table 2 that most HWMCC instances do not have many original redundant
literals (less than 1%), while the vivification ratio on the learnt clauses is significant (29.78% on
average). Itindicates that the performance of vivification on the learnt clauses is not related very
much to the ratio of the original redundant literals. The solver Maple_LCM (with vivification on
learnt clauses) outperforms Maple (without vivification) by solving 5 more instances among the
41 instances. We also observe that, for the instances containing more than 5% original redundant
literals, e.g., 6s516r-k17 and 6s516r-k18, Maple_LCM uses much less time compared to Maple.
The reason lies in that the learnt clauses tend to contain redundant literals if they already exist
in the original clauses together with the redundant literals resulted in by the learning process,
and therefore, the vivification process can simplify the clauses by eliminating these literals.

Luo M, et al. Branching strategy selection approach based on vivification ratio 139

(2) Size reduction on PoNo

We solve the PoNo instances using both Maple and Maple_LCM. The results are shown in
Table 3 where the CPU time, the satisfiability, and the vivification ratio for each instance are
reported. The vivification does not help to solve more problem instances, but it reduces the
consumed CPU time for most of the solved instances. The average time for Maple is 832.29 s
but 640.47 s for Maple_LCM.

Table 2 Comparison between Maple and Maple_ LCM on HWMCC

Instance Mapl(e:PU tlli/[n:p(lz)_L oM vivi_ratio (%) original redundant_ratio (%)
6s105-k35.cnf 1,297.61 964.48 35.85 0.26
6s161-k17.cnf 4,141.58 2,749.23 25.45 0.43
6s161-k18.cnf — — 23.99 0.39
6s179-k17.cnf 3,066.29 662.4 40.43 2.38
6s188-k44.cnf 1,726.07 985.42 36.76 0.58
6s188-k46.cnf 2,285.93 1,012.72 41.58 0.55
6s33-k33.cnf 1,005.14 438.96 43.90 0.49
6s33-k34.cnf 1,019.97 710.65 35.74 0.47

6s340rb63-k16.cnf 22.58 13.98 34.51 3.73
6s340rb63-k22.cnf 326.16 199.41 22.35 2.90
6s341r-k16.cnf 223.36 83.82 32.86 1.43
6s341r-k19.cnf 1,218.09 297.46 28.69 1.17
6s366r-k72.cnf 2,031.58 929.27 39.92 0.07
6s399b02-k02.cnf — — 15.06 0.02
6s399b03-k02.cnf — — 14.00 0.02
6s44-k38.cnf 1,594.35 772.21 33.54 1.54
6s44-k40.cnf 2,026.48 1,286.06 34.89 1.51
6s516r-k17.cnf 2,439.69 1,368.93 41.24 5.65
6s516r-k18.cnf 4,967.21 2,715 42.83 5.43
beembkry8b1-k45.cnf 1,670.45 725.82 35.35 0.14
beemcmbrdg7f2-k32.cnf — 1,961.92 33.93 0.32
beemfwt4b1-k48.cnf — — 3791 0.43
beemhanoi4b1-k32.cnf — 3,244.89 35.19 0.16
beemhanoi4b1-k37.cnf — — 29.71 0.14
beemlifts3b1-k29.cnf 1,419.55 957.29 45.08 2.80
beemloyd3bl-k31.cnf 1,992.58 1,225.17 35.77 1.51
bob12s02-k16.cnf — — 4.07 0.00
bob12s02-k17.cnf — — 491 0.00
bobpcihm-k30.cnf — 4,907.19 19.04 2.39
bobpcihm-k31.cnf — — 19.12 2.28
bobpcihm-k32.cnf — — 19.54 2.17
bobpcihm-k33.cnf — — 20.27 2.07
intel032-k84.cnf 4,240.67 855.38 31.71 0.66
intel065-k11.cnf — — 17.37 2.76
intel066-k10.cnf — — 16.04 3.02
oskil5a10b06s-k24.cnf — — 15.58 2.44
oskil5a10b08s-k23.cnf — 4,395.33 22.70 2.79
oskil5a10b10s-k20.cnf — 3,055.18 28.02 2.75
oskil5a10b10s-k22.cnf — — 21.12 2.58
oskil5al4b04s-k16.cnf 3,328.91 368.31 66.03 1.20
oskil5al4b30s-k24.cnf 3,189.68 1,929.16 40.20 0.80
AVG 2,056.09 1,437.62 29.81 1.52

We can observe that the vivification ratio for the UNSAT instances is higher than for the
SAT instances. Among the UNSAT instances, the ratio is higher for those with a smaller ¢ value.
The reason may be that in the UNSAT instances, there are more tight constraints, expecially
when ¢ is small.

140 International Journal of Software and Informatics, 2022, 12(1)

We also find another characteristic that for the instances with the same 7 value, they become
SAT from UNSAT as the £ value increases. At the same time, the instance size grows significantly.
Here, we test the vivification ratio on the instances withn = 5and t = {5, 6, - - - , 18} of which
the results are shown in Table 4. The results are consistent with the analysis that the vivification
ratio decreases from 21% to 3% as t increases from 6 to 18.

Table 3 Comparison between Maple and Maple_LCM on PoNo

Instance Maple Maple_LCM
CPU time (s) Satisfiability = CPU time (s) Satisfiability vivi_ratio (%)
N5T06.cnf 23.98 UNSAT 60.69 UNSAT 21.37
NS5TO7.cnf — — — — 9.29
NS5T14.cnf — — 1,065.81 SAT 4.62
NS5T15.cnf 930.14 SAT — — 4.25
NS5T16.cnf 39.07 SAT 92.15 SAT 3.84
N6TO06.cnf 37.29 UNSAT 35.86 UNSAT 23.10
N6TO7.cnf 4,646.38 UNSAT 3,395.28 UNSAT 14.72
N6T25.cnf 995.03 SAT 672.38 SAT 2.63
N6T27.cnf 198.78 SAT 99.24 SAT 2.74
N6T28.cnf 250.19 SAT 174.44 SAT 2.79
N6T29.cnf 1,622.49 SAT 165.76 SAT 2.63
N6T30.cnf 100.87 SAT 99.94 SAT 2.69
N7TO07.cnf — — — — 10.34
N7TO08.cnf — — — — 7.26
N7T42.cnf — — — — 1.98
N7T43.cnf — — — — 1.92
N7T44.cnf — — — — 1.88
N7T45.cnf — — — — 1.92
N7T46.cnf — — — — 1.81
N8T60.cnf — — — — 1.53
N8T61.cnf — — — — 1.50
N8T62.cnf — — — — 1.46
N8T63.cnf — — — — 1.51
NI1IT118.cnf — — — — 1.11
N13T165.cnf — — — — 0.85
N13T166.cnf — — — — 0.92
N14T194.cnf — — — — 0.84
N27T6.cnf 153.77 UNSAT 230.33 UNSAT 21.65
N29T6.cnf 176.28 UNSAT 207.07 UNSAT 24.73
N37T6.cnf 514.25 UNSAT 415.75 UNSAT 22.73
N39T6.cnf 618.62 UNSAT 581.28 UNSAT 22.86
N42T6.cnf 695.86 UNSAT 555.21 UNSAT 26.05
N44T6.cnf 723.79 UNSAT 890.66 UNSAT 21.43
N45T6.cnf 654.03 UNSAT 727.18 UNSAT 20.98
N49T6.cnf 1,095.61 UNSAT 819.04 UNSAT 22.39
N51T6.cnf 1,379.78 UNSAT 1,082.04 UNSAT 21.09
N52T6.cnf 1,332.57 UNSAT 1,036.91 UNSAT 26.48
N54T6.cnf 1,289.34 UNSAT 1,042.88 UNSAT 22.41
AVG 832.29 — 640.47 — 10.11%

(3) Conflict index, UP index and vivification ratio

We observe that, during the search process, the implication graphs of the HWMCC instances
are much more complex than those of the PoNo ones. So, we define two indicators to reflect the
differences in the characteristics of these two benchmarks.

Definition 1 (Conflict Index). It is the average number of conflict level literals involved
in a conflict, that is, the number of active literals.

Definition 2 (UP Index). It is the average number of literals propagated by UP after

Luo M, et al. Branching strategy selection approach based on vivification ratio 141

Table 4 The vivification ratio on instances withn = 5,¢t = {5,6,--- ,18}
Instance Maple I.CM
CPU time (s) Satisfiability vivi_ratio (%)
N5TO05.cnf 2.34 UNSAT 16.67
N5TO06.cnf 61.31 UNSAT 21.37
N5TO7.cnf — — 9.26
N5TO08.cnf — — 6.47
N5T09.cnf — — 6.23
N5T10.cnf — — 5.53
N5T11.cnf — — 5.27
NS5TI12.cnf — — 4.87
N5T13.cnf — — 4.51
N5T14.cnf 1,064.59 SAT 4.62
N5T15.cnf — — 4.24
N5T16.cnf 90.38 SAT 3.84
N5T17.cnf 81.48 SAT 3.44
N5T18.cnf 24.89 SAT 3.50

branching on a decision literal.

Table 5 and Table 6 show the relationship between the conflict index, UP index and
vivification ratio of the HWMCC and PoNo instances, respectively.

Compared with the UP index, the conflict index and the vivification ratio are even more
consistent. For example, for the instances bob12s02-k16.cnf and bob12s02-k17.cnf, the conflict
indexes respectively are 2.33 and 2.27, which are much lower than those of other HWMCC
instances. The vivification ratios of these two instances are 4.07% and 4.91%, which are also
far lower than those of other HWMCC instances. In addition, for the instances oskil5al4b04s-
k16.cnf and oskil5a14b30s-k24.cnf, the conflict indexes are 10.46 and 11.57 respectively. The
vivification ratios of these two instances are 66.03% and 40.2%, which are also greater than
those of other HWMCC instances.

4.2.2 Branching strategies and vivification ratio

The LBD of a learnt clause is roughly the number of decisions needed to produce a conflict
by UP. Table 7 shows the LBD and size of the learnt clauses when solving the HWMCC
instances and the PoNo instances using VSIDS and LRB strategies, respectively. It also presents
the number of solved instances by Maple_LCM only using one branching strategy between
VSIDS (denoted by Maple_LCM/VSIDS) and LRB (denoted by Maple_LCM/LRB). Note that
Maple_LCM uses LRB for the first half time and VSIDS for the second half time.

We can make the following two observations from Table 7.

(1) The LBD of the learnt clauses (denoted as learnts_LBD) in the HWMCC instances is
much smaller than that in PoNo, i.e., the number of decisions needed to produce a conflict is much
smaller when solving the HWMCC instances than when solving the PoNo instances, because
the UP index and the conflict index of the HWMCC instances are much greater than those of the
PoNo instances. In fact, the average LBD of HWMCC instances from the Maple_LCM/VSIDS
solver is 9.59, while this value for PoNo is 25.06. When vivifing a learnt clause I1 V2 V- - - Vi
by successively propagating —l1, —la, - - - , =l; (¢ < k), these negated literals can be considered
as decisions, and fewer negative literals are needed to be propagated to produce a conflict in the
HWMCC instances than in the PoNo instances. For the vivified learnt clauses which are selected
by the LCM approach from the learnt clause database with smaller LBD value, we can see that
the size of vivified learnt clauses (denoted as vivi_Size) in the HWMCC instances is greater
than the one in the PoNo instances; on the other hand, vivified learnt clauses in HWMCC and
PoNo have roughly the same LBD value (denoted as vivi_LBD). Note that all the above values
are average. So, simplifying the learnt clauses is usually much easier for the HWMCC instances

142 International Journal of Software and Informatics, 2022, 12(1)

Table 5 Conflict index, UP index and vivification ratio on HWMCC benchmark

Instance Conflictindex ~ UPindex vivi_ratio (%)

6s105-k35.cnf 6.88 52.29 35.85
6s161-k17.cnf 6.65 41.61 25.45
6s161-k18.cnf 7.08 42.29 23.99
6s179-k17.cnf 12.45 20.08 40.43
6s188-k44.cnf 7.82 182.82 36.76
6s188-k46.cnf 7.57 190.39 41.58
6s33-k33.cnf 10.19 12.44 43.90
6s33-k34.cnf 10.74 12.46 35.74
6s340rb63-k16.cnf 5.03 48.21 34.51
6s340rb63-k22.cnf 5.57 88.04 22.35
6s341r-k16.cnf 7.46 236.65 32.86
6s341r-k19.cnf 7.03 260.78 28.69
6s3661-k72.cnf 8.66 619.66 39.92
6s399b02-k02.cnf 9.66 9.32 15.06
65399b03-k02.cnf 8.35 9.43 14.00
6s44-k38.cnf 7.38 87.38 33.54
6s44-k40.cnf 6.61 87.3 34.89
6s516r-k17.cnf 9 4191 41.24
6s516r-k18.cnf 6.57 37.03 42.83
beembkry8b1-k45.cnf 22.92 10.93 35.35
beemcmbrdg7f2-k32.cnf 17.03 28.62 33.93
beemfwtdb1-k48.cnf 40.75 33.8 3791
beemhanoi4b1-k32.cnf 13.97 53.11 35.19
beemhanoi4b1-k37.cnf 11.26 52.78 29.71
beemlifts3b1-k29.cnf 35.16 435 45.08
beemloyd3bl1-k31.cnf 9.68 40.24 35.77
bob12s02-k16.cnf 2.33 99.6 4.07
bob12s02-k17.cnf 2.27 111.62 491
bobpcihm-k30.cnf 8.77 78.29 19.04
bobpcihm-k31.cnf 7.81 84.25 19.12
bobpcihm-k32.cnf 8.52 78.83 19.54
bobpcihm-k33.cnf 8.19 78.77 20.27
intel032-k84.cnf 7.27 30.04 31.71
intel065-k11.cnf 2.97 19.21 17.37
intel066-k10.cnf 3.28 39.54 16.04
oskil5al0b06s-k24.cnf 5.11 22.83 15.58
oskil5al0b08s-k23.cnf 4.83 22.38 22.70
oskil5al0b10s-k20.cnf 4.94 2242 28.02
oskil5al0b10s-k22.cnf 4.85 2243 21.12
oskil5al4b04s-k16.cnf 10.46 152.23 66.03
oskil5al4b30s-k24.cnf 11.57 109.88 40.20
AVG 9.62 80.86 29.81

than for the PoNo instances, explaining the higher vivification ratio for the HWMCC instances.

(2) The VSIDS branching strategy is much better than the LRB branching strategy for the
HWMCC instances, while the LRB branching strategy is much better than the VSIDS one for
the PoNo instances.

The above two observations suggest that VSIDS should be more used for instances
on which the learnt clause vivification ratio is large, and LRB should be more used
for instances on which the learnt clause vivification ratio is small. However, some
instances with high vivification ratio may also be crafted instances. For example, the
3 instances which are crafted_nl0_d6_c3_numl8.cnf, crafted nll_d6_c4_numl9.cnf and
crafted_n12_d6_c4_num9.cnf from the main track of the 2020 SAT competition have very
high vivification ratios. We test these instances with the two solvers Maple_LCM/VSDIS and

Luo M, et al. Branching strategy selection approach based on vivification ratio

143

Maple_LCM/LRB. It can been seen that the performance of only using the LRB branching
strategy is much better than only using the VSIDS one (as shown in Table 8).

Table 6 Conflict index, UP index and vivification ratio on partial PoNo benchmark

Instance Conflictindex ~ UPindex vivi_ratio (%)
N5TO06.cnf 4.85 5.14 21.37
N5TO7.cnf 4.73 4.81 9.29
N5T14.cnf 2.75 3.76 4.62
N5T15.cnf 3.11 3.64 4.25
N5T16.cnf 3.15 3.8 3.84
N6TO06.cnf 4.88 7.44 23.10
N6TO7.cnf 4.33 6.79 14.72
N6T25.cnf 242 1.49 2.63
N6T27.cnf 241 1.49 2.74
N6T28.cnf 2.63 1.5 2.79
N6T29.cnf 2.54 1.49 2.63
N6T30.cnf 2.5 1.49 2.69
N7T07.cnf 4.27 9.73 10.34
N7T08.cnf 3.82 9.65 7.26
N7T42.cnf 2.22 1.5 1.98
N7T43.cnf 2.35 1.5 1.92
N7T44.cnf 2.44 1.5 1.88
N7T45.cnf 247 1.5 1.92
N7T46.cnf 2.21 1.49 1.81

AVG 3.16 3.66 6.40

Table 7 LBD of the learnt clauses of two benchmarks using VSIDS and LRB strategies

Instance HWMCC PoNo
Maple_LCM/VSIDS Maple_LCM/LRB Maple_LCM/VSIDS Maple_LCM/LRB
learnts_LLBD 9.59 14.39 25.06 56.81
learnts_size 31.74 52.14 37.45 80.49
vivi_LBD 3.93 3.98 4.31 4.42
vivi_size 16.85 15.82 9.37 8.53
vivi_ratio (%) 34.91 28.92 7.46 7.44
nbSloved 32 19 13 21

Table 8 Results of crafted instances using VSIDS and LRB strategies

Maple_LCM/VSIDS

Maple_LCM/LRB

Instance CPU time (5) _ vivi_ratio (%) _CPU time (s) _ vivi_ratio (%)
crafted_n10_d6_c3_numl8.cnf — 34.17 331.26 31.25
crafted_nl11_d6_c4_num19.cnf 976.18 38.60 203.43 36.20
crafted_n12_d6_c4_num9.cnf 542.17 4592 226.82 41.34

These instances which are typical crafted ones are encoded through representing the
graph isomorphism of two graphs. The original problems corresponding to these instances
are obvious UNSAT problems. When they are encoded into SAT instances, the redundancy
and the vivification ratio are significantly high in searching process. This phenomenon can
also be seen in the PoNo instance N27T6.cnf. Although the vivification ratio of N27T6.cnf is
more than 20%, it is still a crafted one. Therefore, in this paper we consider to use more LRB
branching strategy for the instances with low vivification ratio. We will propose an approach in
this direction in the next section.

4.3 Branching strategy selection based on the vivification ratio

The searching procedure of the CDCL SAT solver is shown in Algorithm 1. The SAT
solver performs the preprocessing of the instance firstly, including deleting variables, clauses

144 International Journal of Software and Informatics, 2022, 12(1)

and literals. Then during search, the learnt clause vivification will be performed at certain
beginning of restarts. In the main searching procedure, unit propagation is performed firstly. If
conflicts occur, conflict analysis is triggered, a new learnt clause is generated, based on which
the solver backtracks. If there is no conflict, the solver selects a suitable variable to assign a
truth value using a branching strategy. This process is repeated until a conflict is produced in
the Oth level to prove unsatisfiability, or an assignment satisfying all clauses.

In this section, we describe our approach to allow Algorithm 1 to choose a suitable
branching strategy based on vivification ratio during search, by calling the function
chooseBranch(viviRatio) (described in Algorithm 2).

Algorithm 1. CDCL (¢), a generic CDCL SAT algorithm

Input: ¢: A CNF formula with original and learnt clauses
Output: SATISFIABLE or UNSATISFIABLE

1. begin

2, ¢ < preprocessing (¢):

3. while true do
4. S < chooseBranch (viviRatio); /* call Algorithm 2 to choose a branching strategy™*/
5. currentLevel < 0; /* start or restart search */
6. ¢ < vivification (¢); /* select some learnt clauses to vivify */
7. while true do
8. cl <+ UP(¢); /* all variables assigned by UP are recorded with currentLevel */
9. if cl is a falsified clause then
10. if currentLevel == 0 then
11. return UNSATISFIABLE;
12. else
13. newLearntClause <— analyze (cl); /* conflict analysis to learn a new clause
*/
14. level < the second highest level in newLearntClause;
15. backtrackTo (level); /* cancel all variable assignments higher than level level
*/
16. currentLevel < level;
17. end if
18. else
19. if all variables are assigned then
20. return SATISFIABLE;
21. else if restart condition is satisfied then
22. backtrackTo(0); /* cancel all assignments depending on a decision */
23. break; /* restart */
24, else if learnt clause database reduction condition is satisfied then
25. remove a subset of learnt clauses;
26. else
27. currentLevel + +;
28. x <— anon-assigned variable selected according to the strategy S’
29. add the unit clause « or —x into ¢ according to a polarity heuristic such as
phase saving;
30. end if
3L end if
32. end while
33. end while
3. end

Concretely, the purpose of the chooseBranch(viviRatio) function is to determine a
probability P, to select the LRB or VSIDS branching strategy, depending on the vivification
ratio of learnt clauses in the last y restarts since the last execution of the chooseBranch(viviRatio)
function or from the beginning, where is a parameter initialized to 10,000 and is increased

Luo M, et al. Branching strategy selection approach based on vivification ratio 145

by 10% each time P, is re-evaluated. When the learnt clause vivification ratio is lower than «,
where « is a parameter fixed to 8%, then P, is set to 0.8 to select the LRB branching strategy.
Otherwise, P, is set to 0.5. Finally Algorithm 2 returns the LRB strategy with probability P,
and the VSIDS strategy with probability 1 — P.

Algorithm 2. chooseBranch (viviRatio), choose a branching strategy

Input: viviRatio: vivification ratio of learnt clauses
Output: LRB or VSIDS branching strategy

1. begin

2. if the number of restarts since the last execution of this function exceeds ~y then
3. if viviRatio < o then

4. Py <+ B;/*a=8%and 8 = 0.8 %

5. else

6. Pb <+~ 0.5;

7. end if

8. v« v+v/10;

9. with probability Py, return the LRB strategy; else return the VSIDS strategy;

10. end if
1. end

5 Experiments
In this section, we evaluate our proposed approach on several SAT Competition benchmarks.

5.1 Experimental protocol

The test suite includes the instances from the main tracks (application + crafted) of the SAT
Competition 2017, 2018 and 2020. The experiments were performed on Intel Xeon E5-2680 v4
processors with 2.40 GHz and 20 GB of memory under Linux. The cutoff time is 5,000 s for each
solver and each instance, including the preprocessing time and the search time, unless otherwise
stated. For each solver and each benchmark, we report the number of solved SAT/UNSAT
instances and total solved instances, denoted as “#SAT”, “#UNSAT” and “#Solved”respectively,
and the penalized run time “PAR2” (as used in SAT Competitions), where the run time of a
failed run is penalized as twice the cutoff time.

The tested approach is implemented based on the SAT solver Maple_CM which is an
improved version of the Maple_LCM solver. The difference with Maple_LCM is that the
Maple_CM solver uses vivification for more in-depth clause simplification. In fact, Maple_CM
not only simplifies learnt clauses more than once using vivification, but also simplifies original
clauses during pre-processing and in-processing. Note that the performance of Maple_CM is
greatly improved compared to Maple_LCM, and it won the third place in the main track of the
2018 SAT competition.

5.2 Efficiency analysis

We implemented Algorithm 2 on top of the solver Maple_CM. The resulting solver is named
Maple_CM+. Besides, we created the solver Maple_CM+/P,0.5 by setting the parameter P
to the fixed value 0.5 (set 5 as 0.5 in Algorithm 2). In other words, Maple_ CM+/P,0.5 is
Maple_CM+ except that it selects LRB and VSIDS with the same probability.

Table 9 compares the solvers Maple_CM, Maple_CM+/P,0.5 and Maple_CM+ on the
instances from the main tracks of the SAT Competition (noted as SC) 2017, 2018 and 2020. The
proposed Branching Strategy Selection (BSS) approach obviously improves the performance of
all solvers on instances of both SC2018 and SC2020. In particular, for instances of SC2020,
Maple_CM+ can solve 18 instances more than Maple_CM and the PAR2 solution time is also

146 International Journal of Software and Informatics, 2022, 12(1)

greatly reduced with the help of the BSS approach. Moreover, we can see that Maple_CM+
performs consistently better than Maple_ CM+/P;,0.5 for all instances of every SAT competition.

Table 9 Comparison of the branching strategy selection on different reduction ratios

Instances Solver #Total #SAT #UNSAT PAR2(s)
Maple_CM 196 90 106 5,672.11

S(Cﬁ)%io Maple_CM+/P,0.5 219 108 111 5,022.82
Maple_CM+ 224 111 113 5,006.07

SC2018 Maple_CM 229 129 100 4,643.99
(400) Maple_CM+/P,0.5 233 133 100 4,653.62
Maple_CM+ 237 136 101 4,536.32

SC2017 Maple_CM 227 110 117 4,116.99
(350) Maple_CM+/P,0.5 218 101 117 4,313.60
Maple_CM+ 224 108 116 4,163.75

However, the performance of Maple CM+ is worse than that of Maple_CM for the
SC2017 instances. The main reason lays on the fact that Maple_CM uses LRB for the first
2,500 seconds and VSIDS for the last 2,500 seconds. Instead, Maple_CM+ selects LRB or
VSIDS with a certain probability after a series of conflicts. Moreover there are many application
instances in SC2017, which are more suitable for the long-term use of the VSIDS branching
strategy to solve them. Therefore, the solving results of Maple_CM are better compared to
Maple_CM-+ in this special case. On the other hand, for the SC2017 instance, Maple_CM+ can
solve 6 more instances than Maple_CM+/P;,0.5, which shows that the method proposed in this
paper is still effective in terms of the choice of branching strategies.

5.3 Robustness analysis

Here we tested Maple_CM+ by fixing P, from 0% to 100% at a growth rate of 10% (i.e.
set B from 0% to 100% in Algorithm 2). Note that P, = 0% means that Maple_CM+ only uses
the VSIDS branching strategy, while P, = 100% means that Maple_CM+ only uses the LRB
branching strategy. For every value of P,, we ran Maple_CM+ to solve the instances with low
vivification ratio (vivi_ratio < 8%) in SC2020, SC2018 and SC2017. Note that there are 134,
189 and 164 instances with low vivification ratio in SC2020, SC2018 and SC2017, respectively.

Table 10 shows that the performance of the solver only using LRB branching strategy is
substantially better than the performance of the solver only using VSIDS. And with the fixed
value of P, increasing gradually, the result of Maple_CM+/P, is also continuously improved.
When P, is set to 0.7 or 0.8, the result roughly reaches the highest point. The results show that
LRB should be more used for instances on which the learnt clause vivification ratio is small.

We can also see from Table 9 and Table 10 that, in general, BSS approach which is
implemented in CDCL SAT solvers can significantly improve the results of SAT instances,
while the results of UNSAT instances are not improved obviously. The main reason for this
phenomenon is that the BSS approach is applied for crafted instances, and most of the crafted
instances are SAT ones.

6 Conclusions and Future Work

We defined a new branching strategy selection approach based on the vivification ratio
of learnt clauses. Through experimental investigation, we analyzed the relationship between
different types of instances with the vivification ratio and branching strategy, and found that
if the vivification ratio of the instance is very low, then it is more suitable for the instance to
be solved by using more the LRB branching strategy. Furthermore, we performed an in-depth
empirical analysis that showed that the proposed branching strategy selection approach is robust

Luo M, et al. Branching strategy selection approach based on vivification ratio 147

Table 10 Robustness analysis

Instances Solver #Total #SAT #UNSAT PAR2 (s)
Maple_CM+/P,0 41 16 25 7,450.86
Maple_CM+/P,0.1 49 24 25 6,932.79
Maple_CM+/P;,0.2 51 26 25 6,784.91
Maple_CM+/P,0.3 50 23 27 6,806.67

SC2020 Maple_CM+/P,0.4 49 24 25 6,360.51
(vivi_low 134) Maple_CM+/P,0.5 54 27 27 6,463.03
- Maple_CM+/P,0.6 55 29 26 6,397.19
Maple_CM+/P,0.7 58 31 27 6,296.81
Maple_CM+/P,0.8 58 32 26 6,251.66
Maple_CM+/P,0.9 58 31 27 6,284.46
Maple_CM+/P,1 57 29 28 6,266.66
Maple_CM+/P,0 46 32 14 7,801.30
Maple_CM+/P;0.1 59 45 14 7,168.91
Maple_CM+/P;,0.2 65 50 15 6,883.54
Maple_CM+/F,0.3 74 58 16 6,511.65

SC2018 Maple_CM+/P,0.4 70 55 15 6,541.22
(vivi_low 189) Maple_CM+/P;,0.5 70 55 15 6,540.55
- Maple_CM+/P;,0.6 72 56 16 6,494.40
Maple_CM+/P,0.7 78 62 16 6,213.59
Maple_CM+/P,0.8 75 58 17 6,382.57
Maple_CM+/P,0.9 73 56 17 6,393.49
Maple_CM+/P1 81 65 16 6,102.91
Maple_CM+/P,0 46 28 18 7,590.08
Maple_CM+/P;0.1 57 38 19 6,976.40
Maple_CM+/P;,0.2 57 38 19 6,894.34
Maple_CM+/P;,0.3 53 34 19 7,072.37

SC2017 Maple_CM+/P,0.4 56 37 19 6,951.51
(vivi_low 164) Maple_CM+/P;,0.5 62 42 20 6,678.19
- Maple_CM+/P,0.6 61 41 20 6,686.56
Maple_CM+/P,0.7 73 52 21 6,189.76
Maple_CM+/P;0.8 68 46 22 6,366.73
Maple_CM+/P,0.9 69 46 23 6,316.76
Maple_CM+/P,1 62 40 22 6,652.67

and allows to solve more instances from recent SAT competitions, especially for the main track
of the 2020 SAT competition.

In fact, through the analysis of the redundancy of the original clauses for the crafted and
application instances, it can be found that the original clauses of the application instances have
a higher redundancy ratio. In other words, using the vivification method can detect many
redundant literals of original clauses during pre-processing for application instances. Instead,
generally speaking, the original clauses redundancy ratio of crafted instances is 0.

Therefore, in future work, the redundancy ratio of original clauses can also be considered as
a measure to analyze the types of instances. Specifically, if the redundancy ratio of the original
clauses of an instance is 0, the instance is a crafted one, even if the vivification ratio of the learnt
clauses of the instance is very high. So for an instance, if the learnt vivification ratio is very high
and the original redundancy ratio is also high, we can consider it as an application instance and
use more VSIDS for solving it. In summary, the original clauses redundancy ratio and the learnt
clause vivification ratio can be used as two parameters to judge the type of the given instance
more accurately, thereby guiding the selection of branching strategies.

References

[1] Brand D. Redundancy and don’t cares in logic synthesis. IEEE Transactions on Computers, 1983,
32(10): 947-952. [doi: 10.1109/TC.1983.1676139]

148

International Journal of Software and Informatics, 2022, 12(1)

[2]

[3]

[4]

[5]

[6]

(71

[8]

[9]

(10]

(11]

[12]

[13]

[14]

(15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

Cook B, Kroening D, Sharygina N. Symbolic model checking for asynchronous boolean programs.
International SPIN Workshop on Model Checking of Software. Springer. 2005. 75-90. [doi:
10.1007/11537328_9]

Prasad MR, Biere A, Gupta A. A survey of recent advances in SAT-based formal verification.
International Journal on Software Tools for Technology Transfer, 2005, 7(2): 156-173. [doi:
10.1007/s10009-004-0183-4]

Drechsler R, Fey G. Automatic test pattern generation. International School on Formal Methods for
the Design of Computer, Communication and Software Systems. 2006. 30-55.

Khomenko V, Koutny M, Yakovlev A. Logic synthesis for asynchronous circuits based on
STG unfoldings and incremental SAT. Fundamenta Informaticae, 2006, 70(1,2): 49-73. [doi:
10.5555/2367636.2367644]

Jackson D, Schechter I, Shlyahter H. Alcoa: The alloy constraint analyzer. Proc. of the 22nd
international conference on Software engineering. 2000. 730-733. [doi: 10.1109/ICSE.2000.870482]

Clarke E, Kroening D, Lerda F. A tool for checking ANSI-C programs. International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. 2004. 168-176. [doi: 10.1007/978-
3-540-24730-2_15]

Khurshid S, Marinov D. TestEra: Specification-based testing of Java programs using SAT. Automated
Software Engineering, 2004, 11(4): 403—434. [doi: 10.1023/B:AUSE.0000038938.10589.b9]

Kautz H, Selman B, et al. Planning as satisfiability. Proc. of the 10th European Conference on Artificial
Intelligence (ECAI 92). Vienna, Austria. 1992, 92. 359-363.

Rintanen J, Heljanko K, Niemelid I. Planning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence, 2006, 170(12-13): 1031-1080. [doi: 10.1016/j.artint.2006.08.002]

Lynce I, Marques-Silva J. Efficient haplotype inference with Boolean satisfiability. Proc. of National
Conference on Artificial Intelligence (AAAI). 2006. 104-109.

Ganzinger H, Hagen G, Nieuwenhuis R, er al. DPLL(T): Fast decision procedures. International
Conference on Computer Aided Verification. 2004. 175-188. [doi: 10.1007/978-3-540-27813-9_14]

Cimatti A. Beyond boolean sat: Satisfiability modulo theories. 2008 9th International Workshop on
Discrete Event Systems. 2008. 68-73. [doi: 10.1109/WODES.2008.4605924]

Li CM, Manya F, Planes J. New inference rules for Max-SAT. Journal of Artificial Intelligence
Research, 2007, 30: 321-359.

Li CM, Manya F, Quan Z, et al. Exact minsat solving. International Conference on Theory and
Applications of Satisfiability Testing. 2010. 363-368.

Heule MJH, Kullmann O, Marek VW. Solving and verifying the boolean pythagorean triples problem
via cube-and-conquer. International Conference on Theory and Applications of Satisfiability Testing.
2016. 228-245. arXiv:1605.00723.

Heule M, van Maaren H. Look-ahead based SAT solvers. Handbook of satisfiability, 2009, 185:
155-184. [doi: 10.3233/978-1-58603-929-5-155]

Heule M, Dufour M, van Zwieten J, et al. March_eq: Implementing additional reasoning into an
efficient look-ahead SAT solver. International Conference on Theory and Applications of Satisfiability
Testing. 2004. 345-359. [doi: 10.1007/11527695_26]

Heule MJH, Kullmann O, Wieringa S, et al. Cube and conquer: Guiding CDCL SAT solvers by
lookaheads. Haifa Verification Conference. 2011. 50-65.

Cai SW, Luo C, Su KL. Scoring functions based on second level score for k-SAT with long clauses.
Journal of Artificial Intelligence Research, 2014, 51: 413-441.

Luo C, Cai SW, Wu W, et al. Double configuration checking in stochastic local search for satisfiability.
Proc. of 28h AAAI Conference on Artificial Intelligence. 2014. 2703-2709.

Cai SW, Luo C, Su KL. CCAnr: A configuration checking based local search solver for non-random
satisfiability. International Conference on Theory and Applications of Satisfiability Testing. 2015. 1-8.

Luo M, et al. Branching strategy selection approach based on vivification ratio 149

(23]

[24]

[25]

(26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

Luo C, Cai SW, Wu W, ef al. CCLS: An efficient local search algorithm for weighted maximum
satisfiability. IEEE Transactions on Computers, IEEE, 2014, 64(7): 1830-1843.

Luo C, Hoos H, Cai SW. PbO-CCSAT: Boosting local search for satisfiability using programming by
optimisation. International Conference on Parallel Problem Solving from Nature. 2020. 373-389.

Cai SW, Zhang XD. Deep cooperation of CDCL and local search for SAT. International Conference
on Theory and Applications of Satisfiability Testing. 2021.64-81.

Fréchette A, Newman N, Leyton-Brown K. Solving the station repacking problem. Proc. 30th AAAI
Conference on Artificial Intelligence. 2016.

Meézard M, Parisi G, Zecchina R. Analytic and algorithmic solution of random satisfiability problems.
Science, 2002, 297(5582): 812-815. [doi: 10.1126/science.1073287]

Braunstein A, Mézard M, Zecchina R. Survey propagation: An algorithm for satisfiability. Random
Structures & Algorithms, 2005, 27(2): 201-226. arXiv:cs/0212002.

Kroc L, Sabharwal A, Selman B. Survey propagation revisited. arXiv:1206.5273, 2012.

Gableske O. On the interpolation between product-based message passing heuristics for SAT.
International Conference on Theory and Applications of Satisfiability Testing. 2013. 293-308. [doi:
10.1007/978-3-642-39071-5_22]

Gableske O. An ising model inspired extension of the product-based MP framework for SAT.
International Conference on Theory and Applications of Satisfiability Testing. 2014. 367-383. [doi:
10.1007/978-3-319-09284-3_27]

Gableske O. Solver description of dimetheus v. 1.700 for the SAT competition 2013. Proceedings of
SAT Competition 2013. 2013. 30.

Marques-Silva JP, Sakallah KA. GRASP: A search algorithm for propositional satisfiability. IEEE
Transactions on Computers, 1999, 48(5):506-521. [doi: 10.1109/12.769433]

Moskewicz MW, Madigan CF, Zhao Y, et al. Chaff: Engineering an efficient SAT solver. Proc. of the
38th Annual Design Automation Conference. 2001. 530-535. [doi: 10.1145/378239.379017]

Eén N, Biere A. Effective preprocessing in SAT through variable and clause elimination. International
Conference on Theory and Applications of Satisfiability Testing. Springer. 2005. 61-75. [doi:
10.1007/11499107_5]

Bacchus F, Winter J. Effective preprocessing with hyper-resolution and equality reduction.
International Conference on Theory and Applications of Satisfiability Testing. Springer. 2003. 341—
355.

Jarvisalo M, Heule MJH, Biere A. Inprocessing rules. International Joint Conference on Automated
Reasoning. Springer. 2012. 355-370. [doi: 10.1007/978-3-642-31365-3_28]

Beame P, Kautz H, Sabharwal A. Towards understanding and harnessing the potential of clause
learning. Journal of Artificial Intelligence Research, 2004, 22:319-351. [doi: 10.1613/jair.1410]

Sorensson N, Biere A. Minimizing learned clauses. International Conference on Theory and
Applications of Satisfiability Testing. Springer. 2009. 237-243. [doi:10.1007/978-3-642-02777-2_23]

Han HJ, Somenzi F. On-the-fly clause improvement. International Conference on Theory and
Applications of Satisfiability Testing. Springer. 2009. 209-222. [doi:10.1007/978-3-642-02777-2_21]
Hamadi Y, Jabbour S, Sais L. Learning for dynamic subsumption. International Journal on Artificial
Intelligence Tools, 2010, 19(4): 511-529. [doi: 10.1142/S0218213010000303]

Luo M, Li CM, Xiao F, Manya F, Lii ZP. An effective learnt clause minimization approach for CDCL
SAT solvers. Proc. of the 26th International Joint Conference on Artificial Intelligence. 2017. 703-711.

Li CM, Xiao F, Luo M, et al. Clause vivification by unit propagation in CDCL SAT solvers. Artificial
Intelligence, 2020, 279: 103197. [doi: 10.1016/j.artint.2019.103197]

Freeman JW. Improvements to propositional satisfiability search algorithms [Ph.D. thesis]. University
of Pennsylvania. 1995.

150

International Journal of Software and Informatics, 2022, 12(1)

[45]

[46]

[47]

[48]

(49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]
[62]

[63]

[64]
[65]

Pretolani D. Efficiency and stability of hypergraph SAT algorithms. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1996, 26: 479-498.

Jeroslow RG, Wang JC. Solving propositional satisfiability problems. Annals of Mathematics and
Artificial Intelligence, 1990, 1(1-4): 167-187.

Marques-Silva J. The impact of branching heuristics in propositional satisfiability algorithms.
Portuguese Conference on Artificial Intelligence. Springer. 1999. 62-74. [doi:10.1007/3-540-48159-
1_5]

Li CM, Anbulagan A. Heuristics based on unit propagation for satisfiability problems. Proc. of the
15th International Joint Conference on Artifical Intelligence. 1997. 366-371.

Liang JH, Ganesh V, Poupart P, er al. Learning rate based branching heuristic for SAT solvers.
International Conference on Theory and Applications of Satisfiability Testing. Springer. 2016. 123—
140. [doi: 10.1007/978-3-319-40970-2_9]

Audemard G, Simon L. Predicting learnt clauses quality in modern SAT solvers. Proc. 21st International
Joint Conference on Artificial Intelligence. 2009. 399-404.

Ryan L. Efficient algorithms for clause-learning SAT solvers [Master thesis]. Simon Fraser University,
2004.

Goldberg E, Novikov Y. BerkMin: A fast and robust SAT-solver. Proc. of Design, Automation, and
Test in Europe Conference and Exposition (DATE). 2002. 131-149. [doi: 10.1016/j.dam.2006.10.007]

Liang JH, Ganesh V, Poupart P, Czarnecki K. Exponential recency weighted average branching heuristic
for SAT solvers. Proc. of the AAAI Conference on Artificial Intelligence. 2016. 3434-3440.

Ansétegui C, Girdldez-Cru J, Levy J. The community structure of SAT formulas. International
Conference on Theory and Applications of Satisfiability Testing. Springer. 2012. 410-423. [doi:
10.1007/978-3-642-31612-8_31]

Cherif MS, Habet D, Terrioux C. Kissat MAB: Combining VSIDS and CHB through multi-armed
bandit. SAT Competation 2021.15.

Tseitin GS. On the complexity of derivation in propositional calculus. In: Siekmann J, Wrightson
G, eds. Automation of Reasoning: 2: Classical Papers on Computational Logic. Springer, Berlin,
Heidelberg, 1983: 466-483.

Biere A. Deep bound hardware model checking instances, quadratic propagations benchmarks and
reencoded factorization problems submitted to the SAT competition 2017. Proc. of SAT Competition.
2017.40-41.

Biere A. The AIGER and-inverter graph format [Technical report]. Johannes Kepler University.
http://tmv.jku.at/aiger.

Balyo T, Heule MJH, Jarvisalo M. Preface. Proc. of SAT Competition 2017: Solver and Benchmark
Descriptions. 2017.

Bini D, Pan VY. Polynomial and Matrix Computations: Fundamental Algorithms. Birkhauser Verlag
Basel, Switzerland, 2014.

Zippel R. Effective Polynomial Computation. Springer Science & Business Media, 2012.

Liang JH, Oh C, Ganesh V, et al. Maple-COMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB.
Proceedings of SAT Competition. 2016.

Xiao F, Luo M, Li CM, et al. MapleLRB LCM, Maple LCM, Maple LCM dist, MapleLRB
LCMoccrestart and Glucose-3.0+ width in SAT competition 2017. Proc. of SAT Competition. 2017.
22-23.

Oh C. COMiniSatPS the Chandrasekhar Limit and GHackCOMSPS. SAT Competition. 2016.

Eén N, Sorensson N. An extensible SAT-solver. International Conference on Theory and Applications
of Satisfiability Testing. Springer. 2003. 502-518.

Luo M, et al. Branching strategy selection approach based on vivification ratio 151

Mao Luo, Ph.D. candidate. His
research interest is Boolean Sat-
isfiability problem.

Chumin Li, Ph.D., professor.
His research interests include
the practical resolution of
NP-hard problems, including
SAT, CSP, MaxSAT, MinSAT,
MaxClique, and GCP. He is
particularly interested in the
intrinsical relationships between
these problems. One of his research directions
is to find and exploit these relationships to solve
them. A recent example is the exploitation of the
relationships between MaxSAT and MaxClique to
solve MaxClique.

Xinyun Wu, Ph.D., associate
professor. His research focuses
on implementing meta-heuristics
on various NP-hard problems
with graph structures, such
as Traffic Grooming, RWA,
Network Design, Dominating
Set, etc.

Shuolin Li, Ph.D. candidate.
Her research interest is Boolean
Satisfiability problem.

Zhipeng Lii, Ph.D., profes-
SOr. His research interests
include artificial intelligence,
computational intelligence,
operations research and adaptive
metaheuristics for solving large-
scale real-world and theoretical
combinatorial optimization,
and constrained satisfaction
problems.

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Branching Strategy Selection and Learnt Clause Vivification Ratio
	4.1 Two typical classes of SAT instances
	4.1.1 HWMCC instances
	4.1.2 PoNo instances

	4.2 Observation and motivation
	4.2.1 Redundancies and vivification ratio
	4.2.2 Branching strategies and vivification ratio

	4.3 Branching strategy selection based on the vivification ratio

	5 Experiments
	5.1 Experimental protocol
	5.2 Efficiency analysis
	5.3 Robustness analysis

	6 Conclusions and Future Work
	Mao Luo
	Shuolin Li
	Chumin Li
	Zhipeng Lü
	Xinyun Wu

