
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2022, 12(3): 331–350, doi: 10.21655/ijsi.1673-7288.00290
©2022 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

Exploit-oriented Automated Information Leakage

Songtao Yang (杨松涛)1, Kaixiang Chen (陈凯翔)2, Zhun Wang (王准)2,
Chao Zhang (张超)2

1 (Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China)
2 (Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China)
Corresponding author: Chao Zhang, chaoz@tsinghua.edu.cn

Abstract Automatic Exploit Generation (AEG) has become one of the most important ways
to demonstrate the exploitability of vulnerabilities. However, state-of-the-art AEG solutions
in general assume the target system has no mitigations deployed, which is not true in modern
operating systems since they often deploy mitigations like Data Execution Prevention (DEP)
and Address Space Layout Randomization (ASLR). This paper presents the automatic solution
EoLeak that can exploit heap vulnerabilities to leak sensitive data and bypass ASLR and DEP
at the same time. At a high level, EoLeak analyzes the program execution trace of the Proof-
Of-Concept (POC) input that triggers the heap vulnerabilities, characterizes the memory profile
from the trace, locates sensitive data (e.g., code pointers), constructs leakage primitives that
disclose sensitive data, and generates exploits for the entire process when possible. We have
implemented a prototype of EoLeak and evaluated it on a set of Capture The Flag (CTF) binary
programs and several real-world applications. Evaluation results reveal that EoLeak is effective
at leaking data and generating exploits.

Keywords information leakage; automatic exploit generation; dynamic analysis; taint
analysis; memory profiling

Citation Yang ST, Chen KX, Wang Z, Zhang C. Exploit-oriented automated information leakage,
International Journal of Software and Informatics, 2022, 12(3): 331–350. http://www.ijsi.org/1673-7288/
290.htm

1 Introduction
Automatic Exploit Generation (AEG)[1, 2] has become one of the most important ways to

assess vulnerabilities. Given a vulnerable binary program and the Proof-Of-Concept (POC)
input that triggers vulnerabilities, an AEG system can automatically analyze a target binary
program and generate exploits. AEG can not only support the generation of attacks but also
assist in the defense. For instance, software vendors can use AEG tools to assess the threat level
of software vulnerabilities and thus identify the urgency of vulnerability repair.

Researchers have proposed many AEG solutions in recent years. The early research[3–8]

mainly focused on analyzing the vulnerabilities in stacks and format strings, and the exploit

This is the English version of Chinese article “面向缓解机制评估的自动化信息泄露方法. 软件学报, 2022,
33(6): 2082–2096. doi: 10.13328/j.cnki.jos.006570”
Funding items: National Key Research & Development Program of China (2021YFB2701000); National Natural
Science Foundation of China (61972224 and U1736209).
Received 2021-09-05; Revised 2021-10-15; Accepted 2022-01-10; IJSI published online 2022-09-23

http://www.ijsi.org/1673-7288/290.htm
http://www.ijsi.org/1673-7288/290.htm

332 International Journal of Software and Informatics, 2022, 12(3)

patterns were relatively fixed and effective. However, research in recent years[9–15] is more
dedicated to the complex types of vulnerabilities, such as heap vulnerabilities, which call
for more sophisticated exploit techniques. For example, heap memory layout manipulation
is used to construct feasible exploits. Nevertheless, existing AEG solutions pay little regard
to the scenarios where defense mechanisms such as vulnerability mitigation are deployed in
the target environment, which pose significant challenges to exploits. As a matter of fact,
with the widespread deployment of various vulnerability mitigation mechanisms in modern
operating systems, it is required for the attackers to break through the defense mechanism in
the target environment if they plan to launch practical attacks in modern production and service
environments.

The modern operating systems see the extensive deployment of three famous defense
mechanisms, i.e., data execution prevention (NX/DEP)[16], stack protection variables (Ca-
nary/Cookie)[17], and Address Space Layout Randomization (ASLR)[18]. Specifically, DEP
is designed to prevent the data written in memory from being executed as code. After the setting
of Canary, the destructive behavior can be detected when the stack buffer overflow vulnerability
overwrites the function return address in the stack frame. ASLR is used to randomize the base
addresses such as code segments, data segments, and stack and heap in the memory, which
restricts attackers’ access to the addresses of available important data and code and makes
attacks more difficult. In addition, there are other measures for exploit mitigation, including the
control-flow integrity solution[19–21], which can also effectively mitigate exploits. Due to various
issues with performance and compatibility, however, manufacturers have not yet deployed these
protective measures extensively. Therefore, the AEG solution must bypass defense mechanisms
such as DEP, ASLR, and Canary.

In current AEG research, some solutions[4, 5, 22, 23] assumed that the target environment
and programs do not invoke the defense mechanism; some[8, 12–14] can bypass DEP but cannot
resist ASLR, and others[3, 6, 7, 24–26] can bypass ASLR through stack vulnerabilities or bypass
ASLR through heap vulnerabilities in the absence of DEP. Currently, no study is conducted on
bypassing both DEP and ASLR through heap vulnerabilities.

The key to bypassing ASLR is the leakage of the randomized memory addresses. The
ASLR defense deployed in modern operating systems is based on large-size memory segments,
including stack, heap, and shared libraries, with relatively coarse granularity. The offset within
each segment is a fixed value not subject to randomization. The most effective way to bypass
ASLR is to leak the address of a segment, from which we can infer all other addresses in the
same segment the attacker needs, which are located at a fixed offset. Therefore, it is necessary
to identify a pointer containing the randomized address for disclosure, the common methods
for which involve reusing the semantics of the target binary program or building a new output
function to trigger the output function to print the address. The attacker can infer other code
addresses by this leaked random address and complete the exploit accordingly.

This paper proposes an automatic information leakage system (EoLeak) for mitigation
mechanism evaluation, which can simultaneously bypass DEP and ASLR through heap
vulnerabilities to achieve effective exploitation. To be specific, EoLeak first makes a dynamic
analysis of the runtime memory execution process of the POC that triggers the vulnerability,
locates the variables of sensitive information, then constructs automatic information leakage for
the variables of sensitive information, and generates exploits based on the leaked information.
The solution records all relevant information and searches for possible leakage paths by
constructing the memory profile to locate essential variables in the memory. The solution
achieves the initial attack on heap vulnerabilities through the heap vulnerability analysis model
for the leakage capability building, thus expanding the memory utilization capability. Moreover,

Yang ST, et al. Exploit-oriented automated information leakage 333

it also implements a lightweight dynamic taint strategy, which searches for library function calls
with user-controllable parameters by monitoring the transfer operation in the memory buffer,
and thus, the cost of instrumentation is reduced. For the final exploit, it follows a similar strategy
to build user-controllable library function calls and properly handles the exceptional cases of
leakage failure.

We have implemented the system on the QEMU-based record and replay platform
PANDA[27] and assessed it through 17 CTF heap vulnerability binary programs and five real-
world applications. According to the results, the system has successfully generated 15 automatic
leakages and 14 final exploits. The system can automatically analyze and locate the runtime
memory address and relevant pointers of sensitive information in real-world applications.

2 Case Study
The AEG solution using heap vulnerabilities to bypass DEP and ASLR faces the same

problem as the manual construction of exploits by analysts. In this section, we study a real case
of heap vulnerability exploit to outline the challenges and the solutions for the leakage system
proposed in this paper.

2.1 Exploit case for heap vulnerabilities
As shown in Fig. 1, the simplified logic of the target program can be presented as the given

code (legitimacy is ensured for the level parameter), in which there is a use-after-free heap
vulnerability. Neither does the program check the legitimacy of the buf pointer to the target
heap chunk when calling the heap-chunk free function on Line 20, nor does it set the buf
pointer to NULL after freeing the heap chunk.

1 int sizes [3] = {0x28 , 0xfa0 , 0x61a80 };

2 char* buf [3];

3 bool exist [3];

4

5 void create(int level) {

6 if (!exist[level]) {

7 buf[level] = calloc(1, sizes[level]);

8 read(buf[level], sizes[level]);

9 exist[level] = true;

10 }

11 }

12

13 void renew(int level) {

14 if (exist[level]) {

15 read(buf[level], sizes[level]);

16 }

17 }

18

19 void remove(int level) {

20 free(buf[level]);

21 exist[level] = false;

22 }

Figure 1 Code example of heap vulnerability

POC triggers the vulnerability by constructing the overlapping memory layout of heap
chunks. As shown in Fig. 2, the rectangles represent the header and the body of the heap
chunks, and the rectangular bars on the side represent the current memory region to which
the corresponding heap chunk pointer buf points. After executing in sequence (a) creating a
small heap chunk, (b) freeing a small heap chunk, (c) creating a large heap chunk, (d) freeing a
small heap chunk, (e) creating a small heap chunk, and (f) creating a medium heap chunk, the

334 International Journal of Software and Informatics, 2022, 12(3)

existence indications matching all heap chunks are set as “true”, and the pointers of the large
heap chunk and small heap chunk overlap, both pointing to the starting address of the small heap
chunk in (f). In addition, this makes the memory region that the pointer of the large heap chunk
points to overwrite the memory regions, including the small heap chunk, as well as the header
and body of the medium heap chunk. Accordingly, writing to the large heap chunk can lead to
heap overflow at the header of the medium heap chunk.

(a) (b) (c) (d) (e) (f)

Small
Chunk

Small
Chunk

Small
Chunk

Large
Chunk

Medium
Chunk

Figure 2 Memory layout change in the heap during program execution when inputting POC that triggers
vulnerabilities

When an attacker attempts to exploit such a vulnerability with the protection of ASLR, the
leakage of the randomized address of the libc library would be the first attempt. After a fake heap
chunk is created in a small heap chunk, and the safe unlink attack is executed, the pointer to the
small heap chunk will be tampered with to a value slightly lower than the address of the pointer
itself, with the small heap chunk containing the pointer to the large heap chunk. At this point,
it is possible to modify the contents of the small and large heap chunks in turn and then tamper
with the value of the pointer of the large heap chunk and its data pointing to the memory region
to achieve arbitrary address write. The attacker can use the arbitrary address write primitive
to replace a libc library function address in the Global Offset Table (GOT) with the Procedure
Linkage Table (PLT) address of the output library function and use any libc library function
pointer as the first parameter when triggering the function call, to leak the libc library function
address. With this leaked address, the attacker can calculate the actual runtime address of the
system function and the /bin/sh string in the libc library, write them in the heap chunk, and
trigger the system function call to complete the exploit.

2.2 Attack model
This paper assumes that three widely deployed defense mechanisms are invoked in the target

environment, namely, DEP[16], stack protection variables[17], and ASLR[18]. It also assumes the
existence of a common heap vulnerability in the target binary program that can be exploited,
e.g., use-after-free or heap overflow.

In addition, this paper assumes that the attacker has POC input that can trigger heap
vulnerabilities, which the widely developed vulnerability detection tools can meet. As modern
AEG solutions generally allow users to provide the matching exploit templates[28], this paper
allows attackers to divide the POC input that triggers vulnerabilities to assist in tracking analysis.

Yang ST, et al. Exploit-oriented automated information leakage 335

Moreover, this paper also assumes that attackers can command the heap Fengshui capability
based on the recent research of heap layout manipulation[9–11] to ensure a relatively convenient
and fixed heap layout through POC input that triggers the vulnerability and thus facilitate further
analysis.

2.3 Research challenges
In the exploitation, an attacker needs to identify a randomized address of the libc library

function for leakage and then generate exploits according to the leaked address. Generating
both leakage and exploits requires the call of certain library functions (including print data and
system functions) with the parameters controlled by the attacker. To this end, the following
challenges should be addressed.

(1) Challenge 1: What important sensitive information is worth leaking, and how can it be
located in memory? For instance, a randomized address should be acquired through information
disclosure to bypass ASLR. When only the target binary and POC are given, it is necessary to
build a profile of the memory structure in the execution process.

(2) Challenge 2: How can the located sensitive information be leaked? Users can only
influence the execution of a binary program by providing input for the program. To achieve
information leakage, an attacker needs to identify the correct input to trigger the function-printing
data at a specific location.

(3) Challenge 3: How can exploits be generated according to the leaked information? Even
though the information is leaked, there is still a gap before exploit generation; thus, additional
efforts are required to overcome such obstacles.

2.4 Automatic leakage solution
To address the above challenges, this paper proposes a novel solution, EoLeak, to

automatically execute the leakage of sensitive information for exploits and the corresponding
exploit generation. In general, the solution involves the dynamic analysis of the execution trace of
a binary program, constructs a memory profile of the runtime memory structure, locates valuable
data variables, builds user-controllable read-write capabilities, and generates heap exploits that
can bypass ASLR and DEP.

The solution uses the given POC to analyze the running process of the binary and recognizes
the pointers and sensitive variables involved in the calculation. It records the relevant memory
information and timestamps in the diagram and identifies a nesting pointer chain leading to the
specified memory location.

EoLeak first uses heap vulnerabilities based on a heap memory model to build the leakage
capability to acquire broader memory manipulation capabilities. Tracking the user input bytes
by performing lightweight dynamic taint analysis, the solution analyzes the user-controllable
memory region, extracts abstract heap operation information from the execution path of the
binary program, and checks whether the corresponding conditions for heap exploits are satisfied
in the pre-set list of heap exploit templates. To reduce the expenses on the performance of taint
analysis and directly obtain the link between user input and memory data, this paper merely
considers the memory transfer operation as the propagation strategy in the taint analysis.

Exploit construction follows a strategy similar to that for leakage capability building. This
solution uses arbitrary or controllable memory write to call the target library function with the
assigned parameters and execute exploits. When automatic leakage fails or the binary is protected
by other advanced defense mechanisms, the solution also attempts to use the corresponding heap
exploit technique to generate exploits directly.

336 International Journal of Software and Informatics, 2022, 12(3)

3 System Design
This section introduces the design details of the EoLeak solution. As shown in Fig. 3, there

are three major steps.

Construction of
information leakage
Expand memory

manipulation capability

Taint analysis for
library function calls

Constructuion of
leakage semantics

Sencsitive variables
pointer relations
library function call

Leaked
sensitive
address
information

Exploit generation Output

Exploit

Exploit construction

Taint analysis for
library function calls

Input

Target binary

POC

Location of
sensitive information
Program execution
trace information
extraction

Memory
profiling

Heap exploit
model

Figure 3 Overview of the automatic information leakage system

(1) Location of sensitive information. Given a vulnerable binary program and a POC
that triggers heap vulnerabilities, the solution first analyzes program execution traces, extracts
instruction semantics, and locates the sensitive information by restoring pointers and valuable
memory objects. The variable addresses are recorded through memory profiling, and a pointer
graph is maintained to search for the leakage paths leading to specific addresses.

(2) Construction of information leakage. With the heap model, the solution achieves
vulnerability inference through heap exploit templates to expand the memory manipulation
capability and perform lightweight dynamic taint analysis to study the relationship between user
input and the parameters for library function calls. The read and write function is established to
achieve parameter control, and the solution can construct leakage primitives to print sensitive
information.

(3) Exploit generation. The solution generates the final exploits of the target binary
according to the leakage information through a strategy similar to building leakage capability. If
the library function call of exploits of the selected parameters cannot be triggered, the solution
will also use the corresponding template to handle the specific case of heap exploits as a
supplement.

3.1 Location of sensitive information
The first step of EoLeak is to run a given vulnerable binary program by POC and explore

sensitive information during the execution.

3.1.1 Important data

Many pointers and memory objects are generated to participate in the calculation during
program execution. In particular, the following three kinds of information should be noted:

(1) the code pointers used in program execution, especially those in the writable memory
region;

(2) memory object pointers, including heap chunk pointers returned by the heap allocation
function;

(3) variables frequently accessed during program execution or those used as the parameters
for function calls.

Writable code pointers are precious in exploits. An attacker can hijack the control flow
by tampering with these pointers, and writable code pointers can provide a reference for the
inference of the base addresses of the shared library in the randomized code space. Sensitive
data is usually stored as member variables in memory objects whose address space is under the
control of the heap manager. By heap chunk pointers, the runtime heap states can be obtained;
thus, the distribution of memory objects in the memory space can be inferred. Some variables,

Yang ST, et al. Exploit-oriented automated information leakage 337

such as the starting pointer of the data structure, usually participate in the operation of subsequent
data structures or are often called by the application program interface as parameters. EoLeak
considers these variables crucial to the generation of exploits and records the access frequencies
of these variables.

3.1.2 Memory profiling

To identify and locate the above sensitive information, EoLeak constructs a memory profile
when analyzing the dynamic program execution trace: it disassembles each instruction to
obtain its operation code and operand information and extracts the runtime variable value of
the corresponding operand from the execution trace. By analyzing the addressing patterns of
registers and memory operands, the solution identifies the pointers, counts the visits, and then
adds the data to the global memory pointing mapping that preserves the memory locations and
timestamps of variable lifecycles of all records.

To locate the pointer that preserves the addresses of library functions such as libc, EoLeak
first searches for all the variable values of runtime addresses within the memory segment of
the library. After obtaining the address region information of the memory segment through a
separate process monitor, EoLeak records all runtime call and jump targets, checks, and filters
for those addresses within the memory segment, and executes a separate verification process to
comparatively confirm that each library address corresponds to a library function symbol.

As shown in Fig. 4, the pointer memory profile of the sample program contains the nesting
of two pointers: the pS pointer at 0x6020b0 points to the memory region 0x602098 containing
pointers pM and pH, which point to separate memory regions. When the memory region the pH
points to with 0x175e010 as the starting address contains valuable, sensitive data, the leakage of
this important data can be constructed by use of two consecutive leakage readings: the value of
the pH pointer at *pS+0x10 is first read, and then the sensitive information variable at *pH+0x8
is read. Since the offset in the memory is relatively fixed, it is possible to print each node along
the whole chain as long as the address of the first pS pointer at 0x6020b0 is known.

0x6020b0

0x602098

0x175e040

0x175e010

(pS) +0x00: 0x602098

(pM) +0x08: 0x175e040

+0x18: 0x602098

+0x00: ……

+0x08: Sensitive information

(pH) +0x10: 0x175e010

Figure 4 Runtime pointer memory profiling of the sample vulnerable program

In the collected memory analysis graph, we describe memory as a series of nesting memory
regions to which the pointers point, with each pointer located at an offset of a specific memory
region. Given a readable pointer with a known address and a time frame of a vulnerability,
EoLeak can automatically search for the pointer leakage chain of the specified target variable
to achieve the application of this leakage path through the function of continuous arbitrary
readings.

3.2 Construction of information leakage
After obtaining the location of sensitive information, EoLeak builds the leakage capability

to print sensitive information. As explained in the previous subsection, the leakage of a specific

338 International Journal of Software and Informatics, 2022, 12(3)

variable can be broken down into consecutive arbitrary readings without conflicts. Therefore,
the solution builds the leakage function of single arbitrary readings and then stitches it together
to form an arbitrary reading chain. More specifically, it analyzes the semantics of the target
binary program, builds the leakage capability in combination with heap vulnerabilities, and calls
the printout library function with the address of the target variable as a parameter before finally
triggering the function call to finish the leakage process.

3.2.1 Expansion of memory manipulation capability
Programs written by developers usually have strict verification on the data input by the user

to avoid the vulnerability attack caused by corrupting the memory. As a result, the target binary
program often has insufficient execution semantics to achieve controllable library function calls.
Therefore, a necessary step is to provide more exploitable primitives to expand the available
range of memory manipulation in combination with heap vulnerability attacks. Attackers can
manually adjust the POC input to realize the initial attack on heap vulnerabilities, and EoLeak
also provides a solution to automatically derive and build such heap exploit attacks through
simple heap models and exploit templates.

The existing heap vulnerability attacks generally come from mature heap exploit techniques,
and the attack schemes against different heap managers also become specialized in the
development. ptmalloc2, adopted by glibc, is one of the most commonly used heap managers,
which can provide efficient management of dynamically allocated memory on the heap through
the arena structure and its bin array. In ptmalloc2, the memory allocated by each malloc
has a unified chunk structure, which contains the header data for heap structure management
that stores the size of the previous heap chunk, i.e., prev_size, and the size of this heap chunk,
i.e., size. The freed heap chunk reuses the first byte of the main part as FD and BK pointers
(pointing to the next and previous freed heap chunks, respectively). Each allocated memory
heap chunk is classified as one of the following four categories according to its size and usage
state: 1) fast bin, 2) small bin, 3) large bin, and 4) unsorted bin.

For the heap manager ptmalloc2, EoLeak abstracts the templates of typical heap exploit
schemes, including the conditions required to trigger the vulnerability attack and the exploit
effect upon the execution of the attack. To be specific, EoLeak provides a list of heap exploit
templates, each of which corresponds to a heap exploit attack scheme, including the conditions
required (such as the limit on the size of allocated heap chunks and overflow possibility of the
heap chunk header) and effect of attack (such as heap allocation of arbitrary addresses).

Table 1 lists the main exploit templates supported by EoLeak. In the case of the safe unlink
attack executed in the sample program, no pointer can be written by the attacker in the memory
of the target binary program before the execution, and thus further leakage cannot be achieved.
The safe unlink attack, a use-after-free attack, incorrectly frees an already freed small bin or
unsorted bin through controllable FD and BK pointers. In the heap exploit template, EoLeak
requires the following conditions to be met for attack execution:

(1) there is a pointer to a heap chunk at a known address;
(2) the heap chunk can be arranged as a freed one that can pass checks, and its FD and BK

corresponding offsets have controllable contents;
(3) the neighboring chunks of this chunk can trigger the free operation.
For the target binary program, Condition (1) is the static memory state, which can be

obtained through simple inspection via memory profiling; Condition (2) requires that the heap
chunk should have the write capability that meets the constraint conditions; Condition (3)
requires the free of the neighboring chunks, which can be obtained by the analysis of the
program execution trace.

Yang ST, et al. Exploit-oriented automated information leakage 339

Table 1 List of heap exploit templates currently supported by EoLeak
Type of heap
vulnerability

attack
Attack conditions Exploit effect Expandable

primitive

Fastbin attack

(1) There are two fastbin heap
chunks that can be freed in sequence
(2) FD can be modified after the free
of the first chunk
(3) fastbin chunks can be allocated
again in sequence

The fastbin chunk
freed secondly
can be allocated
to the overlapping
heap address

(1) Expand memory
region the pointer
points to
(2) Create
overlapping heap
chunks

Unlink attack

(1) There is a pointer to a heap chunk
at a known address
(2) This chunk can be marked as
freed chunk, with FD and BK
controllable
(3) The neighboring heap chunks of
this one can trigger the free operation

The known
pointer is set to a
specified value

(1) Expand memory
region the pointer
points to
(2) Create
controllable pointers

Safe unlink attack

(1) There is a pointer to a heap chunk
at a known address
(2) This chunk can be marked as
freed chunk, with FD and BK
controllable
(3) The neighboring heap chunks of
this one can trigger the free operation

The known
pointer is set to
the address
slightly lower
than that of the
pointer

(1) Expand memory
region the pointer
points to
(2) Craete
controllable pointers

Unsorted bin
leakage

(1) There is a heap chunk that can be
freed into the unsorted bin
(2) This heap chunk is located at the
tail of the unsorted bin link after its
free
(3) FD can be accessed after the free
of this chunk

FD pointer of
unsorted bin
chunk points to
an offset of the
main arena

Create pointers to the
libc address

Falsification of
memory write

(1) There are two pointers that can
overwrite the region they point to
(2) One of the pointers can be
modified to point to the address
lower than that of the other, with the
offset not exceeding the length of
writable memory

The value of the
other pointer can
be overwritten
once

Create controllable
pointers of arbitrary
write

The attack effect of the template can be summarized as follows: the known pointer is set to
point to the address slightly lower than that of the pointer.

In the analysis stage, EoLeak has recorded the pointers and their corresponding memory
regions. EoLeak maintains a simple heap model that represents the runtime heap layout structure
by analyzing the metadata of the heap chunks, including the header information and the doubly
linked list pointer structure. The solution extracts abstract heap operation information by
analyzing the program execution trace and collects the modification semantics of heap states in
the program path. Then, these modifications are combined with the heap model for comparison
to check whether they meet the conditions of any heap vulnerability attack template. If all the
conditions of a heap vulnerability attack template are met, the solution will execute a heap attack
according to the template, verify the effectiveness of the attack, and update the status of POC
input and program tracking. If the subsequent analysis suggests the failure of this attack, the
solution will return to the state of the previous attack and try other attack templates.

Upon the execution of POC, the sample vulnerable program is executed to the heap layout
state as shown in Fig. 2(f), and the solution starts to check whether it meets the conditions of

340 International Journal of Software and Informatics, 2022, 12(3)

the safe unlink heap attack template. For Condition (1), the solution identifies several heap
chunk pointers with a fixed address in the bss segment. For Condition 2, it finds the program
path, where a pS pointer is shown in Figure 4, and the small heap chunk it points to can be
filled with the user’s fake chunk. The length of the fake chunk can be longer than the allowable
value of the small heap chunk, and they are allowed to overwrite the size field and existence
bit of the headers of the subsequent neighboring heap chunks through heap overflow. Although
both small and large heap chunks can be filled with user-controllable contents, only pS meets
the requirement that the writable length starting from the pointed-to memory region should be
greater than the remaining chunks. Thus, the prev_size field and prev_in_use bit can be
overwritten as the specified content as required (marking the previous fake chunk as “freed” and
passing the size matching checks). As to the third condition, another program path meets what
it takes to trigger heap chunk free. As all three conditions are satisfied, EoLeak constructs the
corresponding attack input according to the template and executes the corresponding program
paths, in turn, to successfully update the status of the current program.

3.2.2 Taint analysis for controllable library function calls

After collecting more memory manipulation primitives, EoLeak attempts to build a single
leakage capability. Before obtaining the real address of the library function, we still rely on the
target binary program to complete the leakage process. Therefore, it is required to identify the
existing output capability in the target binary program and trigger it with the data address to be
leaked as a parameter.

First, EoLeak searches for the library functions with printout semantics in the target binary
program, which have been collected in memory profiling. Then, it analyzes the program
execution trace to determine whether there is a suitable program path to call the printout library
function with controllable parameters. This involves two cases of controllable parameters: the
parameters directly come from some bytes in the current POC input or from variable transmission
in some controllable memory regions in the current program path. The former can undergo
simple adjustment by modifying the current input, while the latter requires an additional writing
path to write the required address data into the corresponding memory region. If there is
no suitable program path to call the library function, EoLeak must first hijack other library
function symbols to construct the leakage primitive and then call the function with controllable
parameters. In brief, EoLeak should learn which memory regions the user input can influence
and which memory regions the function parameters come from.

To track the data flow from user input, in addition to disassembling binary instructions
and obtaining runtime data, EoLeak also performs a lightweight taint analysis according to
instruction semantics to track the user input. The result of the user input library functions
are marked as taint sources, and the parameters for target library function calls are denoted
as taint sinks. As dynamic taint transmission is an onerous process, and the heavy analysis
workload cannot guarantee accuracy, EoLeak only uses memory transfer operations of no more
than first-order arithmetic or bit operations as the taint propagation strategy. In this way, the
performance expense can be reduced, focusing on the memory region directly controlled by the
user-input bytes. If the attacker controls the target, it is highly probable that the consecutive
bytes constituting this address will be transmitted in the memory or execute offset operations.
In this case, the taint analysis merely tracks the original user input, reducing the maintenance
cost and simplifying the subsequent exploit generation analysis.

3.2.3 Construction of leakage semantics

There are many possibilities in the results of the above analysis by EoLeak. For instance,
multiple program paths of reading semantics can fulfill the leakage capability; the parameters

Yang ST, et al. Exploit-oriented automated information leakage 341

of the print library function may come from multiple controllable memory regions, and each
memory region could also support multiple write modes.

EoLeak selects from these candidate components the ones to stitch together to get a complete
leakage primitive. As the leakage capability of continuous arbitrary read through the pointer
chain requires no conflict between each arbitrary reading leakage, the solution analyzes the
execution trace after stitching the leakage path and calculates the side effects it involves, including
the writings to other memory locations and additional operations on the heap layout. Moreover,
it gives a side-effect score to each generated library function call to measure the impact of side
effects, with the leakage path under lighter side effects preferred. Specifically, the solution
extracts the memory read-write and allocate-free operations in each execution trace, which are
divided into two parts for processing. The memory read-write in the execution trace scores three
points for each memory read at different addresses and one point for each group of memory
read-write in the execution trace in reverse order (i.e., there is an address execution trace that is
read first and then written). For the memory allocation and free operations in the execution trace,
the solution scores one point for each memory allocation and free and one point for each group
of mismatched allocation and free (matching means a pair of allocation and free operations share
the same target address). When selecting a leakage path, the solution prefers the leakage path
with a lower score according to memory allocation-free and read-write scores.

The memory profile of the target program records all pointer positions related to the library
function address after randomization. EoLeak automatically calculates the possible leakage
chain for each library function pointer and attempts to leak any pointer to obtain the runtime
library function address after ASLR. The analyst can also manually mark the target sensitive
information in the memory profile, and EoLeak tries to build the matching leakage path for this
variable.

3.3 Exploit generation
After the completion of information leakage, the leaked address of the libc library function

and the previously expanded controllable memory range through the template are employed to
fulfill the utilization of the target binary program. By using and constructing a strategy similar
to that for the construction of the leakage semantics, the library function call in the exploit
semantics is built, such as system (/bin/sh), which will be used as an example below. There
are also other library functions, e.g., execve, which only call for different combinations of
parameters. The process of automatic exploit construction can also involve two steps: the first
step is to equip a callable code pointer with the randomized address of the runtime system
function, and the second step is to ensure that the first or corresponding parameter is filled with
the address of /bin/sh.

Since two symbols in the same library always share the same offset in different randomized
base addresses, the runtime address of the system function can be calculated through the leaked
address of the libc library function. The called code pointer can adopt a typical representative,
such as GOT, which preserves the real address of the library function used in the program.
The libc library contains the string /bin/sh, and its address can also be calculated through the
leaked address. In some cases, the first parameter called by the system library function cannot
be directly controlled by the user input value. Therefore, EoLeak seeks an alternative: the
parameter is set to a pointer pointing to a writable memory region, and the writing process is
triggered by appending or modifying bytes in the original POC to write the /bin/sh string in
the target memory region rather than its runtime address. When the address and parameters of
the system function are ready, it is possible to tamper with the symbol of the libc library function
to trigger the library function call of the system function and utilize the target binary.

EoLeak bypasses the protection of ASLR based on function address leakage. In the leakage

342 International Journal of Software and Informatics, 2022, 12(3)

and exploit generation stage, shellcode injection is not required. Instead, the initial heap exploit
template expands the available memory range. The hijacking library function calls are performed
via the analysis of the target address and parameters of controllable library function calls, and
attacks are achieved through the reuse of code which can resist DEP. During the heap exploit,
it generally does not depend on the stack overflow function, and it can build the corresponding
leakage path by specifying the stack protection variable through memory profiling, which enables
the resistance to the guard from stack protection variables.

4 Solution Implementation
This paper implements the EoLeak system based on the PANDA project. Specifically,

we have implemented some of the analysis code in C++ and packaged the whole system as a
Python-based server/client architecture.

4.1 Record and replay
The analysis of randomization protection has always been an arduous task. The randomized

value is only generated in practical execution, before which the relevant randomized program
behavior cannot be observed. Although dynamic analysis has solved this problem, the random
results vary in each execution, which poses new challenges to researchers.

EoLeak employs the technology that involves recording the program execution trace and
replaying it fixedly. All runtime environment variables are generated as usual and recorded in a
log file during the recording. When the execution trace is replayed, each instruction shares the
same execution behavior as it was originally recorded. A consistent running environment helps
researchers easily compare and analyze the execution process of the same program execution
trace between multiple replays and identify the randomized library function address and the
corresponding memory structure accurately.

4.2 PANDA plug-in
Based on the QEMU simulator, PANDA has multiple function callbacks in the TCG

lifecycle. For instance, PANDA_CB_INSN_TRANSLATE is called before the basic block
is converted to TCG IR for the first time, and PANDA_CB_AFTER_INSN_EXE is triggered
after the execution of an instruction. By selectively inserting the analysis logic code through
these callback functions, EoLeak can record and analyze the execution process of the target
binary program under specific user input. For example, the instructions are disassembled before
the execution with the Capstone disassembler, and the recognized pointers are recorded in the
global pointer mapping structure, where taint and propagation analysis are carried out.

4.3 Server/client architecture
As an analysis platform based on QEMU, PANDA faces major performance problems

and high time costs when starting the new virtual machine of the mirror instance of a target
operating system. EoLeak needs to dynamically determine the following user input of the target
binary program and cannot afford the time cost of frequent startup and shutdown of the virtual
machine. To this end, we design EoLeak as a server/client architecture, where the client is a
Python controller that receives commands from the server and manipulates the PANDA virtual
machine. It wraps common PANDA operations, such as recording the execution process of a
given target binary program and the corresponding new program input, replaying the program
execution trace and running the analysis plug-in for analysis, and injecting/ejecting the ISO file
from the server into/out of the virtual machine. Upon the completion of the analysis operation,
the client sends the analysis results back to the server. For a lower time cost in the virtual machine
startup, the client retains a running client operating system instance in the background to receive

Yang ST, et al. Exploit-oriented automated information leakage 343

and execute the commands from the server and automatically restart the virtual machine as
required.

The server of EoLeak, another Python project, is also the core analyzer of the system. It
sends PANDA operations and analysis instructions to the client, receives the analysis results from
the client, and drives the automatic vulnerability construction and exploit generation process.
During the generation of new program input, the server sends the input with the binary file to
the client for another execution trace analysis. By splitting the exploit analysis module and the
PANDA execution module into the server and client architectures, EoLeak can be accelerated in
parallel by connecting one server with multiple executor clients.

5 Assessment and Verification
This section introduces the experiment assessment and verification of the EoLeak system

and mainly answers the following research questions:
(1) Question 1: Can EoLeak successfully locate sensitive information?
(2) Question 2: Is the heap attack template adopted by EoLeak effective?
(3) Question 3: Can EoLeak generate automatic leakages of sensitive information and

automatic exploits for heap vulnerability programs?

5.1 Location of sensitive information
As shown in Table 2, we collected 17 heap vulnerability programs from famous CTF events

and websites, and the POCs provided in all cases are not available. The system adopts libc
version 2.23, with the invoked defense types represented by SNP in the table (S represents
the stack protection variable; N represents DEP, and P represents PIE; the letters indicate the
deployed defense, and “–” means that none of the three defenses exist). The full randomization
ASLR is employed in the system.

Table 2 CTF heap vulnerability binaries tested by EoLeak

Binary program CTF event Vulnerability type Defense
deployed Binary program CTF event Vulnerability type Defense

deployed
aiRcraft RCTF’17 Use-after-free SNP RNote2 RCTF’17 Heap buffer overflow SNP
b00ks ASIS’16 Single byte overflow NP SecretHolder HITCON’16 Use-after-free SN

babyheap 0CTF’17 Heap buffer overflow SNP secret-of-my-heart Pwnable.tw Single byte overflow SNP
freenote 0CTF’15 Release twice SN secure_keymanager SECCON’17 Heap buffer overflow SN
mario Defcon’18 Use-after-free SNP SleepHolder HITCON’16 Use-after-free SN

message_me ASIS’18 Use-after-free SN stkof HITCON’14 Heap buffer overflow SN
minesweeper CSAW’17 Heap buffer overflow — vote N1CTF’18 Use-after-free SN

note3 ZCTF’16 Heap buffer overflow SN zone CSAW’17 Single byte overflow SN
RNote ZCTF’17 Single byte overflow N

To answer Question 1, we collected the pointers of the addresses of the libc library function
recorded by EoLeak during dynamic analysis and took them as the representatives of sensitive
information. As shown in Table 3, EoLeak has successfully located the addresses of the libc
library function for leakage in all CTF binaries. The number of libc addresses identified in the
left column represents the number of memory locations of the address values related to the libc
library function after address randomization, which was identified under the original POC and
was provided by the dynamic analysis module. The number of libc addresses identified after
the attack in the right column represents the number of the corresponding memory locations
identified after the implementation of the initial heap attack, which reflects the improvement in
the memory manipulation capability due to the heap attack. The libc library correlation refers to
the addresses with a fixed offset from the base address of the libc library, including libc function
symbols and some memory structure fields within the libc data segment that also help leak the
libc runtime address.

344 International Journal of Software and Informatics, 2022, 12(3)

Table 3 Identification of addresses related to libc library in CTF binaries

Binary program POC
length

Number of
instructions

executed
by POC

Number
of libc

symbols
cited

Number of
identified
pointers of
libc address

Number of
identified pointers

of libc address
after attack

Number
of heap

addresses
identified

Number
of stack

addresses
identified

Number of
program
addresses
identified

aiRcraft 32 1,729 17 14 17 2 75 37
b00ks 154 2,786 12 12 12 3 82 23

babyheap 75 1,342 19 19 22 1 68 2
freenote 68 1,435 13 11 13 7 72 2
mario 847 7,604 40 44 50 44 79 46

message_me 213 1,861 15 10 13 2 88 1
minesweeper 12 2,568 28 13 13 5 123 28

note3 138 2,873 15 10 10 4 67 1
RNote 164 1,490 16 10 13 3 60 2
RNote2 1,374 1,677 18 18 22 8 64 2

SecretHolder 68 2,104 13 8 8 3 52 1
secret-of-my-heart 43 2,554 19 19 22 1 72 27
secure_keymanager 378 1,992 13 8 11 3 68 2

SleepHolder 41 2,381 16 11 11 3 52 3
stkof 18 1,636 16 7 10 2 55 2
vote 36 2,442 21 10 10 3 64 3
zone 86 3,783 15 11 11 43 79 1

We also assessed the capability of five real-world programs to locate sensitive information.
As shown by the results given in Table 4, EoLeak has successfully located the libc address in
all applications. It is worth noting that the number of libc library-related addresses identified
under the original POC bears no apparent relationship with the size of the target binary file but
is roughly the same as the number of libc symbols cited in the target binary. This suggests that
almost all possible libc-related addresses used to bypass ASLR are only from GOT. In addition,
the libc-related addresses obtained via the expansion of the initial heap attack are not subject to
this restriction and are stable options for leakage sources.

Table 4 Identification of addresses related to libc library in real software

Real software Defense
deployed

Number
of libc

symbols
cited

Number of
identified pointers

of libc address

Number
of heap

addresses
identified

Number
of stack

addresses
identified

Number
of program
addresses
identified

ProFTPd SN 198 122 13,451 88 1,186
nginx N 123 86 6,746 138 4,675

nullhttpd SN 78 59 27 122 4
apache SN 149 92 583 300 1,364

smbclient SNP 238 171 4,836 376 20

5.2 Heap attack template
To answer Question 2, we verified the effectiveness of the attack template list adopted

by EoLeak on 17 CTF heap vulnerability programs. According to the results presented in
Table 5, five of the seventeen programs can well match the Fastbin attack template; eight can
match the Unlink attack template; two can achieve memory write by forging data structures;
and two cannot match the corresponding attack template, namely that for 88.2% of the target
programs, EoLeak can automatically explore the initial attack from the not excessively complex
vulnerability trigger points of the heap layout to the heap vulnerabilities that follow the template.
The newly identified addresses related to the libc library after the preliminary attack shown in
Table 3 reflect the improvement in memory availability due to this attack. We also investigated
two program cases that failed to match the preliminary attack template and the situations in real
software, the specific reasons for which are introduced in the following subsection.

Yang ST, et al. Exploit-oriented automated information leakage 345

Table 5 Heap attack templates applicable to CTF heap vulnerability binaries

Binary program Vulnerability type Applicable attack
template Binary program Vulnerability type Applicable attack

template
aiRcraft Use-after-free Fastbin attack RNote2 Heap buffer overflow Unlink attack
b00ks Single byte overflow Fake memory write SecretHolder Use-after-free Unlink attack

babyheap Heap buffer overflow Fastbin attack secret-of-my-heart Single byte overflow Fastbin attack
freenote Release twice Unlink attack secure_keymanager Heap buffer overflow Unlink attack
mario Use-after-free Fastbin attack SleepHolder Use-after-free Unlink attack

message_me Use-after-free Unlink attack stkof Heap buffer overflow Unlink attack
minesweeper Heap buffer overflow — vote Use-after-free —

note3 Heap buffer overflow Unlink attack zone Single byte overflow Fake memory write
RNote Single byte overflow Fastbin attack

5.3 Leakage and exploit generation
As for Question 3, we used 17 CTF heap vulnerability programs to assess the EoLeak

system and attempted to generate leakages and exploits. For each heap vulnerability program,
we prepared a POC that can trigger heap vulnerabilities but fails to exploit them.

As shown in Table 6, EoLeak has successfully built leakages for 15 of the 17 heap
vulnerability programs, of which 14 have generated final exploits. In other words, EoLeak
reports a success rate of up to 88.2% in building the leakage of the libc library function address,
with 82.4% of the target programs exploited.

Table 6 Effect of information leakage construction and exploit generation of CTF heap vulnerability
binaries

Binary program
Information

leakage
construction

Exploit
generation Binary program

Information
leakage

construction

Exploit
generation

aiRcraft ✓ ✓ RNote2 ✓ ✓
b00ks ✓ ✓ SecretHolder ✓ ✓

babyheap ✓ ✓ secret-of-my-heart ✓ ✓
freenote ✓ ✓ secure_keymanager ✓ ✓
mario ✓ SleepHolder ✓ ✓

message_me ✓ ✓ stkof ✓ ✓
minesweeper vote

note3 ✓ ✓ zone ✓ ✓
RNote ✓ ✓

We further investigated three cases that failed to build leakages and one that failed to
generate exploits and analyzed the reasons for the failures.

(1) Multi-threading. As a multi-thread program, vote is too complex for the current analysis
module. At the moment, EoLeak only supports the analysis of single-thread vulnerability
programs. For the same reason, EoLeak is unable to understand the race condition vulnerabilities
for the moment.

(2) Custom heap structures. The minesweeper program implements a custom heap structure
and manager. As the heap model inference by EoLeak relies on the standard ptmalloc2, it
cannot process custom heaps, nor can it successfully generate leakages or final exploits for
programs.

(3) Heap exploit technique not supported yet. The mario program needs to use the_IO_file
structure to enable a heap exploit attack, but such exploit technique has not yet received support
from the current heap model inference mechanism. Therefore, although FD pointers can be used
to construct leakages normally, they encounter failures during exploit generation.

(4) Exploit window. In practice, real software paths are complex, and most vulnerabilities
only allow a limited attack window and only can write once, making it difficult to reuse. Even if
some vulnerabilities meet the conditions for exploit templates, it is hard to construct a conflict-
free continuous reading chain due to complex changes in the heap layout, and thus automatic

346 International Journal of Software and Informatics, 2022, 12(3)

leakages can hardly be realized.

6 Related Work
6.1 AEG

Early solutions for AEG did not consider defense mechanisms in general. APEG[22], as
the first AEG solution, compares the conditional checks that differ before and after the patch to
the target binary and uses symbolic execution to automatically build inputs that fail to pass the
conditional checks before the patch. AEG[4] carries out symbolic execution of the source code
by control-flow hijacking on the stack to exploit stack overflow and format string vulnerabilities.
Mayhem[5] endeavors to generate exploits for stack overflow and format string vulnerabilities in
binaries and executes ret2stack-shellcode and ret2libc attacks through the symbolic execution
of control-flow hijacking. PolyAEG[23] generates multiple exploits for binaries with abnormal
input by analyzing the user-controllable control-flow direction through taints. All these AEG
solutions cannot bypass DEP or ASLR.

Some research broke through defense mechanisms but still cannot automatically bypass
ASLR. HI-CFG[8] converts benign input into vulnerability points between buffers, generates
control flow graphs with buffer information, and searches for buffer transmission through read-
write operations. Its core objective is to generate POC input that can cause abnormal states.
Manual guidance is required if one wants to generate exploits that can bypass the ASLR defense
mechanism. Revery[12], KOOBE[13], and FUZE[14] study how to use fuzzing techniques to
generate attacks against heap vulnerabilities. Revery searches the user-mode program for a
memory layout similar to the crash execution path, trying to stitch the replacement program
path. KOOBE is committed to the out-of-bound write vulnerability in the Linux kernel. FUZE
analyzes timestamps used to create and dereference dangling pointers. These solutions dismiss
bypassing ASLR as beyond the scope of studies.

Other studies attempt to bypass ASLR, but they can only achieve this through stack exploits
rather than heap exploits. Heelan[3] proposed a solution involving symbolic execution to generate
known stack overflow vulnerabilities, bypassing ASLR by jumping registers to unrandomized
addresses. Q[6] uses a small number of unrandomized code to harden existing exploits and bypass
ASLR. It builds return-oriented programming gadgets through the binary analysis platform
BAP[29] and matches the proposed QooL language for stack exploits. CRAX[7] generates exploits
for large-scale real-world binaries by tainting user-controlled program counters. Although it can
use ret2libc and jmp2reg techniques to bypass ASLR on the stack, it cannot do so on heap
vulnerabilities. ShellSwap[24] transplants the existing old exploits to an effective new one by
symbolic tracking and the combination of code layout repair and path stitching of exploits.
It bypasses ASLR by overwriting the instruction pointer with a specific jmp instruction with
controllable registers; thus, it cannot bypass DEP simultaneously. Using symbolic execution,
R2dlAEG[26] explores the use of the return2dl-resolve attack technique to generate exploits that
bypass data execution and ASLR for stack overflow vulnerabilities. By detecting multiple exploit
chains, KEPLER[25] generates the exploits of return-oriented programming that bypass modern
mitigation techniques, and it needs to hijack the control flow and use the control-flow hijacking
primitive to build the POC for exploits.

Data flow analysis can naturally resist ASLR protection. FLOWSTITCH[30] automatically
generates data-oriented exploits to stitch information leakages or escalate privileges without
violating the control-flow integrity. DOP[31] further executes data-oriented programming by
building data flow accessories, but they do not bypass ASLR on heap vulnerabilities. BOPC[32]

assumes that all the control-flow mitigation is invoked: it searches for the memory layout at a

Yang ST, et al. Exploit-oriented automated information leakage 347

given entry point and sets the memory layout through multiple arbitrary memory write primitives
(if ASLR is bypassed, it is required to read the primitives) to make subsequent data flows to
meet the required SPL logic.

The AEG research on the interpreter has also gained attention. SHRIKE[9] performs
regression tests on PHP to extract heap operations. In addition, it searches for a specific memory
layout where the overflow block is adjacent to the target block. Gollum[10] automatically solves
the problem of identifying data structure overflow and using it in a certain way. It first checks
the available heap layout and then searches for the corresponding heap operation process in a
lazy way. As the exact heap allocation address is required, it cannot bypass ASLR.

6.2 Taint analysis
As an important method for analyzing program data flow, taint analysis can directly

determine whether there is any correlation between the input source and target points. EoLeak
makes lightweight dynamic taint analysis to study the relationship between user input and the
parameters of the library function call. As static taint analysis can hardly ensure the correctness of
the results, current taint analysis systems often adopt dynamic analysis combined with dynamic
symbolic execution and fuzzing techniques.

Dytan[33] provides a general framework for taint analysis and adopts dynamic instru-
mentation for taint analysis, which, however, reports great limitations in taint marking and
instrumentation efficiency. Libdft[34], by the shadow memory method, can improve the efficiency
of dynamic data flow tracking and build up the practicability of dynamic taint analysis. The
existing dynamic taint analysis methods are plagued by the problems of over-taint (too many taints
and the wide spread of taint variables) or under-taint (improper taint propagation analysis and
that the variables supposed to have been marked have not yet been marked)[35]. Moreover, taint
analysis needs to specify the taint propagation rules for each instruction, which heavily depend
on the running platform of a target program, and it takes a great engineering cost to migrate them
to different platforms. There is no dynamic taint analysis system by far that can analyze 32-bit
and 64-bit programs on x86 and x86-64 platforms. To alleviate the over-taint and under-taint
problems and enhance the reliability and completeness of dynamic taint analysis, TaintInduce[36]

can automatically analyze and obtain propagation rules by using the least semantic information
of the corresponding structure, demonstrating a good cross-platform migration capability. Some
dynamic taint analysis tools combine binary analysis, such as TEMU[37] and Triton[38].

Given the heavy workload and low efficiency of traditional taint analysis methods, some
state-of-the-art research attempt to employ machine learning methods. Specifically, neural
networks are used to simulate the input and output of instructions to automatically establish
propagation rules for instructions to reduce workload and achieve cross-platform. For instance,
Neuraint[39] uses neural networks to directly estimate the correlation between input sources and
target points.

7 Conclusion
For AEG solutions, it is a realistic challenge to take into account the mitigation strategies

deployed in the target system. We propose an effective automatic solution, EoLeak, to bypass
ASLR and DEP by heap vulnerabilities. Through dynamic analysis of program execution traces
by the POC input that triggers vulnerabilities, EoLeak uses lightweight taint analysis of memory
transmission, and a simple heap exploit model to infer possible library function pointers and
exploit targets. We have tested EoLeak on 17 CTF heap vulnerability binary programs, 15
of which can automatically build leakages, and 14 can generate final exploits. Additionally,
EoLeak can successfully analyze sensitive information and memory controllability in real-world

348 International Journal of Software and Informatics, 2022, 12(3)

programs.

References
[1] Liu J, Su PR, Yang M, He L, Zhang Y, Zhu XY, Lin HM. Software and cyber security—A survey.

Ruan Jian Xue Bao/Journal of Software, 2018, 29(1): 42–68 (in Chinese with English abstract).
http://www.jos.org.cn/1000-9825/5320.htm [doi: 10.13328/j.cnki.jos.005320]

[2] Zhao SR, Li XJ, Fang Y, Yu YP, Huang WH, Chen K, Su PR, Zhang YQ. A survey on automated
exploit generation. Computer Research and Development, 2019, 56(10): 2097–2111 (in Chinese with
English abstract). [doi: 10.7544/issn1000-1239.2019.20190655]

[3] Heelan S. Automatic generation of control flow hijacking exploits for software vulnerabilities [MS.
Thesis]. Oxford: University of Oxford, 2009.

[4] Avgerinos T, Cha SK, Rebert A, Schwartz EJ, Woo M, Brumley D. Automatic exploit generation.
Communications of the ACM, 2014, 57(2): 74–84. [doi: 10.1145/2560217.2560219]

[5] Cha SK, Avgerinos T, Rebert A, Brumley D. Unleashing mayhem on binary code. Proc. of the 2012
IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2012. 380–394. [doi: 10.1109/SP.2012.31]

[6] Schwartz EJ, Avgerinos T, Brumley D. Q: Exploit hardening made easy. Proc. of the 20th USENIX
Security Symp. San Francisco: USENIX Association, 2011.

[7] Huang SK, Huang MH, Huang PY, Lai CW, Lu HL, Leong WM. CRAX: Software crash analysis for
automatic exploit generation by modeling attacks as symbolic continuations. Proc. of the 2012 IEEE
6th International Conference on Software Security and Reliability. Gaithersburg: IEEE, 2012. 78-87.
[doi: 10.1109/SERE.2012.20]

[8] Caselden D, Bazhanyuk A, Payer M, Szekeres L, McCamant S, Song D. Transformation-aware exploit
generation using a HI-CFG. University Berkeley, Department of Electrical Engineering and Computer
Science, 2013. [doi: 10.21236/ADA587051]

[9] Heelan S, Melham T, Kroening D. Automatic heap layout manipulation for exploitation. Proc. of the
27th USENIX Security Symp. Baltimore: USENIX Association, 2018. 763–779.

[10] Heelan S, Melham T, Kroening D. Gollum: Modular and greybox exploit generation for heap overflows
in interpreters. Proc. of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. London: ACM, 2019. 1689–1706. [doi: 10.1145/3319535.3354224]

[11] Wang Y, Zhang C, Zhao Z, Zhang B, Gong X, Zou W. MAZE: Towards automated heap feng shui.
Proc. of the 30th USENIX Security Symp. Virtual: USENIX Association, 2021. 1647–1664.

[12] Wang Y, Zhang C, Xiang X, Zhao Z, Li W, Gong X, Liu B, Chen K, Zou W. Revery: From proof-of-
concept to exploitable. Proc. of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. Toronto: ACM, 2018. 1914–1927. [doi: 10.1145/3243734.3243847]

[13] Chen W, Zou X, Li G, Qian Z. KOOBE: Towards facilitating exploit generation of kernel out-of-bounds
write vulnerabilities. Proc. of the 29th USENIX Security Symp. Virtual: USENIX Association, 2020.
1093–1110.

[14] Wu W, Chen Y, Xu J, Xing X, Gong X, Zou W. FUZE: Towards facilitating exploit generation for
kernel use-after-free vulnerabilities. Proc. of the 27th USENIX Security Symp. Baltimore: USENIX
Association, 2018. 781–797.

[15] Ning G, Zhang T, Wen W, Mei R. Study of non-heapspray IE’s vulnerability exploitation technique.
Netinfo Security, 2014(6): 39–42 (in Chinese with English abstract). [doi: 10.3969/j.issn.1671-1122.
2014.06.007]

[16] van de Ven A. New Security Enhancements in Red Hat Enterprise linux v. 3, update 3. Raleigh: Red
Hat, 2004.

[17] Cowan C, Pu C, Maier D, Walpole J, Bakke P. StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. Proc. of the 7th USENIX Security Symp. San Antonio: USENIX
Association, 1998. 63–78.

[18] PaX T. PaX address space layout randomization (ASLR). 2003. http://pax.grsecurity.net/docs/aslr.txt

[19] Abadi M, Budiu M, Erlingsson U, Ligatti J. Control-flow integrity principles, implementations, and

http://www.jos.org.cn/1000-9825/5320.htm
10.13328/j.cnki.jos.005320
10.7544/issn1000-1239.2019.20190655
10.1145/2560217.2560219
10.1109/SP.2012.31
10.1109/SERE.2012.20
10.21236/ADA587051
10.1145/3319535.3354224
10.1145/3243734.3243847
10.3969/j.issn.1671-1122.2014.06.007
10.3969/j.issn.1671-1122.2014.06.007
http://pax.grsecurity.net/docs/aslr.txt

Yang ST, et al. Exploit-oriented automated information leakage 349

applications. ACM Trans. on Information and System Security, 2009, 13(1): 1–40. [doi: 10.1145/
1609956.1609960]

[20] Burow N, Carr SA, Nash J, Larsen P, Franz M, Brunthaler S, Payer M. Control-flow integrity: Precision,
security, and performance. ACM Computing Serveys, 2017, 50(1): 1–33. [doi: 10.1145/3054924]

[21] Tice C, Roeder T, Collingbourne P, Checkoway S, Erlingsson U, Lozano L, Pike G. Enforcing forward-
edge control-flow integrity in GCC & LLVM. Proc. of the 23rd USENIX Security Symp. San Diego:
USENIX Association, 2014. 941–955.

[22] Brumley D, Poosankam P, Song D, Zheng J. Automatic patch-based exploit generation is possible:
Techniques and implications. Proc. of the 2008 IEEE Symp. on Security and Privacy. Oakland: IEEE,
2008. 143–157. [doi: 10.1109/SP.2008.17]

[23] Wang M, Su P, Li Q, Ying L, Yang Y, Feng D. Automatic polymorphic exploit generation for software
vulnerabilities. In: Zia T, ed. Security and Privacy in Communication Networks. Cham: Springer
International Publishing, 2013. 216–233.

[24] Bao T, Wang R, Shoshitaishvili Y, Brumley D. Your exploit is mine: Automatic shellcode transplant
for remote exploits. Proc. of the 2017 IEEE Symp. on Security and Privacy. San Jose: IEEE, 2017.
824–839. [doi: 10.1109/SP.2017.67]

[25] Wu W, Chen Y, Xing X, Zou W. KEPLER: Facilitating control-flow hijacking primitive evaluation
for Linux kernel vulnerabilities. Proc. of the 28th USENIX Security Symp. Santa Clara: USENIX
Association, 2019. 1187–1204.

[26] [26] Fang H, Wu L, Wu Z. Automatic return-to-dl-resolve exploit generation method based on symbolic
execution. Computer Science, 2019, 46(2): 127–132 (in Chinese with English abstract). [doi: 10.
11896/j.issn.1002-137X.2019.02.020]

[27] Dolan-Gavitt B, Hodosh J, Hulin P, Leek T, Whelan R. Repeatable reverse engineering with PANDA.
Proc. of the 5th Program Protection and Reverse Engineering Workshop. Los Angeles: ACM, 2015.
[doi: 10.1145/2843859.2843867]

[28] Chen K, Zhang C, Yin T, Chen X, Zhao L. VScape: Assessing and escaping virtual call protections.
Proc. of the 30th USENIX Security Symp. Virtual: USENIX Association, 2021. 1719-1736.

[29] Brumley D, Jager I, Avgerinos T, Schwartz EJ. BAP: A binary analysis platform. In: Gopalakrishnan
G, eds. Computer Aided Verification. Berlin: Springer, 2011. 463–469. [doi: 10.1007/978-3-642-
22110-1_37]

[30] Hu H, Chua ZL, Adrian S, Saxena P, Liang Z. Automatic generation of data-oriented exploits. Proc.
of the 24th USENIX Security Symp. Washington: USENIX Association, 2015. 177–192.

[31] Hu H, Shinde S, Adrian S, Chua ZL, Saxena P, Liang Z. Data-oriented programming: On the
expressiveness of non-control data attacks. Proc. of the 2016 IEEE Symp. on Security and Privacy.
San Jose: IEEE, 2016. 969–986. [doi: 10.1109/SP.2016.62]

[32] Ispoglou KK, AlBassam B, Jaeger T, Payer M. Block oriented programming: Automating data-only
attacks. Proc. of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
Toronto: ACM, 2018. 1868–1882.

[33] Clause J, Li W, Orso A. Dytan: A generic dynamic taint analysis framework. Proc. of the 2007
International Symp. on Software Testing and Analysis. London: ACM, 2007. 196–206. [doi: 10.1145/
1273463.1273490]

[34] Kemerlis VP, Portokalidis G, Jee K, Keromytis AD. libdft: Practical dynamic data flow tracking
for commodity systems. Proc. of the 8th ACM SIGPLAN/SIGOPS Conf. on Virtual Execution
Environments. New York: ACM, 2012. 121–132.

[35] Schwartz EJ, Avgerinos T, Brumley D. All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (bug might have been afraid to ask). In: Proc. of the 2010 IEEE Symp.
on Security and Privacy. Oakland: IEEE, 2010. 317–331. [doi: 10.1109/SP.2010.26]

[36] Chua ZL, Wang Y, Baluta T, Saxena P, Liang Z, Su P. One engine to serve’em all: Inferring taint rules
without architectural semantics. In: Proc. of the Network and Distributed System Security Symp. San
Diego: Internet Society, 2019. [doi: 10.14722/ndss.2019.23339]

[37] Song D, Brumley D, Yin H, Caballero J, Jager I, Kang MG, Liang Z, Newsome J, Poosankam P, Saxena

10.1145/1609956.1609960
10.1145/1609956.1609960
10.1145/3054924
10.1109/SP.2008.17
10.1109/SP.2017.67
10.11896/j.issn.1002-137X.2019.02.020
10.11896/j.issn.1002-137X.2019.02.020
10.1145/2843859.2843867
10.1007/978-3-642-22110-1_37
10.1007/978-3-642-22110-1_37
10.1109/SP.2016.62
10.1145/1273463.1273490
10.1145/1273463.1273490
10.1109/SP.2010.26
10.14722/ndss.2019.23339

350 International Journal of Software and Informatics, 2022, 12(3)

P. BitBlaze: A new approach to computer security via binary analysis. In: Sekar R, ed. Information
Systems Security. Berlin, Springer, 2008. 1–25. [doi: 10.1007/978-3-540-89862-7_1]

[38] Saudel F, Salwan J. Triton: Concolic execution framework. In: Proc. of the Rennes: Symp. sur
lasécurité des Technologies de l’ Information et des Communications, 2015.

[39] She D, Chen Y, Shah A, Ray B, Jana S. Neutaint: Efficient dynamic taint analysis with neural networks.
In: Proc. of the 2020 IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2020. 1527–1543.
[doi: 10.1109/SP40000.2020.00022]

Songtao Yang, doctoral can-
didate. His research interests
include system software security
and binary attack and defense.

Zhun Wang, engineer. His re-
search interests include software
security and binary attack and
defense.

Kaixiang Chen, doctoral can-
didate. His research interests in-
clude security attack and defense
technology.

Chao Zhang, Ph.D., long-term
associate professor, doctoral su-
pervisor, senior member of CCF.
His research interest is software
and system security.

10.1007/978-3-540-89862-7_1
10.1109/SP40000.2020.00022

	1 Introduction
	2 Case Study
	2.1 Exploit case for heap vulnerabilities
	2.2 Attack model
	2.3 Research challenges
	2.4 Automatic leakage solution

	3 System Design
	3.1 Location of sensitive information
	3.1.1 Important data
	3.1.2 Memory profiling

	3.2 Construction of information leakage
	3.2.1 Expansion of memory manipulation capability
	3.2.2 Taint analysis for controllable library function calls
	3.2.3 Construction of leakage semantics

	3.3 Exploit generation

	4 Solution Implementation
	4.1 Record and replay
	4.2 PANDA plug-in
	4.3 Server/client architecture

	5 Assessment and Verification
	5.1 Location of sensitive information
	5.2 Heap attack template
	5.3 Leakage and exploit generation

	6 Related Work
	6.1 AEG
	6.2 Taint analysis

	7 Conclusion
	Songtao Yang
	Zhun Wang
	Kaixiang Chen
	Chao Zhang

