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Abstract Most existing vision-language pre-training methods focus on understanding tasks
and use BERT-like loss functions (masked language modeling and image-text matching) during
pre-training. Despite their good performance in the understanding of downstream tasks, such
as visual question answering, image-text retrieval, and visual entailment, these methods cannot
generate information. To tackle this problem, this study proposes Unified multimodal pre-
training for Vision-Language understanding and generation (UniVL). The proposed UniVL is
capable of handling both understanding tasks and generation tasks. It expands existing pre-
training paradigms and uses random masks and causal masks simultaneously, where causal
masks are triangular masks that mask future tokens, and such pre-trained models can have
autoregressive generation abilities. Moreover, several vision-language understanding tasks are
turned into text generation tasks according to specifications, and the prompt-based method is
employed for fine-tuning of different downstream tasks. The experiments show that there is a
trade-off between understanding tasks and generation tasks when the same model is used, and a
feasible way to improve both tasks is to use more data. The proposed UniVL framework attains
comparable performance to recent vision-language pre-training methods in both understanding
tasks and generation tasks. Moreover, the prompt-based generation method is more effective
and even outperforms discriminative methods in few-shot scenarios.
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Inspired by the large-scale pre-trained models in natural language processing, people have
proposed various vision-language pre-training methods to learn multimodal representations from
large-scale image-text pairs. Once the pre-trained models are obtained, they can be fine-tuned to

This is the English version of the Chinese article“面向视觉语言理解与生成的多模态预训练方法. 软件学报,
2023, 34(5): 2024–2034. DOI: 10.13328/j.cnki.jos.006770”
Funding items: Major Program of Science and Technology Innovation—“New-Generation Artificial Intelligence”
(2021ZD0112805); National Natural Science Foundation of China (62102092)
Received 2022-04-17; Revised 2022-05-29; Accepted 2022-08-24; IJSI published online 2023-06-29

http://www.ijsi.org/1673-7288/315.htm


144 International Journal of Software and Informatics, 2023, 13(2)

execute the downstream tasks. This simple pre-training and fine-tuning paradigm has recently
shown great potential in many challenging visual and linguistic tasks[1–5], such as visual question
answering, image-text retrieval, image captioning, and visual implications.

The downstream vision-language tasks are divided into two categories: understanding
tasks and generation tasks. Understanding tasks include visual question answering, visual
implications, image classification, and image-text retrieval. Most existing vision-language pre-
training methods standardize such tasks as discriminative tasks, which require models to select
answers from pre-defined answer lists. For example, existing methods describe visual question
answering as multiple-answer classification tasks and input the [CLS] tag into additional linear
classifiers to obtain classification results[3, 4, 6–8]. These tasks usually require the model to roughly
understand the semantic information of images and text. For instance, they need to judge whether
the text describes the content of images and what the relationship (implication, neutrality, or
contradiction) between image and text is. In contrast, generation tasks usually require the
model to generate a complete sentence describing a specific image. A typical example is image
captioning, which requires the model to output a sentence describing the content of the image.
The existing vision-language methods use loss functions similar to BERT[9], such as Masked
Language Modeling (MLM) and Image-Text Matching (ITM) for the learning of multimodal
representations. They perform well in understanding tasks but cannot be directly applied to
generation tasks.

Therefore, Unified multimodal pre-training for Vision-Language understanding and
generation (UniVL) is proposed in this study. This pre-trained model can simultaneously
process understanding tasks and generation tasks by sharing parameters. Specifically, an image
encoder and a text encoder are used to encode images and texts, respectively. After that, a
multimodal encoder is employed to fuse image and text features with cross-attention. Like the
existing vision-language pre-training methods, this method uses two common training objectives,
namely, MLM and ITM. However, unlike the previous methods, we use not only bidirectional
visual masks but also causal masks in pre-training. Causal masks allow the model to carry out
autoregressive decoding, which is essential for the generation of complete sentences. Unified
pre-training for understanding and generation results in a unified model with shared parameters,
thus reducing the need to train different models.

Typical vision-language pre-training methods always train multiple task-specific linear
layers for different downstream tasks. This strategy is to enable a pre-trained model to adapt to
different downstream tasks, and it needs to design task-specific objective functions. The prompt-
based method has recently attracted people’s attention, and it has been proven to be simple and
effective. Downstream tasks can be re-normalized to the task pattern learned by the pre-trained
model during pre-training. For instance, during theme classification, when the input is the
sentence “He is playing basketball”, the output includes multiple labels, such as health, politics,
and sports. There is no need to add another linear classifier to fine-tune the pre-trained model;
instead, a query statement can be constructed, “He is playing basketball. The theme is about

”, and the pre-trained model is required to fill in the blank. As the blank-filling task is one of
the pre-training objectives (MLM), the pre-trained model is familiar with the task. Compared
with the widely used pre-training and fine-tuning paradigm, the prompt-based method converts
the input and output formats of different downstream tasks into those processed by the model
during pre-training, which can better unleash the potential of the pre-trained model. In this
study, some of the previous classification tasks are standardized into text generation tasks, and
language templates are used to fine-tune the pre-trained model.

Section 1 of this paper introduces the relevant methods and research status of large-scale
pre-trained models. Section 2 presents the UniVL model built in this paper. Section 3 verifies
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the effectiveness of the proposed model through comparative experiments. Finally, a summary
is given.

1 Work Related to Large-scale Pre-trained Model
With the successful pre-training of large-scale language models, vision-language pre-

training has recently attracted attention. Relevant research shows that vision-language pre-
trained models perform well in multiple downstream tasks. Most of the existing methods are
based on the Transformer architecture and use training objectives similar to BERT, namely
multimodal MLM[2, 5, 7] and ITM[1, 7]. The former is to predict mask words or the visual features
of masks according to input images and textual contexts, while the latter is to predict whether
the input image matches the input text. They use a bidirectional visual mask in the self-attention
module, which leads to differences between the form of the pre-training task and the form of the
downstream task that requires auto-regressive generation. Inspired by UniLM[10, 11], we combine
the causal mask and the bidirectional visual mask before training so that our pre-trained model
can have the ability to understand and generate at the same time.

As the number of parameters in the pre-trained model increases, fine-tuning all parameters
of the pre-trained model for a downstream task brings about great costs. The idea of the
prompt-based method is to convert the data input and output formats of the downstream task into
the formats that the model has learned during pre-training. For example, in natural language
processing, the emotion classification task can be expressed as a natural language sentence
with a mask mark, and the model needs to fill in the word “positive” or “negative.” Due to
the similarity of data input, the pre-trained model can be directly applied to downstream tasks
without parameter adjustment.

Early prompt-based methods usually employ hand-made templates. For example, Petroni
et al.[12] manually designed a cloze template for knowledge exploration tasks; GPT-3[13] designed
prefixed templates for question-answering, translation, and exploration tasks. Although these
manually designed templates are highly interpretable and generally effective, they need to be
run in numerous trials. Different tasks require different fields of experience. In this paper,
hand-made natural language templates and parametric templates are used for experiments.

2 Model Structure
The pre-trained model proposed in this paper consists of the visual encoder, the text encoder,

and the multimodal encoder; their detailed introduction is given below.

2.1 Visual encoder
ViT[14] pre-trained on ImageNet-1k is taken as the visual encoder to extract image features.

First, the input image I ∈ RC×H×W is expanded to N = HW/P 2 image blocks, where the
resolution of the input image is H × W ; C is the number of channels; and the resolution of
each image block is P × P . Similar to the [CLS] tag used by BERT, ViT prepares a parametric
learnable tag [CLS] for the image sequence. The visual encoder is composed of an alternating
Multi-head Self-Attention (MSA) module and a Multi-Layer Perceptron (MLP) module, wherein
the MLP module contains two linear layers and an activation layer. The visual encoder also uses
layer normalization and residual connection in each layer.

z0 = [vCLS; v
1
pV ; v2pV ; . . . ; vNp V ] + Vpos

z′l = MSA(LN (zl−1)) + zl−1 l = 1, . . . , LV

zl = MLP(LN (z′l)) + z′l l = 1, . . . , LV
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where v1p, . . . , v
N
p are the expanded two-dimensional (2D) image blocks; [CLS] is the head tag

that can be learned, and zl is the hidden state of the lth layer.

2.2 Text encoder
BERT is used as the text encoder. Similar to the visual encoder, the text encoder contains

several layers of the MSA and MLP modules. The difference is that layer normalization is used
after such modules. The input text t ∈ RL×O uses the word embedding matrix T ∈ RO×H

and the position code Tpos ∈ R(L+1)×H to be embedded as t ∈ RL×H .

p0 = [tCLS; t
1T ; t2T ; . . . ; tNT ] + Tpos

p′l = LN (MSA(pl−1)) + pl−1 l = 1, . . . , LT

pl = LN (MLP(p′l)) + p′l l = 1, . . . , LT

where t1, . . . , tN are the input words and pl is the hidden state of the lth layer input sequence.

2.3 Multimodal encoder
The multimodal encoder is similar to the text encoder but requires an additional cross-

attention calculation to fuse image features and text features.

m0 = pLT

m′′
l = LN (MSA(ml−1)) +ml−1 l = 1, . . . , LM

m′
l = LN (MCA(m′′

l , zLV )) +m′′
l l = 1, . . . , LM

ml = LN (MLP(m′
l)) +m′

l l = 1, . . . , LM

where pLT is the output of the text encoder, zLV is the output of the visual encoder, and ml is
the hidden state of the lth layer sequence.

The attention mask used in the MSA module is bidirectional, and each tag can pay attention
to all other tags. The bidirectional visual mask performs well in the discriminative task but is not
suitable for the generation task. Generally, the generation task requires the model to generate tags
in an autoregressive way, that is, from left to right. To solve this problem during pre-training, this
study mixes two kinds of attention masks in different proportions in the self-attention module
of the text encoder and of the multimodal encoder.

2.4 Multimodal prompt template
The previous vision-language pre-training methods always use the [CLS] tag as the

multimodal image-text representations and add other linear layers to fine-tune the downstream
tasks. For example, in Uniter[4], the visual question answering is described as a multiple-answer
classification problem, which uses the [CLS] tag as the input of the linear layer and fine-tunes the
linear layer. In contrast, this study uses the template to describe the visual question answering as
a text generation problem. For instance, when answering “What is he doing?”, we can continue
to input the prompt “Answer:”, and thus the complete input accepted by the model is “What is
he doing? Answer:”. The pre-trained model is required to fill such gaps through generation.
In addition, as shown in Figure 1, the manually designed language template is replaced with
parametric learnable tags. This is because it is difficult to design an appropriate natural language
prompt template. It requires the expertise of domain experts and a significant amount of time
for adjustment as subtle changes in each word of natural language prompts can have a significant
impact on the performance of downstream tasks. The [UNUSED] tag of the marker is taken as
a learnable tag as it is parametric and can be updated through backpropagation.
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Figure 1 Model structure and multimodal prompt template proposed in this paper

2.5 Training objectives
Image-text contrastive loss has been proven to be effective for vision-language pre-training.

Hence, it is applied to learn a common low-dimensional space to embed images and text. The
matched image-text pairs are regarded as positive samples, and all other random image-text pairs
in the training batch are regarded as negative samples. The sum of the two losses is minimized:
one for image-to-text and the other for text-to-image.

Li2t = − 1

B

B∑
i

log
exp(xT

i yi/σ)∑B
j=1 exp(x

T
i yi/σ)

Lt2i = − 1

B

B∑
i

log
exp(yT

i xi/σ)∑B
j=1 exp(y

T
i xi/σ)

Litc = Li2t + Lt2i

where xi is the first-layer output of the visual encoder, yi is the first-layer output of the text
encoder, B is the size of the batch data, and σ is the temperature parameter of the scaled value.

Text tags are randomly masked with a probability of 15% and are replaced with a special
[MASK] tag. The model needs to use images and contexts to predict the masked words.

Lmlm =
∑

H(pmask, ymask)

where H is the cross entropy, pmask is the prediction probability of the model for mask tags,
ymask is the probability distribution of words, and Lmlm is the sum of the cross entropy of each
masked word.

The first tag output by the multimodal encoder is taken as the fused representation of the
vision and language modes, and then Softmax is used to predict the matching probability pitm
of the two after the addition of a fully connected layer. The ITM loss function predicts whether
the image and text pairs match or not. The image or text in the matched samples is replaced with
the image or text randomly selected from other samples to create a negative sample.

Litm =
∑

H(pitm, yitm)
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where yitm is a two-dimensional thermal vector, representing the truth value label, where 1
represents the matched image-text pair, and 0 represents the mismatched image-text pair; Litm

is the sum of the cross entropy of all positive and negative samples.

3 Experimental analysis
3.1 Experimental data

The experiment used GCC3M and COCO as the pre-training data sets and followed
Karpathy’s segmentation method for COCO[15]. The total number of different images in the
final training set reached 2.84 millions.

3.2 Implementation details
A 12-layer ViT-B/16[14] was taken as the image encoder and was initialized using the

weights pre-trained on ImageNet-1k. The text encoder was initialized by the first six layers of
the BERT model, and the multimodal encoder was initialized by the last six layers of the BERT
model. 30 cycles of pre-training were performed with 2,048 batches of data on 32 NVIDIA
Tesla V100 32 GB GPUs. The learning rate of the AdamW optimizer used was 1E–4, and the
weight attenuation was 0.02.

3.3 Downstream tasks
Image-text retrieval requires the model to select an image that meets a given description

from a candidate image set or to select a description statement that meets the image content from
a candidate description set. Therefore, it includes two subtasks: image-to-text retrieval and text-
to-image retrieval. The study used the image-text contrastive loss and ITM loss to evaluate the
similarity between images and texts. During the reasoning process, the visual encoder and text
encoder were first employed to calculate the feature similarity of all image–text pairs. Then, the
top K pairs with the highest score were selected. After that, the multimodal encoder was used
to calculate the ITM scores and rank them. The proposed model was evaluated on Flickr30K[16]

and COCO[17].
Image captioning aims to generate sentences describing image contents. Since causal masks

are used in this study to pre-train the model, the proposed model can directly generate a sentence
for the image. In the sentence generation process, the tags [CLS] and [MASK] were first used as
input to encode the input of the image encoder. The special tag [CLS] was the beginning of the
sentence, and the proposed model predicted the word at [MASK]. Then, another [MASK] was
added to the generated tag sequence to predict the next word, and so on. When the model output
[SEP], the generation process terminated. Beam search was used in the experiment, with a beam
size of 5, and the experimental results on the COCO image caption data set were reported.

Visual question answering requires the model to answer a given question for a given
image. The existing methods usually describe visual question answering as a multiple-answer
classification problem. In this study, visual question answering was regarded as a text-generation
task. Two prompt templates were designed for visual question answering: natural language
prompt template and parametric prompt template for learnable contexts. The proposed method
was evaluated on VQAv2[18].

Fine-grained image classification focuses on identifying image classes that are difficult to
distinguish, such as the species of flowers or animals. In this study, the fine-grained image
classification task was used to evaluate the multimodal understanding ability of the model.
The fine-grained image classification task was standardized to text generation, and the natural
language prompt template and the parametric prompt template of learnable contexts were
designed. Compared with the discriminative method, the prompt-based method has a better
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few-shot learning ability. The proposed method was evaluated on Food101[19], Flowers102[20],
and DTD[21].

Visual implications[22] refer to a fine-grained visual reasoning task used to predict whether
the relationship between images and text is inclusive, neutral, or contradictory. Natural language
prompt templates and parametric prompt templates that could learn contexts were designed for
visual implications, and it was compared with discriminant methods.

3.4 Experimental results
The image-text retrieval task was employed to evaluate the vision-language understanding

ability of the pre-trained model. Table 1 reports the results of zero-shot and fine-tuned image-
text retrieval on Flickr30K. For zero-shot retrieval, UniVL uses fewer data to achieve results
similar to those of CLIP[23] and ALIGN[24]. For fine-tuned retrieval, the recall of UniVL is much
higher than that of UNITER[4] and similar to that of ALIGN[24], though it is pre-trained on a
larger data set (1.2B).

Table 1 Experimental results of multimodal retrieval

Method
Quantity of
pre-trained

images

Multimodal retrieval result (zero-shot/fine-tuned) on Flickr30K
Image-text retrieval Text-image retrieval

R@1 R@5 R@10 R@1 R@5 R@10
UNITER 4M 83.6/87.3 95.7/98.0 97.7/99.2 68.7/75.6 89.2/94.1 93.9/96.8

CLIP 400M 88/– 98.7/– 99.4/– 68.7/– 90.6/– 95.2/–
ALIGN 1.2B 88.6/95.3 98.7/99.8 99.7/100 75.7/84.9 93.8/97.4 96.8/98.6
UniVL 3M 86.8/94.3 98.7/99.4 99.7/99.8 73.4/82.8 92.1/96.7 96.0/98.4

The image captioning task was used to evaluate the generation ability of the pre-trained
model. Following Karpath’s segmentation method, this study evaluated the performance of
automatic image captioning on the COCO dataset. The algorithm re-split the training image
and the verification image into 113,287, 5,000, and 5,000 for training, verification, and testing,
respectively. Table 2 shows the results of four common indicators, i.e., BLEU4[25], CIDEr[26],
METEOR[27], and SPICE[28]. In addition, the proposed pre-trained model was compared with
other generative vision-language pre-training methods. The result indicates that the UniVL
model has comparable performance to the recent generative pre-training methods.

Table 2 Experimental results of image captioning
Method BLEU4 CIDEr METEOR SPICE

Unified VLP 36.5 117.7 28.4 21.3
XGPT 37.2 120.1 28.6 21.8
VL-T5 34.6 116.1 28.8 21.9

VL-BART 34.2 114.1 28.4 21.3
UniVL 35.6 116.8 28.6 21.4

Visual question answering was standardized as a text-generation task rather than a multi-
answer classification task, and a natural language prompt template and a parametric prompt
template that could learn contexts were designed for it. The natural language prompt template
is “[QUESTION] Answer: [ANSWER]”, where [QUESTION] represents the question text, and
[ANSWER] represents the answer text. The word tag in [ANSWER] was masked, and the
MLM loss was optimized in the fine-tuning process. In the reasoning process, the input text
was “[QUESTION] Answer: [MASK]”. The model predicted the word and added [MASK]
repeatedly to the generated sequence until the tag [SEP] was obtained. The parametric prompt
template of the learnable context replaced the natural language prompt with a learnable tag,
while for the visual question answering, it was “[QUESTION] [CTX] [Answer]”. [CTX] is
the sequence of learnable tags, and this study uses the tag [UNUSED] of the BERT marker as
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[CTX] with a length of 16. Compared with the natural language prompt, [CTX] is a parametric
tag prompt that can be updated with other parameters.

The previous discriminative method standardizes the visual question answering as a multi-
answer classification problem and requires the model to select answers from the pre-defined
answer list. For a fine-grained comparison of the discriminative method and the generative
method, this paper divided Karpathy’s test data set into two categories: questions with answers
in the pre-defined answer list (intra-domain samples) and questions without answers in the list
(extra-domain samples). The size of the pre-defined answer list was 3,129; the number of intra-
domain and extra-domain samples was 25,750 and 530, respectively. Typical discriminative
methods cannot answer extra-domain questions because they have few answers, and the answers
are not in the pre-defined answer list. To compare the generalization ability of discriminative
methods and generative methods, we appended the answers of extra-domain samples to the pre-
defined answer list and used the expanded answer list to fine-tune the discriminative method. For
discriminative methods, we input the first hidden state output by the multimodal encoder into an
additional linear classifier to predict the answer. As shown in Table 3 (LC indicates fine-tuning
with linear layers, NLP implicates the use of a natural language template, and LCP denotes
the learnable parametric template), compared with the discriminative method, the generative
method based on prompts performs better in both categories, and in the comparison about
the extra-domain samples, the improvement is more significant. Moreover, we used different
amounts of Karpathy training data to evaluate the few-shot learning ability of the prompt-based
method. As shown in Table 4, the performance of the natural language prompt template and
the parametric prompt template of the learnable context is better than that of the discriminative
method.

Table 3 Experimental results of visual question answering on COCO data set
Method Intra-domain Extra-domain Mean

LC 70.8 3.7 69.4
NLP 68.4 13.9 67.3
LCP 72.1 15.1 71.0

Table 4 Experimental results of visual question answering under different numbers of training samples

Method Number of training samples (intra-domain/extra-domain)
4k 22k 44k 88k

LC 0.5/0 5.6/0 10.9/0.5 15.4/0.9
NLP 0.9/0.1 11.9/0.9 14.8/1.1 18.3/1.6
LCP 0.9/0 12.4/0.7 16.7/1.5 20.1/2.4

For a fair comparison with the latest vision-language pre-training method, we referred to the
previous method UNITER[4] and used the training set and verification set of VQAv2 to fine-tune
the pre-trained model. As shown in Table 5, UniVL has achieved the performance equivalent to
the state-of-the-art method.

Table 5 Experimental results of visual question answering and visual implication test sets

Method Visual question answering Visual implications
test-dev test-std val test

VisualBERT 70.8 71 – –
12-in-1 73.15 – – 76.95

UNITER 72.7 72.91 78.59 78.28
VilT 70.94 – – –

VILLA 73.59 73.67 79.47 79.03
UniVL 72.31 72.53 79.70 80.00
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Similar to visual question answering, we standardized image classification as a text-
generation task and designed a natural language prompt template and a parametric prompt
template of learnable contexts for image classification. The natural language prompt template
was “a photo of [CATEGORY]”, and the corresponding learnable context prompt was “[CTX]
[CATEGORY]”. [CATEGORY] is the class name of the image, which was masked during
the fine-tuning process. As shown in Table 6, for this downstream task, the parametric prompt
template of learnable contexts is an effective method because it is a form closer to the pre-training
task.

Table 6 Experimental results of image classification using discriminative method and generative method
Method Fine-tuning module Food101 Flowers102 DTD

LC VE 92.8 93.8 65.4
NLP VE 88.4 90.1 53.3

VE 92.8 93.4 62.1
TE 78.6 74.6 19.2

LCP ME 79.4 76.2 20.6
VETE 92.8 93.5 63.3
VEME 93.3 93.7 63.5

Figure 2 Few-shot learning results of different methods

Figure 2 shows that the parametric prompt template of learnable contexts has a better
few-shot learning ability. Since the prompt template is a more familiar input data form of
the pre-trained model, the prompt template of learnable contexts can better use the knowledge
learned from the pre-trained model. Unlike visual question answering, the image classification
task has simple text input, and the number of training samples is small. Therefore, it is unwise
to update all parameters of the pre-trained model. As shown in Table 6, the visual encoder is
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the key to the fine-grained image classification task in that the text is very simple and contains
almost no semantic information except the class name.

Not all generative methods perform better than discriminative methods. Discriminative
methods are more suitable for downstream tasks with fewer classes, and visual implications are
one of them. Upon the design of the natural language prompt template and the parametric prompt
template of learnable contexts, visual implications were standardized into a text generation task.
The natural language prompt was “[SENTENCE] Relationship: [LABEL]”, and the parametric
prompt template of learnable contexts was “[SENTENCE] [CTX] [LABEL]”. [LABEL] refers
to the relationship between image and [SENTENCE], which could be implicated, neutral, and
contradictory, which was masked in the fine-tuning process. Unlike predicting a word from the
vocabulary according to the score of each word, we also sorted the score of each possible answer
and returned the answer with the highest score in the reasoning process. This is a discriminative
method, which is more suitable for the pre-trained model compared with the use of additional
linear classifiers because the input is an image with text, with the goal of MLM. The results are
shown in Table 7, where 1 in 3 means that we use three words to predict [MASK]: implication,
neutrality, and contradiction. It should be noted that this should be realized in visual implications
since each answer of visual implications is a word, and there is no common prefix. Compared
with the generative method, the discriminative method is more suitable for visual implications
because the set of candidate answers is too small.

Table 7 Experiment results of visual implications
Method val test

LC 78.4 78.1
NLP 65.4 65.7

NLP (1 in 3) 75.3 75.9
LCP 77.6 78.0

LCP (1 in 3) 79.7 80.0

3.5 Ablation experiment
We first evaluated the effectiveness of the causal mask matrix in pre-training. Table 8 shows

the multimodal generation and understanding abilities of the pre-trained model. During pre-
training, we used different mixing ratios of the bidirectional attention mask matrix and the
causal mask matrix, as well as different numbers of image-text pairs. We employed the image
captioning task to evaluate the generation ability of the model and used image classification,
visual implications, and image-text retrieval to evaluate the understanding ability of the model.
For image captioning, we appended the special tag [MASK] to the sequence and predicted the
word iteratively until the model output the special tag [SEP]. For understanding tasks, we input

Table 8 Experimental results of different data volumes and different causal mask matrix proportions

Quantity of
image-text

pairs

Proportion
of causal

mask matrixes

Generation task Understanding task

Image captioning Visual
implications

Image-text
retrieval

Text-image
retrieval

Image
classification

B1 B4 R C Acc Acc Acc Acc
0.0 15.7 3.5 10.1 11.7 50.9 56.4 43.3 64.3

0.75M 0.33 50.7 20.2 35.8 68.5 49.6 52.1 41.0 59.7
0.66 58.7 23.4 37.5 78.4 47.5 51.8 39.8 66.9
1.0 66.9 24.8 38.7 84.9 33.3 41.9 27.7 47.1
0.0 24.9 5.3 16.8 18.2 73.5 82.6 70.4 85.4

1.5M 0.33 59.8 22.9 38.0 73.7 72.4 79.4 67.9 79.9
0.66 65.1 24.8 38.9 82.4 72.2 80.8 69.4 85.1
1.0 69.4 26.0 39.4 89.7 61.9 70.2 61.3 61.7

3.4M 0.5 96.1 35.6 67.0 116.8 78.1 94.3 82.8 92.8
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the first hidden state output by the multimodal encoder to an additional linear classifier to predict
the answer. Understanding tasks require the model to judge the relationship between the image
and the sentence, which is a closed task. The model needs to select answers from the pre-defined
set. It is more difficult for generation tasks because the model needs to generate open answers.

As shown in Table 8, as the proportion of the causal mask matrix in pre-training rises,
the model performs better in generation tasks. However, with the increase in causal masks and
the decrease in bidirectional attention masks, the model performs worse in understanding tasks.
It is found that in general, causal masks are beneficial for generation tasks while bidirectional
attention masks are conducive to understanding tasks. The increase in training data has greater
benefits for both understanding and generation tasks.

We used the tag [UNUSED] of the BERT marker as a component of the parametric prompt
template of learnable contexts. For visual question answering and visual implications, the input
text contains a sentence, a prompt template, and a tag [MASK], and the prompt template can be
at the beginning or in the middle of the input text. It is worth noting that the prompt should not
appear at the end of the input text due to the causal masks used, and [MASK] cannot process the
tag on the right. For image classification, the input text only contains [CTX] and [MASK], and
the prompt template should be on the left side of [MASK]. As shown in Table 9, it can be seen
that only one [CTX] cannot effectively prompt the model, and as the prompt length grows, the
accuracy of different downstream tasks can be improved. However, when the prompt template is
too long, the efficiency is low. Although the length of 32 is doubled compared with the length of
16, the accuracy of downstream tasks remains almost unchanged. For visual question answering
and visual implications, the prompt template may as well be placed in the middle rather than
at the beginning because the prompt template in the middle is closer to [MASK] and is a more
effective signal for the subsequent text generation.

Table 9 Experimental results for different prompt template length and position

Task Position Length of template
1 4 8 16 32

VQA begin 66.4 69.2 70.4 70.8 71.0
VQA mid 67.9 69.5 70.4 71.0 71.1
VE begin 77.3 78.2 78.8 79.4 79.9
VE mid 77.5 78.5 78.6 80.1 80.1

IC (Food101) begin 90.6 91.4 91.9 92.1 92.5
IC (Flowers102) begin 93.0 93.6 94.2 94.4 94.0

4 Summary
This paper proposed UniVL, which can handle vision-language understanding and

generation tasks. The experiments showed that the proposed method has achieved equivalent
performance to the current vision-language method for understanding and generation tasks.
Moreover, the study put forward a prompt-based method, which is simple and effective and can
fine-tune different downstream tasks.
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