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Abstract  With the development of big data application, the demand of large-scale 
structured/unstructured data fusion management and analysis is becoming increasingly prominent. 
However, the differences in management, process, retrieval of structured/unstructured data bring 
challenges for fusion management and analysis. This study proposes an extended property graph 
model for heterogeneous data fusion management and semantic computing, and defines related 
property operators and query syntax. Based on the intelligent property graph model, this study 
implements PandaDB, an intelligent fusion management system for heterogeneous data. This study 
depicts the architecture, storage mechanism, query mechanism, property co-storage, AI algorithm 
scheduling, and distributed architecture of PandaDB. Test experiments and cases show that the 
co-storage mechanism and distributed architecture of PandaDB have good performance 
acceleration effects, and can be applied in some scenarios of fusion data intelligent management 
such as entity disambiguation of academic knowledge graph. 
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Nowadays, the number and variety of data are increasing rapidly with the arrival of the era of 
big data. Education data, which includes media coverage of educational events and related policies 
enacted by government at all levels, has aroused wide attention of decision makers and researchers. 
In the field of education, a disruptive change in information technology is quietly happening. 
Meanwhile, the public opinions of internet users on educational policy and educational events are 
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reflected in the network via a variety of forms, such as micro-blog, forums, news reports, etc. It is 
very meaningful to integrate, process and analyze the multi-source educational data utilizing big 
data and visualization techniques. It is difficult for users to analyze so various and massive data 
effectively. An effective method is to use the knowledge graph technique that is widely used at 
present. Knowledge graph[1], whose essence is a semantic network to reveal the relationship 
between knowledge, is a new way to represent knowledge. It can express information effectively 
and infer new knowledge based on what we have accordingly. Knowledge graphs based on web 
information such as DBpedia[2], YAGO[3], ReVerb[4], are well studied, most of which are 
constructed by entities and their relationships that are extracted from web, such as Wikipedia, 
Baidubaike, etc. Besides, another type of knowledge graph focuses on specific domains, such an 
academic citation relationship and life sciences. They can clearly demonstrate knowledge and 
directly solve problems in this domain. It is an important research topic how to clearly visualize 
entities and relationships between them. A commonly used way of displaying knowledge graph is 
to describe the entity as a node and the relationship between two entities as a line, which can 
display characteristics of knowledge graph structure. However, the layout of the relationship 
between entities will produce clutter using traditional graph layout directly to show knowledge 
graph. In the era of big data, with the promotion and use of various applications, data generation is 
getting faster, resulting in a larger data volume. On the one hand, the rapid development of data 
collection technology has made the data more diverse in structure and richer in types. Data is 
characterized by diversity and heterogeneity, of which unstructured data occupies a large 
proportion. Studies have shown that unstructured data such as videos, audios, and images accounts 
for up to 90%[1]. On the other hand, data management and analysis technologies such as data 
central platform and domain knowledge graph have been widely used in recent years. Data central 
platform requires structured/unstructured data to be well governed in a unified environment to 
support multiple applications. The domain knowledge graph, especially multi-modal knowledge 
graph[2], requires to perform fusion and correlation analysis on the underlying 
structured/unstructured data and support interactive queries. These technologies all put forward the 
need for fusion management and analysis of structured/unstructured data. 

Structured data usually has a standardized and unified form. At present, for the management 
and analysis of structured data, there are mature data models, query languages and management 
systems. Compared with structured data, unstructured data has many differences in the 
management method, which brings many challenges to efficient fusion management and analysis 
of structured/unstructured data.  

(1) The separated storage management challenges the unified management of 
structured/unstructured data. Compared with structured data, unstructured data occupies more 
space. Considering reading and writing efficiency, unstructured data is often stored alone in the file 
system or object storage system, which makes it more difficult to maintain the consistency of 
structured/unstructured data. 

(2) Different ways of information acquisition pose challenges to the unified analysis of 
structured/unstructured data. Compared with structured data, unstructured data has complicated 
content. To achieve efficient retrieval and analysis, we should introduce pattern recognition, deep 
learning and other methods in advance to achieve information extraction and data mining, so as to 
obtain the inherent information contained in unstructured data. 

(3) Inconsistent retrieval challenges the consistent ad-hoc query of structured/unstructured 
data. Unlike structured data with relatively mature SQL and SQL-like query languages, the 
information retrieval of unstructured data often lacks a unified operation mode and query syntax, 
and the current personalized solutions are mostly available on a case-by-case basis. 
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To achieve the fusion management and analysis of structured/unstructured data, we need to 
design a unified representation and query method from the model level. Traditional relational 
models and property graph models cannot effectively reveal and represent the inherent information 
of unstructured data. Some scholars have proposed to represent data and schema as edge-labeled 
graphs to replace the lack of underlying type constraints of unstructured data[3]. However, this 
method only adds schema to unstructured data and cannot achieve free retrieval of information in 
unstructured data. Li et al. proposed to define unstructured data from four perspectives: primitive 
properties, semantic features, underlying features, and original data[4]. However, this method relies 
on pre-definition and is not suitable for interactive queries of unstructured data. In recent years, 
some scholars have proposed a method for extracting RDF triples on unstructured data streams [5]. 
Despite the extraction of triples, this method cannot support interactive query of the internal 
information of unstructured data and does not have the basic capabilities of data management 
systems. 

Another method of fusion management is to store unstructured data as a Bnary Large OBject 
(BLOB) in the database. When an application acquires the data, it returns a binary array or data 
stream, which is not satisfactory in terms of performance and functionality[6]. To solve this 
problem, researchers have proposed a series of unstructured data management systems[7–9]. 
Considering the large volume and complex structure of unstructured data, these systems design a 
suitable storage model to solve the storage and management problems of unstructured data to a 
certain extent. However, the query service is only based on the file object itself and metadata, and 
cannot provide the ability to query the internal information of unstructured data. 

Therefore, this paper proposes an extended property graph model and its query method. 
Based on the traditional property graph, the extended property graph model improves the ability to 
represent the inherent information of unstructured data and the interoperability between structured 
and unstructured data. On this basis, this paper then proposes PandaDB, an intelligent fusion 
management system for heterogeneous data based on the intelligent property graph model.  

In this paper, Section 1 shows an extended property graph model and related concepts, 
including cascading property graph, intelligent property graph, and sub-properties, and proposes 
property operators and query syntax. Section 2 presents the system design and specific 
implementation of PandaDB. Section 3 verifies the efficiency and feasibility of the system through 
experiments and cases. Section 4 introduces the work related to the research of this paper. Finally, 
the possible challenges in future research are prospected.  

1 Conceptual Design 

Traditional property graph models cannot effectively represent unstructured properties, so in 
this section, an extended property graph model is proposed to solve the problem of effective 
representation of unstructured properties. Then, the semantic operation and query syntax design 
for the extended property graph model is introduced to support the new query features brought by 
the introduction of unstructured properties and their internal information. 

1.1 Extended property graph model 
The traditional property graph model can be formally represented as G=(V, E, P). Here, G is 

the entire data; V is the entity collection in the data; E is the relationship collection between the 
entities, and P is the property collection of the entities in the data set. 

For unstructured properties such as images, voices and texts, the property graph model cannot 
effectively reveal their inherent information (for example, the property “photo” of a certain vertex 
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contains “license plate number” information). The internal information is usually offline and has a 
structural delay. 

• Offline: The information extraction of transforming unstructured properties into 
structured and semi-structured properties belongs to the preprocessing of data. 

• Structural delay: The inherent information of unstructured properties does not have a 
clearly defined structure, so a specific information extraction method is selected 
according to the later needs of the application. This structure is unclear and delayed in 
definition. 

To enhance the unified representation ability of structured properties and unstructured 
properties, this paper extends the property graph model, and proposes a cascading property graph 
model and an intelligent property graph model. 

Definition 1. A property graph with the following features is called a cascading property 
graph. 

1)  The cascading property graph Gc can be expressed as Gc=(V, E, PP, PN), where PP is a 
set of primitive properties and PN is a set of nested properties. 

2)  The values of the primitive properties are texts, numerical values, binary arrays and other 
basic data types. 

3)  The values of the nested properties are another property graph. 
Definition 2. A property graph with the following features is named as an intelligent property 

graph. 
1)  The intelligent property graph GI can be expressed as GI=(V,E,PP,O), where O is the set 

of semantic operations. 
2)  There is PI⊆PP, where PI is a collection of intelligent properties. 
3)  O=(Sϕ, Sξ), where Sϕ is the set of extension operations for intelligent properties, and Sξ is 

the set of semantic computation operations for intelligent properties. 
4)  For the intelligent property pi∈PI, there is an extension operation ϕ∈Sϕ to satisfy pn=ϕ(pi) 

and pn∈PN, namely that the intelligent property pi is expanded into a nested property pn. 
5)  For the intelligent properties p1∈PI and p2∈PI, there is a semantic calculation operation 

ξ∈Sξ, which can satisfy σ=ξ(p1, p2). The two intelligent properties p1 and p2 are semantically 
calculated, and the result σ is obtained. 

Definition 3. Nested properties have sub-properties. 
1) For the intelligent property graph GI=(V, E, PP, O), if Vi∈V exists and Vi has nested 

properties N
ip , according to Definition 1, there is N N

i ip G= , where N
iG  is the traditional 

property graph ( , , )N N P
i i iV E P . 

2) If | | 1N
iV = , then S

ijP , any element of P
iP , is called the sub-property of Vi. 

As an example, Figure 1 shows an intelligent property graph. “car1” is a vertex of “Car” type 
in the graph, which has an intelligent property “photo”. After the extension operation, “photo” has 
two sub-properties: photo→plateNumber and photo→model. 

1.2 Property operators 
Relying on Definition 2, this paper defines sub-property extraction operators and semantic 

calculation operators for intelligent properties. 
• Sub-property extraction operator: The sub-property extraction operator “→” extracts the 

sub-properties of intelligent properties. For example, executing “photo→plateNumber” 
for the property “photo” can get the license plate number in “photo”. 

• Semantic calculation operator: The predicate in the traditional property graph query 
language only supports the comparison between properties, such as =, >, <, and regular 
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matching. This paper adds ~:, ::, :> and other extension predicates for intelligent 
properties to express the similarity relationship, similarity, inclusion relationship and 
other logics between unstructured properties (Table 1). The similarity relationship means 
whether two objects are similar to each other(the similar degree reach a threshold). The 
similarity means the similar degree, it measures how much two objects are similar to 
each other. 

 
Figure1  Intelligent property graph model 

Table 1  Semantic computation operators 

Operation name Symbol Implication Example 

SemanticCompare :: Calculate the similarity between x and y x::y=0.7 

SemanticLike ~: Whether x and y are similar? x~:y=true 

SemanticUnlike !: Whether x and y are not similar? x!:y=false 

SemanticIn <: Whether x is included in y x<:y=true 

SemanticContain >: Whether x includes y y>:x=true 

In the property graph model, due to the invisibility of internal information, the calculation 
operation support between unstructured properties is limited. In combination with the description 
of unstructured properties in Definitions 1–3 and the features of property operators, the intelligent 
property graph model can online acquire the internal information of unstructured properties, where 
the structure is predefined. 

• Online: The acquisition of structured and semi-structured information (sub-properties) 
from unstructured properties is on-demand, without special preprocessing of 
unstructured properties. 

• Predefined structure: The inherent information of unstructured data depends on the 
definition of the schema level, rather than the implementation of information extraction 
tools. The underlying query mechanism supports direct operations on unstructured 
properties. 

1.3 Query syntax 
Aiming at the intelligent property graph model, this paper extends the standardized Cypher 

query language[10] to form the CypherPlus language. CypherPlus defines the property type ‘BLOB’ 
to represent the value of unstructured properties, and introduces new features such as BLOB 
literals, sub-property extraction operators, and semantic computation operators to support the 
representation and semantic operations of unstructured properties. 

(1) BlobLiteral 
BlobLiteral represents the literals of unstructured properties, with the format as <schema:// 

path>, where schema can be FILE, HTTP(S), FTP(S) and BASE64, as shown in Figure 2. 
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Figure 2  Syntax definition of BlobLiteral 

(2) SubPropertyExtractor 
SubPropertyExtractor refers to the extraction operation of the sub-properties. As shown in 

Figure 3, PropertyKeyName is the name of a sub-property. 

 
Figure 3  Syntax definition of SubPropertyExtractor 

(3) SemanticComparison 
Semantic computation operators include SemanticCompare, SemanticLike, SemanticUnlike, 

SemanticIn, SemanticContain and other operators. For example, SemanticLike indicates whether 
the values of two properties are similar, whose syntax definition is shown in Figure 4. 
AlgorithmName is the name of the algorithm for the specified calculation, Threshold is the 
threshold, AlgorithmName and Threshold are optional. In this case, the execution engine uses the 
default comparator and threshold. 

 
Figure 4  Syntax definition of SemanticLike 

For example, for the data model in Figure 1, cars that are similar to the car with the license 
plate number HHMF442 can be found. The query statement is as follows: 

• Q1: match (c1:CAR), (c2:CAR) where c1.photo~:c2.photo and c1→plateNumber= 
‘HHMF442’ return c2; 

• Q2: return ‘Zhihong SHEN’ ::jaro ‘SHEN Zhihong’. 
The query statement Q2 is used to calculate the similarity of two texts. 

2 System Implementation 

For the fusion management and associated query analysis of structured and unstructured data, 
this paper uses the intelligent property graph model to design and implement the  intelligent 
fusion management system PandaDB for heterogeneous data based on the Neo4j open source 
version. Section 2.1 introduces the overall architecture of PandaDB, and Sections 2.2–2.5 
respectively introduce the design ideas and implementation details of each module. 
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2.1 Overall architecture 
PandaDB organizes data with an intelligent property graph model. The underlying data is 

divided into three parts: graph structure data, structured property data, and unstructured property 
data. Among them, graph structure data refers to data describing the structure of the graph such as 
the nodes and edges of the graph. Structured property data refers to data such as numerical values, 
strings, and dates. Unstructured property data generally refers to data except structured data, such 
as videos, audios, photos and documents. PandaDB stores unstructured data in the form of BLOB 
objects and represents them as properties of entities (nodes). According to the application 
characteristics of the above three types of data, PandaDB has designed a distributed multi-storage 
plan. 

• Distributed graph data storage: On the basis of the traditional graph database, the graph 
structure data and property data are stored and the same data copy is stored on each 
node. 

• Structured property co-storage: With external storage such as ElasticSearch and Solr, we 
can achieve the storage and index construction of large-scale structured property data. 

• BLOB storage: In storage systems such as Hbase and Ceph, the unstructured property 
data can be stored in a distributed manner. 

The overall architecture of PandaDB is illustrated in Figure 5, and the important modules are 
described below. 

• Storage engine: This module maintains local graph structure data, schedules external 
property storage and provides services for the query engine on demand. 

• External storage: This module includes two parts: ElasticSearch-based structured 
property co-storage and HBase-based BLOB storage. 

• Query engine: This module parses and executes CypherPlus queries. 
• AIPM: This module is a service framework of AI models, which realizes the flexible 

deployment of AI models and efficient on-demand running through model and resource 
management. Besides, it effectively shields the dependence between AI models. 

The PandaDB cluster adopts a master-less architecture. In Figure 5, PandaNode is one of the 
nodes with a query engine and a storage engine. Property data and unstructured data are stored in 
external distributed storage tools. PandaNode only saves graph structure data and interacts with 
external storage through the property storage interface. 

2.2 Storage mechanism 
PandaDB introduces BLOB into the type system of Neo4j and modifies the storage structure 

of Neo4j at the same time. The storage structure is shown in Figure 6. In addition to Neo4j 
reserved area, the property fields of BLOB also record the metadata of BLOB, including the 
unique identifier blobid, length and MIME type. 

To invoke the external BLOB storage system, PandaDB designs BlobValueManager interface, 
and defines getById(⋅)/store(⋅)/discard(⋅) and other operation methods. As an implementation of 
BlobValueManager, HBaseBlobValueManager accesses BLOB data with the HBase cluster. In this 
plan, HBase is designed as a wide table containing N columns so as to support large-scale BLOB 
storage. Blobid/N is taken as the row key of HBase and blobid%N corresponds to a certain column 
of HBase. 

We encapsulate the content reading of BLOB as an InputStream to speed up the reading of 
BLOB. When users acquire BLOB content or perform semantic computation through the Bolt 
protocol, this streaming read mechanism improves the performance of the operation. 
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Figure 5  Architecture of PandaDB 

 
Figure 6  Design of BLOB storage structure 

Multiple storage complicates storage transaction guarantees. When the client writes data, it 
sends a writing operation request to the leader node of PandaDB, which then performs the specific 
writing operation. The specific operation process of the leader node is as follows. 

(1) The leader node starts the transaction, executes Cypher analysis and translates the 
transaction into specific execution operations. 

(2) A request is sent to BLOB storage engine to perform the writing operation of BLOB data. 
If the execution fails, roll back the writing execution. and the transaction is marked as failed. 

(3) If the BLOB data is written successfully, the writing operation of graph structure data and 
structured property data will be executed. If the execution fails, perform rolling back upwards and 
the transaction is marked as failed. 

(4) The modification of structured property data is synchronized to the co-storage. If the 
execution fails, carry out rolling back upwards and the transaction is marked as failed. 

(5) The transaction is submitted. 
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(6) The transaction is closed and then the return operation succeeds. 

2.3 Query mechanism 
PandaDB query engine mainly aims at the analysis of query statements, the generation and 

optimization of logical plans, and the optimization and execution of physical plans. On the basis of 
Neo4j, PandaDB query engine primarily improves the following parts. 

(1) Parsing stage: This stage enhances the parsing rules of Cypher language, supports BLOB 
literal constant (BlobLiteral), BLOB sub-property extraction operator (SubPropertyExtractor), and 
property semantic operator (SemanticComparison).  

(2) Grammar inspection stage: This stage performs formal inspections for BlobLiteral, 
SubPropertyExtractor and SemanticComparison, such as finding illegal BLOB paths, semantic 
operators and thresholds. 

(3) Plan optimization stage: This stage optimizes the operation of BlobLiteral, and uses 
predicate pushdown and other strategies for large-scale property filtering situations. 

(4) Plan execution stage: This stage fully schedules the property co-storage module, AIPM 
module and BLOB storage module to achieve efficient property priority filtering, BLOB 
acquisition and semantic computation. Figure 7 shows a typical query process that requires 
returning all nodes that are similar to the face in photo0 and have an age value greater than 30. 

 
Figure 7  CypherPlus query process 

Figure 8 shows the design of query mechanism of PandaDB from the three levels: Query 
syntax, query plan, and execution engine. The parsing engine converts the symbols in the query 
statement into semantic operators, and the execution engine selects the AI model to process the 
corresponding data according to the rule set and returns the result. 

To speed up the query of unstructured data, PandaDB implements a semantic index function. 
The information in unstructured data is considered to be a kind of semantic information, such as 
the face in the image, the license plate number of the car in the image and the text information 
contained in the recording. The extraction of information from unstructured data by AI models can 
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be regarded as the mapping of data from high-dimensional space to low-dimensional space, and 
the result of mapping in the low-dimensional space can be used as the semantic index of the data 
in this scenario. 

For example, in the comparison and query of faces, it is necessary to compare the similarity 
of faces in different images. Face recognition models are usually used to extract facial features and 
compare the similarity of the two features. In PandaDB, the facial features represented in vector 
form are regarded as the semantic index of the unstructured data in the current query scenario. 
When the system processes a query involving face comparison, it first checks whether there is a 
corresponding semantic index. If the semantic index corresponding to the query exists, a 
processing request to AIPM is not sent and the semantic index is compared directly to get the 
result. 

Semantic index can reduce the number of requests made by the query engine for AI services; 
therefore, repeated data transmissions are avoided and system efficiency is improved. 

 
Figure 8  Query mechanism of intelligent property graph 

2.4 Property data co-storage 
PandaDB introduces a property data co-storage mechanism to implement full-text indexing of 

structured property data and improve the efficiency of filtering and querying node properties. 
Currently, PandaDB supports ElasticSearch as a co-storage engine. 

Figure 9 shows the writing process of the PandaDB co-storage module. The key design of the 
co-storage mechanism is as follows. 

(1) The storage structure of property data in ElasticSearch: Each Neo4j graph database 
corresponds to an independent index in the co-storage engine (ElasticSearch). The property data 
and label data of each node are organized into a document in ElasticSearch. Specifically, the ID, 
property name and property value of the nodes in the Neo4j database respectively serve as those of 
the document, and the label data of the nodes is represented as a specially set property label. 
Numerical values, strings, coordinates, dates, time and other structured property data types are 
converted to corresponding data types in ElasticSearch. 

(2) Property writing and updating: To maintain the consistency of the local data in Neo4j 
database and the data in ElasticSearch, PandaDB extends the node update part in the transaction 
operation execution module (operations) in Neo4j and designs ExternalPropertyStore to store all 
operations performed in the Neo4j transaction. When Neo4j database performs operations such as 
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inserting nodes, adding tags, setting properties and deleting nodes, it also caches the corresponding 
operation data in the ExternalPropertyStore. When Neo4j database performs the transaction 
submission operation, the cached operation data is synchronized to ElasticSearch. 

(3) Property filtering: To achieve node property filtering based on co-storage, PandaDB 
modifies Cypher query execution plan of Neo4j and pushes down the node property filtering 
predicates to the co-storage management module. According to the predicate filtering conditions, 
the ElasticSearch search request is generated. Finally, the list of hit documents (nodes) is returned 
to the query engine for further filtering. To avoid the network transmission delay due to a large 
number of query results, PandaDB uses the results delivered by asynchronous batching. 

 
Figure 9  Writing process of property co-storage module in PandaDB 

2.5 AI algorithm integration and scheduling 
AI algorithm integration and scheduling mainly include local algorithm-driven management 

and service framework of AI algorithms. 
(1) Local algorithm-driven management 
PandaDB develops a drive management rule base to uniformly manage different extractors 

(SubPropertyExtractor) and semantic comparators (SemanticCompartor). Figure 10 shows part of 
the content in the rule base, where DogOrCatClassifier extracts the type of pets and is suitable for 
the property of the blob/image type. CosineStringSimilarity calculates the cosine similarity of two 
text strings and is only suitable for the properties of two string types. 

(2) Service framework of AI algorithms  
AI services enable the information extraction in PandaDB. AIPM provides AI services for 

PandaDB, shields the dependency conflicts between different AI models, reduces the difficulty of 
deployment and maintenance of artificial intelligence models and facilitates PandaDB to extend AI 
operators on demand. Figure 11 shows the interaction logic between AIPM and the system. The 
system sends a query request to AIPM in the form of an HTTP request. The request path has a 
corresponding relationship with the AI algorithm. Then AIPM receives the query request, invokes 
the corresponding AI algorithm to process the data and returns the result in the form of a JSON 
string. To enhance the extensibility of AI operators, AIPM designs a unified integrated interface 
and requires operators to support these interfaces. Figure 12 shows the management framework of 
AI models. 

3 System Effect Evaluation 

To verify the effectiveness of the model design and implementation of PandaDB, this paper 
tests property co-storage, distributed scheme and unstructured data information query. At the same 
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time, application cases verify the fusion management ability of PandaDB for structured and 
unstructured data. 

 
Figure 10  Matching rule sets of extractors and semantic comparators  

 
Figure 11  Interaction of PandaDB and AIPM 

3.1 Test of property co-storage performance 
This test verifies the performance based on the property co-storage scheme of ElasticSearch, 

and compares the query performance of Neo4j and PandaDB after the co-storage scheme is 
introduced. The test environment is shown in Table 2. 

The Cypher query statement used in the experiment is shown in Table 3. In the experiment, 
each query statement is tested multiple times and the average execution time is taken (Table 4 and 
Figure 13). To avoid the performance impact caused by the cold start, we warm up the system 
before the test. 
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The test results demonstrate that due to the use of ElasticSearch as the co-storage and index 
of node properties, PandaDB has a clear advantage in the test of the above query statements. 
Especially in multi-property filtering query and fuzzy matching query of nodes, the performance is 
improved by 2 to 6 times on average. 

 
Figure 12  Management framework of AI models 

Table 2  Information about test environment 

Test environment Description 

Server software 
and hardware 
environment 

Five physical servers of the same configuration: 
CPU: 32 Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz 

RAM: 128 GB 
HD: 6TB 7200 RPM SAS HDD 

Network: 1000Mbps interconnection 
OS: CentOS Linux release 7.7.1908 (Core) 

Testing software 
version 

Neo4j: 3.5.6 (Community Edition) 
PandaDB: v0.0.2(Developer Edition) 

ElasticSearch: 6.5.0 

Environment 
deployment 

ElasticSearch is deployed on all the five servers. 
PandaDB is deployed on four servers. 

Neo4j is deployed on one server. (Note: This Neo4j version only supports 
single-node deployment) 

Test data 

Graph data set: 100 million nodes (including 6 types of labels), 1.7 billion 
relationships (including 10 types)  

(Note: This data set is a real data set based on scientific research talents, 
institutions and papers, awards, patents, standards, and monographs.) 

3.2 Distributed performance test 
To verify the improvement of query response capabilities brought about by the distributed 

architecture, this paper deploys PandaDB and Neo4j stand-alone versions on a physical machine 
cluster (Table 2 for physical machine configuration) to evaluate the throughput rate of concurrent 
query requests. Because the Neo4j community edition only supports the stand-alone mode, 
PandaDB is deployed on three physical machines and Neo4j on one physical machine. 

In this paper, common queries in graph computing analysis are selected as test cases. For 
example, to calculate the out-degree and in-degree of nodes, we set the timeout threshold to 300 s. 
On the premise that 90% of the queries do not time out, the throughputs of Neo4j and PandaDB 
are respectively 15 and 40 queries per second, which means the throughput of PandaDB is close to 
3 times that of Neo4j. 
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Table 3  Query statement in the property co-storage test 

No. Query statement Description of test type 

Q-1 match (n:paper) where n.country=“Malta” return 
count(n); 

Node query (single- property precise 
filtering) 

Q-2 match (n:person) where n.org STARTS WITH 
“Shanghai” return count(n); Node query(single-property fuzzy atching) 

Q-3 match (n:paper) where n.country=“United States” and 
n.citation=10 return count(n); Node query (two-property precise filtering) 

Q-4 match (n:person) where n.org STARTS WITH 
“Shanghai” and n.citations=1 return count(n); 

Node query (two-property filtering 
combining fuzzy matching and precise 

matching) 

Q-5 match (n:person) where n.citations=100 and 
n.citations5=200 return count(n); Node query (two-property precise filtering) 

Q-6 
match (n:person) where n.citations=192 and 

n.citations5=204 and n.nationality=“France” return 
count(n); 

Node query (three-property precise iltering) 

Q-7 
match (n:person) where n.citations=192 and 

n.citations5=204 and n.nationality=“France” and 
n.publications5=5 return count(n); 

Node query (four-property precise filtering) 

Q-8 
match (startNode:paper) [r]→(other) where 

startNode.country=“Japan” 
and startNode.citation=5 return count(other); 

Relation query(return end node 
information) 

Q-9 match (n:person) [r:work_for]→(other) where n.org 
starts with “Beijing” and n.citations=1 return count(r) Relation query(return relation information) 

Q-10 
match (startNode:person {personId:‘32’}) optional 
match (startNode) [r:write_person] (other) return 

count(other) 

Relation query(optional relationship 
matching) 

Table 4  Test result for property co-storage 

Test statement 
number 

Average execution time (ms) Ratio of execution time  Neo4j PandaDB 
Q-1 184 189 0.97 
Q-2 96.5 97.5 0.98 
Q-3 
Q-4 

1 001.5 
426 

55 
42 

18.20 
10.14 

Q-5 358 309 1.15 
Q-6 304.5 51.5 5.91 
Q-7 94 52.5 1.79 
Q-8 2 658 2 210 1.20 
Q-9 453 415 1.09 
Q-10 53 62 0.85 

 
Figure 13  Comparison of query time in co-storage 
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3.3 Accelerated testing of unstructured data query 
To accelerate the query of unstructured data, PandaDB adopts a method of constructing a 

semantic index to reduce the number of data transmissions and invoke AI services. In face 
detection scenarios, this section uses the LFW data set [11] to construct a comparative experiment 
and verifies the acceleration effect of the semantic index scheme by comparing the query time 
under various schemes. 

The goal of this experiment is to find the face image with the highest similarity to the target 
face image from the sample set. This experiment is divided into four groups for comparison, and 
the details of the experimental content and conditions in each group are as follows. 

• NOOP: No optimization. PandaDB sends a comparison request of image similarity to 
AIPM and sends the images one by one in the form of a BLOB stream to AIPM. AIPM 
extracts features after receiving the request and returns the comparison result to 
PandaDB. 

• DLOC: Data localization scheme. PandaDB and AIPM are deployed on the same server 
to reduce the network overhead of BLOB transmission. 

• AIIDX: AI service caching scheme. PandaDB requests data from AIPM, which responds 
to the request with local caching feature data. The implementation of data pipeline tools 
is imitated. 

• SEMIDX: Semantic index scheme. The semantic index (face feature vector) of 
unstructured data is constructed in PandaDB. When the query is executed, the local 
index data is directly invoked for comparison. 

Table 5 shows the time each scheme takes to execute the same query with different sample 
numbers. Compared to other schemes, SEMIDX scheme reduces data transmission and repeated 
data extraction, so in theory, this scheme is the fastest among the four schemes. 

Table 5 shows that SEMEDX scheme has the shortest query time at the same number of 
samples. In the comparison of retrieval performance with more than 2 000 samples, the speedup 
ratio is more than 10 000. 

Table 5  Comparison of query time in different methods 

Number of 
samples NOOP 

DLOC AIIDX SEMIDX 
Time 

consumption 
(ms) 

Speedup 
ratio 

Time 
consumption 

(ms) 

Speedup 
ratio 

Time 
consumption 

(ms) 

Speedup 
ratio 

1 993 999 0.99 124 8.04 5 199.80 
5 1 636 1 641 1.00 672 2.44 10 164.10 

10 3 708 3 482 1.06 1 299 2.68 6 580.33 
20 6 854 7 036 0.97 2 448 2.87 7 1 005.14 
50 16 336 15 665 1.04 6 169 2.54 8 1 958.13 
100 32 138 30 714 1.05 12 291 2.50 10 3 071.40 
500 163 154 156 025 1.05 61 505 2.54 22 7 092.05 

1 000 320 760 307 251 1.04 122 525 2.51 33 9 310.64 
2 000 643 462 615 047 1.05 244 661 2.51 60 10 250.78 
5 000 1 616 986 1 542 788 1.05 615 192 2.51 144 10 713.81 

3.4 Case: Entity disambiguation and visualization of academic knowledge 
graph 

Academic knowledge graph generally refers to the domain knowledge graph with academic 
content as the main body. The typical applications are AMiner[12] and AceKG[13]. In this paper, a 
small academic knowledge graph is built based on the participant information[14] of KDD2020, 
which contains three types of nodes: papers, authors, and institutions. According to the paper 
creation relationship and the affiliation relationship between scholars and institutions, unstructured 
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data such as authors’ photos and the PDF full texts of papers are directly stored in PandaDB as 
properties. 

Figure 14 shows the visualization of KDD2020 data (based on the open source project 
InteractiveGraph: https://github.com/grapheco/InteractiveGraph). Profile photo properties are 
stored in PandaDB, based on which, the function of “Search by Image” is provided, namely that 
fast matching based on profile photos is realized. 

The same name of scholars and the same abbreviations of different institutions usually appear 
in the original data of an academic knowledge graph. Therefore, entity disambiguation is usually 
faced in creating the graph. At present, most entity disambiguation methods are based on 
clustering. Refs. [15–17] adopted surface feature values to calculate the similarity between entities, 
which cannot make full use of context features because the methods based on surface features face 
insufficient information. Some scholars tried to introduce external information such as the 
information in WikiPedia and used these knowledge resources as extended features of entities to 
assist in improving the accuracy of clustering, with Refs. [18,19] as representatives. Refs. [20,21] 
applied graph calculation to making full use of the structural information of network data, which 
did not have good universality. In recent years, with the tremendous progress of deep learning 
technology, some scholars have applied embedding technology[22] and neural network 
technology[23]. These methods have better effects than traditional methods but the accuracy still 
cannot meet people's expectations. This case proposes a disambiguation method that combines 
structured properties and unstructured properties based on PandaDB. As shown in Figure 15, there 
are two character nodes named Park Bill and Tom Green and a paper node named Data Vis in an 
academic knowledge graph. It is necessary to determine whether T. Green and Tom Green are the 
same entity, so as to determine whether there is a cooperative relationship between Park Bill and 
Tom Green. Due to insufficient property data in papers, disambiguation is difficult. The extraction 
of unstructured information and semantic comparison in PandaDB enable the full use of Tom 
Green's photos and the photo list of authors of the papers, thus realizing disambiguation. The lower 
part of Figure 15 shows the CypherPlus statement to complete the operation, where the ‘<:’ 
operator represents containment relationship. Only the corresponding node needs to be found to 
judge whether n.photo<:p.screenshot is established or not, and then whether there is a cooperative 
relationship between the two can be calculated. 

 
Figure 14  Visualization of KDD2020 
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Figure 15  Entity disambiguation based on PandaDB 

4 Related Work 

In view of the unified management and analysis of multiple heterogeneous data in data 
applications, one method is to use ETL tools to process heterogeneous data in a unified form. 
However, this method is costly and changes in data and analysis requirements will invalidate[24] 
the original ETL process. Heterogeneous data management can support the storage and unified 
query of multi-model data. The concept of solution to the federal database was put forward in the 
1980s, with Multibase[25] as the representative. The feature of this type of system is as follows: 
With defined global schema and mapping-based query language, users carry out query based on 
global schema, and then the system maps the query to the partitioned schema. Another type of 
system represented by Spark SQL[26] provides a unified API, which allows users to use the data as 
a relational model; as a result, it can improve the efficiency and simplify queries. BigIntegator[27], 
Forward[28], D4M[29] and other systems integrate NoSQL. Forward uses a JSON-based data model 
to organize data. D4M adopts an associative-array data model which is flexible and allows the 
system to query heterogeneous data. 

In the field of data management, property graph model[30] is a commonly used data model for 
managing graph data. The nodes and relationships in the property graph can be given labels and 
associated properties in the form of any key-value pairs[31]. Property graph contains node and edge 
information without changing the overall structure of the graph. At present, the property graph 
model is widely accepted by the graph database industry[32,33], including the famous graph 
databases: Neo4j[34] and Titan[35]. Neo4j is a popular open source graph database, which has a rich 
ecosystem from native graph data storage to visualization plug-ins and then to graph data analysis 
plug-ins. JanusGraph[36] is a distributed graph database based on property graphs, which is 
developed on the basis of Titan. JanusGraph is designed to separate storage layer from query 
engine, in which Cassandra or HBase serves as the storage layer. JanusGraph implements retrieval 
functions with third-party distributed index libraries: ElasticSearch, Solr and Lucene. Other graph 
databases include Amazon’s Neptune[37]. Microsoft’s Azure CosmosDB[38], TigerGraph[39], and 
OrientDB[40]. 
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Artificial intelligence technology has been widely applied to image recognition, speech 
recognition, machine translation and other fields. To understand different information such as 
voices and images, the research on multi-modal machine learning tries to integrate the model's 
understanding of unstructured data from the perspective of machine learning[41,42]. The crossover 
study between artificial intelligence and database has always been a hot topic in academic research. 
The integration of artificial intelligence and database has two directions[43]: AI4DB (AI for 
database) and DB4AI (database for AI). AI4DB aims to improve the efficiency and capability of 
DB through AI technology, such as automated database parameter optimization[44,45], cardinality 
estimation[46], index recommendation[47] and query optimization[48,49]. DB4AI provides data 
services for the training and learning of AI algorithms based on databases. For example, it 
provides users with customized functions to assist in building the model with the help of the 
unified SQL interface of databases; it helps model training through database tensor calculation; the 
AI model is made persistent for reuse. 

With the advent of the era of big data, the stand-alone services have failed to meet the 
demand for storage and computing of massive amounts of data, and more and more tasks need the 
support of distributed systems. It is essential to ensure the reliability and consistency of distributed 
systems. A well-known algorithm to solve this problem is the Paxos algorithm[50,51] proposed by 
Lamport. Since then, researchers have proposed many new algorithms[52] on the basis of Paxos to 
adapt to different engineering environments. The famous ones are Multi-Paxos[51,53], VR 
(viewstamped replication) algorithm[54,55] proposed by Liskov et al., ZAB (Zookeeper’s atomic 
broadcast) algorithm[56] designed by Yahoo, and Raft algorithm[57] proposed by Ongaro et al. 

5 Conclusions and Prospects 

From the perspective of the fusion management and ad-hoc query requirements of 
structured/unstructured data, this paper analyzes the current difficulties in unified representation 
and interactive query of the fusion management of multiple heterogeneous data. On this basis, this 
paper also proposes an extended property graph model which can achieve the unified 
representation of heterogeneous data, as well as property operators and query syntax for online 
query and calculation. In Section 2, this paper proposes PandaDB, a fusion management system of 
distributed data based on intelligent property graph models. The system realizes efficient storage 
management of structured/unstructured data and provides a flexible AI operator extension 
mechanism. As such, it has the ability to query the internal information of multiple heterogeneous 
data on an ad-hoc basis. Tests and cases prove that PandaDB performs well in large-scale property 
filtering queries and high-concurrency query responses. In addition, it can be applied to scenarios 
with the fusion management of multiple heterogeneous data such as the entity disambiguation and 
visualization of academic knowledge graphs. 

Currently, PandaDB still has some disadvantages. On the one hand, the AIPM module 
deployed independent of the system reduces the coupling of the latter, which is conducive to 
system extension and maintenance. However, in case of large-scale information query requests of 
unstructured data, the information transmission between modules costs much. In the future, a more 
reasonable integration mechanism of AI functions should be studied, and task scheduling methods 
should be designed in combination with the scenario features of ad-hoc query for multiple 
heterogeneous data to improve system performance. On the other hand, the operation of extracting 
nested properties from intelligent properties currently lacks an effective caching and prediction 
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mechanism, which causes a large delay in ad-hoc extraction. PandaDB will further combine 
applications to improve the performance and stability of the system, thus enhancing the fusion 
management of multiple heterogeneous data. 
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