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Abstract User requirements are the fundamental driving force of smart services in Internet
of Things (IoT). Today, many IoT frameworks such as IFTTT allow end users to use simple
Trigger-Action Programming (TAP) rules for programming. However, these rules describe
device scheduling instructions instead of user service requirements. Some IoT systems propose
goal-oriented requirement approaches to support service goal decomposition. Nevertheless, it is
difficult to ensure the consistency of different services and completeness of service deployment.
To achieve correct “user programming” in IoT systems and ensure the consistency and
completeness of user service requirements, this study proposes an environment modeling-based
approach to automatically generate TAP rules. On the basis of the service requirements provided
by users, required system behaviors are automatically extracted according to the environment
model. After their consistency and completeness are checked, TAP rules are generated, which
realizes automatic generation from user service requirements to device scheduling instructions.
The environment ontology of IoT application scenarios is constructed for environment modeling,
and the description method of service requirements based on the environment ontology is also
defined. Finally, the accuracy, efficiency, performance of the approach, and the time cost for
building the environment ontology are evaluated with a smart home scenario. The results show
that the accuracy, efficiency, and performance of this approach exceed the available threshold,
and the time cost in building the environment ontology can be ignored when the number of
requirements reaches a certain level.
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Internet of Things (IoT) systems monitor, schedule, and manage various devices, such as
cars, traffic lights, air conditioners, and bulbs, through sensors and actuators connected by the
network, so as to provide users with a variety of smart services to meet their service requirements
and facilitate users’ daily life. In such a system, user service requirements are the fundamental
driving force of smart services. In recent years, user-oriented programming frameworks for the
IoT, such as IFTTT and Microsoft Flow[1], are the products of the rapid development of IoT. They
allow users to program with the simple rule “IF trigger, THEN action”, called Trigger-Action
Programming (TAP). Users can make the following rule in the smart home system shown in
Figure 1: “If the light brightness exceeds 50,000 lx, the blind will be closed” and this rule can
be described by TAP as “IF Light.brightness > 50,000 lx THEN close the blind”. However,
this TAP syntax in fact describes a device scheduling instruction. Telling the software to close
the blind is neither a user service requirement nor a system behavior. The service requirements
are close to the user needs. For example, users want to close the blind in order to make the light
dim. System behaviors are close to software and care about events, such as sending a pulse to
close the blind. The “action” in TAP syntax refers to the instruction informing the software to
close the blind, which is different from the state “the closed blind” or the event “the pulse to
close the blind”.
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Figure 1 An example of smart home

Some IoT systems propose to adopt the goal-oriented requirements approach. For example,
Reggio uses the domain model and the UML diagram to capture service requirements and
support the service goal decomposition [2]. However, the author has not proposed specific
measures to guarantee the consistency among different IoT services and the completeness of
service deployment, which is prone to cause problems in consistency and completeness. The
problems in consistency refer to the conflict between two or more service requirements[3, 4],
while the problems in completeness refer to the situations in which the software is unable to
give exact outputs for the inputs in some cases[5]. For the software system, any error caused by
inconsistency and incompleteness may lead to adverse consequences in the real world, and even
threaten the property and life of users[6]. In an IoT system, users do not consider the problems
of consistency and completeness when using TAP rules for programming, which makes these
problems more prominent. For example, in a smart home software system, if users set the
window to automatically open when the concentration of carbon monoxide is above a threshold
and automatically close the window when it rains, a consistency problem will occur when the
concentration of carbon monoxide is too high during rain. In this case, the concentration of
carbon monoxide in the room may be more than 200 mg/L, which is harmful or even fatal. As
another example, users specify the bulb to be on when the brightness is below a threshold, but do
not specify the behavior above this threshold; in this case there will be a completeness problem,
which makes the bulb always on and results in a serious waste of energy. Plenty of studies
provide the checking and repairing approaches regarding the consistency of TAP rules[7, 8], but
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there is no checking at the service requirement and system behavior levels.
To realize the correct “user programming”, this paper proposes to automatically extract

system behaviors depending on the service requirements provided by users. After consistency
and completeness have been checked, system behaviors can be automatically converted into
device scheduling instructions in the form of TAP. With regard to defining the service
requirements, on the basis of “Environment Modeling based Requirements Engineering"[9, 10],
we think that it is more appropriate to represent the service requirements with the state changes
of devices than TAP. For example, users want the bulbs to be off, but they do not care what
kind of behaviors makes the bulbs off. According to Reference [11], the derivation process
from the service requirements to the system behaviors must take into account environmental
characteristics. Consistency and completeness should be checked from the perspective of the
device. Therefore, this paper proposes an approach to generating the TAP rules in IoT systems
based on environment modeling and achieves the automatic generation from service requirements
to programs. The main contributions of this paper are as follows:

(1) The environment ontology of IoT application scenarios is constructed, and the
basic concepts and their relations of environment modeling are provided. According to
the environmental characteristics of IoT application scenarios, the monitored entity and the
controlled entity are defined, and the corresponding characteristics are modeled with attributes
and state machines.

(2) The definition of environment based user service requirements is given. The service
requirements are denoted as state changes. Additionally, the description method of user service
requirements based on environment ontology is defined.

(3) The rules of consistency and completeness of the requirements of the IoT systems are
defined. On the basis of the environment ontology, the problem diagram[12] is used to carry out
the automatic transformation from service requirements to system behaviors, and the consistency
and completeness checking of the requirements is completed in line with the rules.

The problem diagram used in the derivation of the system behaviors is introduced in
Section 1. The environment ontology of IoT systems is defined in Section 2. The methodology
of this paper is presented in Section 3. The key algorithms are shown in Section 4. Experiments
to evaluate the method proposed in this paper are designed in Section 5. Related work is
compared in Section 6. Conclusions are summarized and some future work is put forward in
Section 7.

1 Preliminaries
A problem diagram is the result of the requirements description of the problem frame

approach[12], which is used in this paper to represent user service requirements and software
behaviors. Figure 2 shows a simple example of a problem diagram. The software problem is
to specify a system to be developed (controller machine) to monitor and control the problem
domain (room and air conditioner) so as to meet requirements (adjust temperature). The
connection between the problem domain and the machine is called an interface (an interaction),
which indicates the phenomena shared between them, such as the OnPulse and OffPulse shared
between the controller machine and the air conditioner. The interface is initiated by one problem
domain or the machine and it is denoted by “Initiator!{content}”. The content can be
an event, a state, or a value in the phenomenon. A requirement is expressed as an expectation
described in natural language, which is actually denoted as changes that are expected to occur
in the problem domain, such as the room temperature T > 30 and the air conditioner being
turned on or off. This expectation is called requirement phenomenon. The references to the
requirement phenomena that can only be observed but not be controlled are called requirement
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references. For example, the room temperature can only be observed and referenced, but
cannot be controlled. Requirement phenomena that can be controlled are called requirement
constraints. For example, an air conditioner can be switched on and off. Both requirements
references and constraints can be expressed as interface interactions.

(Problem domain)

a:RM!{T
>30, T<2

0}

Adjust
temperature

c:AC
!{on,
 off}

a:RM!{T>30, T<20}

b:CM!{OnPluse, OffPluse}
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System to be developed
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Requirement
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Figure 2 Simple example of a problem diagram

According to Reference [12], a problem diagram can be represented by a six-tuple
ProDgm def

= ⟨M,Pds,Reqs, Int,Ref,Con⟩, where M , Pds, Reqs, Int, Ref, and Con represent the
controller machine (system to be developed), the set of problem domains, the set of requirements,
the set of interfaces, the set of requirement references, and the set of requirement constraints,
respectively.

The two sides of the problem diagram represent user service requirements and software
behaviors respectively. The user service requirements are described in terms of requirement
phenomena and their relationships, and presented at the requirement references and constraints
on the right side of the problem diagram. The requirement phenomena in a and c on the dashed
line on the right of Figure 2 require that the air conditioner should be turned on and off when
the temperature is higher than 30◦C and lower than 20◦C, respectively, which is the service
requirement of the user. Software behaviors are described in terms of specification phenomena
and their relationships and presented at the interfaces on the left side of the problem diagram. In
interfaces a and b represented by solid lines, the sharing phenomena require that the controller
should send out the pulse to turn on the air conditioner when the temperature is higher than 30◦C
and the pulse to turn off the air conditioner when the temperature is lower than 20◦C, which
defines the system behaviors of the software. It should be noted that deriving software system
behaviors from user service requirements in the problem diagram requires the knowledge of the
domain, which is described by an environment ontology in this paper.

2 Environment Ontology of IoT Systems

Ontology is an explicit formal specification of a shared conceptual model[13]. We define
the environment ontology to provide the basic concepts of environment modeling and the
relationships between them. According to the domain-related condition, the environment
ontology can be divided into two categories: upper environment ontology and domain
environment ontology. The upper environment ontology describes the concepts and associations
in general environment modeling, while the domain environment ontology is the result of
environment modeling for a specific domain, which is the instantiation of the concepts and
associations of the upper environment ontology in a specific field.
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2.1 Upper environment ontology
The environment of an IoT system can be regarded as a set of entities (called environment

entities) that interact with the system. Therefore, the environment entity is the most basic
concept in the environment ontology. In specific application scenarios entities such as smart
homes, entities like the bulb, blind, people, air. are all environment entities. These environment
entities can be divided into two categories.

(1) Monitored entity: The state value of such an environment entity can only be obtained
by monitoring the IoT system, but cannot be directly changed, which means that the state
of the entities changes autonomously and is independent of the will of human beings. For
example, indoor air and brightness involved in a smart home system belong to monitored
entities.

(2) Controlled entity: Regarding this kind of environment entities, the state value (namely
the value of each attribute) can be obtained directly and the pre-defined instructions can
be sent to change the entity’s state. A variety of embedded devices fall into this category,
such as fluorescent lamps, windows, and electric curtains in a smart home system. Either
the state or the value of the attribute can be changed. For example, lamps can be described
by the state “on” or “off ” or by a specific value of brightness.

Attributes of each environment entity can be used to describe its properties, and each
attribute has a value. For example, the light of an environment entity to be monitored has the
brightness attribute represented by Light.brightness, whose value represents the brightness of
the light. Another example is the controlled environment entity Bulb, whose attribute is BulbST,
namely the state of the bulb. The attribute value can be bon or boff, representing the on-off
state of the bulb. In addition to the attributes, state machines can also be used to describe the
dynamic characteristics of some controlled entities, involving states and transitions. Transitions
are triggered by events. For example, a state machine with state bon or boff can be used to
describe the dynamic characteristics of a bulb. The state changes to bon when the bulb receives
the bonPulse action, while the state changes to boff when it receives the boffPulse action.

There are also some associations between these concepts, as shown in Figure 3, and the
meaning of these associations is listed in Table 1.

Figure 3 Concept association diagram of the environment ontology

2.2 Domain environment ontology of a smart home
With the smart home as an example, the construction of the domain environment ontology

is illustrated. The environment entities in the domain are identified firstly. Window, blind,
and bulb are assumed to be the controlled environment entities in the smart home domain, and
the monitored environment entities are light and air. These are the instances of environment
entities. The attribute of the window is WindowST, which describes the opening and closing of
the window, with the value of wopen or wclosed. The attribute of the blind is BlindST, which
describes the opening and closing of the blind, with the value of bopen or bclosed. The attribute
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of the bulb is BulbST, which describes the switch of the bulb, with the value of bon or boff. The
attribute of light is brightness, which means the brightness, and its value could theoretically be
any value greater than 0. The attributes of the room include the temperature and the humidity.
The variate temperature represents the temperature from −273.15◦C to infinity. The variate
humidity refers to the relative humidity of the air, which can theoretically range from 0% to
100%. These specific attributes and values are respectively the instances of these two concepts.

Table 1 Associations and meanings of concepts in environment ontology
Name Representation Meaning

has_static Environment Entity → Attribute Each environment entity has multiple
attributes

has_dynamic Controlled entity → State machine Each controlled entity has multiple state
machines

has_value Attribute → Value Each attribute has a set of values
has_state State machine → State Each state machine has multiple states
has_trans State machine → Transition Each state machine has multiple transitions
has_inout State machine → Event Each state machine has multiple input/output

events
source_from Transition → State Each transition results from a state

sink_to Transition → State Each transition ends in a state
cause Transition → Event Each transition triggers multiple events
trigger Event → Transition Each event triggers multiple transitions

The state machine of each controlled entity needs to be further identified. The state machines
of window, blind, and bulb in the context of a smart home are shown in Figure 4. With the bulb
as an example, the bon state means that the bulb is on. If the bulb receives a bonPulse event at
this time, it will continue to be on; if the bulb receives a boffPulse event, it will be off. When it is
in the boff state, the bulb is off. If a bonPulse event is received at this time, the bulb becomes on;
otherwise, if a boffPulse event is received, the bulb is still off. These are all specific instances
of the concepts of state machine, event, state, and transition.

(a) Window (b) Blind (c) Bulb

Figure 4 State machines of the controlled environment ontology for smart home systems

3 Approach for Generating TAP Rules
With the support of the environment ontology, this paper proposes the approach for

generating TAP rules (Figure 5). After users write the service requirements, system behaviors
are firstly derived with the help of the environment ontology, after which the initial problem
diagram is obtained. Then the consistency and completeness of the problem diagram are
checked. If it passes the checking, the checked problem diagram will be combined with the
phenomenon-instruction look-up table to generate TAP rules. Otherwise, the problem diagram
will be returned to the users to modify the service requirements.

3.1 Writing of user service requirements
First, we define the user service requirements. With the idea of environment modeling, this

paper denotes the service requirements as the changes of environment entities. In IoT systems,
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the changes of environment entities are usually represented by different states of the environment
entities. For example, the window should be kept closed when it rains. According to the “IF
trigger THEN action” syntax of the TAP rules, the following syntax is used in this paper to
allow users to express service requirements.

“IF ⟨entity.trigger⟩ THEN ⟨entity.state⟩”

where
(1) entity.trigger can be expressed as follows.
• When the entity is a monitored environment entity, entity.attribute is used to indicate

that the attribute of the entity takes a certain value or is located in a certain range. For
example, the brightness of light at 3,000 lx is written as Light.brightness = 3,000
while the brightness of light greater than 3,000 lx is written as Light.brightness >

3,000 (for the convenience of the automation process, only values are used while units
are omitted).

• When the entity is a controlled environment entity, entity.state can be used to indicate
that the entity is in a certain state, e.g., Window.wclosed indicates that the window is
closed. We can use entity.attribute as in the previous case.

• In addition, the trigger can be a complex sentence using Boolean operators like “and”
(written &&) and “or” (written ∥).

Figure 5 Architecture of our approach

(2) The entity.state refers to the controlled environment entity and its state.
For example, if a user wants to express that the blind is closed when the brightness of light is

greater than 50,000 lx, the entity in the trigger condition is the light, which is the monitored entity.
The brightness of light is greater than 50,000 lx means the attribute “brightness” of light is greater
than 50,000 lx. Thus the entity.trigger of this service requirement is Light.brightness >

50,000. To express that the blind is in the closed state, the entity.state is Blind.bclosed, so this
service requirement becomes “IF Light.brightness > 50000 THEN Blind.bclosed”. If the
user wants to express the service requirement that the bulb is turned on when the blind is closed,
the entity is the blind, which is the controlled entity. The trigger, i.e., the closed state of the
blind, is bclosed. Therefore, the entity.trigger of this service requirement is Blind.bclosed.
To indicate that the bulb is on, the entity.state is Bulb.bon, and thus this service requirement
is “IF Blind.bclosed THEN Bulb.bon”.

It is the same for applying to complex service requirements with the keyword “and” or “or”.
For example, to express that the window is open when the temperature is higher than 25◦C and
the brightness is greater than 25,000 lx, this service requirement has two trigger conditions and
involves two monitored entities, i.e., air and light. The two trigger conditions are the temperature
attribute of the air being greater than 25◦C and the brightness attribute of the light being greater
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than 25,000 lx. Therefore, the first half of this service requirement is the “and” of Air.temperature
> 25 and Light.brightness > 25,000, while the second half, i.e., the entity.state is the open
state of window, namely Window.wopen. Thus, this service requirement can be expressed as “IF
Air.temperature > 25 && Light.brightness > 25000 THEN Window.wopen”.

In addition, the environment ontology needs to be introduced when users write service
requirements, so that users can choose the corresponding device, rather than having to guess
what to write. The advantage of doing this is that most users are not familiar with the performance
and effects of all devices and letting users write the requirements without constraints will create
plenty of errors or omissions due to their lack of familiarity with the devices. The environment
ontology contains different devices and their states and effects. The use of the environment
ontology can remind users of the effects of the devices when they write service requirements;
this helps in preventing users from writing some absurd service requirements, thus reducing the
workload of the later checking and modification.

3.2 Derivation of system behaviors
System behaviors can be derived in two steps.
The first step is to annotate the problem diagram with the service requirements defined in

Section 3.1. Each service requirement corresponds to a problem diagram, and the information of
service requirement defines the right side of the problem diagram. The specific correspondence
is as follows: First we have a correspondence between the environment entity and the problem
domain. In “IF ⟨entity.trigger⟩ THEN ⟨entity.state⟩”, entity represents the environment
entities interacting with the system, namely the problem domains in the problem diagram. For
example, Room and Window in the service requirement “IF Room.temperature > 30 THEN
Window.wopen” shown in Figure 6 can be directly transformed into problem domains Air
and Window. Then we have the correspondence between trigger/state and the phenomena in
requirement references and constraints. A trigger, as the condition of requirements, represents
the reference to requirements and thus can be drawn directly as requirement reference. A state
is the phenomenon that users expect to see. It is the constraint on the requirements and can
be directly drawn as requirement constraint. The phenomenon initiator should be the entity
owning the state. For instance, Room.temperature > 30 in Figure 6 can be directly transformed
into the requirement reference Room!{temperature > 30}, and Window.wopen can be directly
transformed into the requirement constraint Window!{wopen}. The requirements drawn in an
ellipse can be labelled directly, such as Req1 shown in Figure 6.

Window

Room

User service
requirements

Problem
diagram M

State machine of window in
the environment ontology wclosePulse wopenPulse

wopenPulse

wopen

Room!{
temper

ature>3
0}

IF Room.temperature>30 THEN Window.wopen

Req1

Room!{temperature>30}

Window!
{wopen}

M!wopenPulse

wclosed

wclosePulse

Figure 6 Schematic diagram of the problem diagram generation
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The second step is to derive the corresponding system behaviors according to the
environment ontology, namely defining the interface on the left of the problem diagram. For
simple service requirements without the keywords “and” and “or” in the entity.trigger, they
can be handled separately depending on the different entity types of triggers and states.

• No matter whether the entity in entity.trigger is a monitored or controlled entity, the
conditions in the requirement reference are copied directly, just like the interface between
M and Air in Figure 6.

• For the entity in entity.state, the event that triggers the state should be found out through
its state machine and put in the interface as a sharing phenomenon, and this interface
must be sent over by the software. As shown in Figure 6, the trigger event of the state
wopen in the Window state machine is wopenPulse, and thus the interface can be defined
as M !{wopenPulse}.

The processing of complex user service requirements involving keywords “and” and “or”
is described below.

• If multiple entity.triggers are connected with “and”, for each entity.trigger, the
problem domains corresponding to the entity should be connected with the requirement
through the requirement reference and the requirement phenomena are added on the
requirement reference according to trigger.

• If they are connected with “or”, namely that the requirement is in the form of “IF
a∥b THEN entity.state”, it means that if either a or b occurs, the entity should be in
state entity.state. Since a and b are separated, the requirements become “IF a THEN
entity.state” and “IF b THEN entity.state”, which represent the same meaning. For
example, “IF Room.temperature < 25 ∥ Room.humidity > 25 THEN Window.wclosed”
can be devided into “IF Room.temperature < 25 THEN Window.wclosed” and “IF
Room.humidity > 25 THEN Window.wclosed”. Therefore, the requirement with “or”
should be divided into two sentences and respectively transformed into problem diagrams.

3.3 Consistency and completeness checking
We define inconsistency and incompleteness from the perspective of the environment

entities. On the basis of the conventional inconsistency definition of the service requirements, in
this paper we consider three types of requirement inconsistency according to the different cases
of trigger and state.

(1) Scope inconsistency: The scopes in the triggers of more than one requirement have
an intersection, but their state entities are the same and the contents are different, which results
in conflicts between the requirements. For example, users of a smart home system want: “IF
Light.brightness < 30000 THEN Window.wclosed” and “IF Light.brightness > 15000 THEN
Window.wopen”. These two requirements are applied to the window at the same time when the
brightness of the light is between 15,000 lx and 30,000 lx. However, the states are opposite,
which leads to the scope inconsistency.

(2) Overwriting inconsistency: The entities in states of multiple requirements are the
same while the contents are diffirent. Hence, the state executed later overwrites the state executed
first due to different triggers. For example, Req1 requires the bulb to be turned off when the
brightness of the light is greater than 20,000 lx, while Req2 requires the bulb to be turned on
when the blind is closed. If the blind is closed when the brightness of the light is greater than
20,000 lx, the bulb should be on at this point according to Req2, so the state bon overwrites the
state boff. According to Req1, the bulb should be turned off since the brightness of the light is
in fact still greater than 20,000 lx. As a result, the overwriting inconsistency appears.

Starting from the definition of the service requirements and depending on the nature of
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environment entities, this paper considers the following two cases regarding requirements
incompleteness.

(1) State incompleteness: When the problem diagrams for all service requirements are
combined, they do not involve all states of all entities in the environment ontology. This results
in the requirements incompleteness. For example, there is only the state Blind.bopen in a set
of requirements, without the state in which the blind is closed (i.e., Blind.bclosed), which is
incomplete in state.

(2) Attribute incompleteness: The triggers of all requirements do not cover the full
reachable range of the attributes of the corresponding entity, which makes the state of the entity
not accurately determined in some cases. For example, when Light.brightness > 20,000 and
Light.brightness < 15,000, the bulb should be off and on, respectively. However, when the
brightness of the light is between 15,000 lx and 20,000 lx, should the state at the last moment be
maintained or be changed in line with some other criteria? This is not mentioned in the service
requirements of the bulb, and thus the requirement is incomplete in attribute.

3.4 Generation of TAP rules

The generation of TAP rules is divided into two stages.
(1) Generation of the system behaviors from the problem diagram: According to the

checked problem diagram, whether the problem domain in the problem diagram corresponds
to requirement reference or requirement constraint should be firstly determined. If it is
corresponding to a requirement reference, the interface of the problem domain corresponds
to the content of “IF”. If there are multiple references, “&&” is used for connection. If it is
corresponding to a requirement constraint, the interface of the problem domain corresponds to the
content of “THEN”. As shown in Figure 7, the problem domain Air is a requirement reference
and its interface “Room!{temperature > 30}” is the content of the “IF”, while the problem
domain Window corresponds to the requirement constraint and its interface “M !{wopenPulse}”
is the content of “THEN”. As a result, the system behavior “IF Air.temperature > 30 THEN
M.wopenPulse” is generated, but this is not the final TAP rule.

Problem
diagram

System
behavior

TAP rule

M
Room!{

temper
ature>

30} Room!{temperature>30}
Req1

Phenomenon-instruction look-up table

Phenomenon

wclosePulse close the window

open the windowwopenPulse

Instruction
Room

Window
M!{wopenPulse} Window

!{wopen
}

IF Room.temperature>30 THEN M.wopenPulse

IF Room.temperature>30 THEN M.wopenPulse

Figure 7 Schematic diagram of generating TAP rules

(2) Generation of TAP rules from system behaviors: The final TAP rule can be generated
by the search of the system behaviors in terms of the relevant instructions in the phenomenon-
instruction look-up table. The phenomenon-instruction look-up table shows the mappings
between a set of software behaviors and instructions. As shown in Figure 7, wopenPulse
corresponds to the instruction “open the window”. This look-up table can be provided by
experts in the device domain. After replacing “M.wopenPulse” in the system behavior by the
instruction “open the window”, the TAP rule “IF Air.temperature> 30 THEN open the window”
can be obtained.
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4 Key Algorithms
To implement the method presented in Section 3, we develop a tool to generate the TAP rules,

which can be accessed through http://re4cps.org/dsigs and the corresponding video
demo is given at http://re4cps.org/examples#DSIGS. This section presents some key
algorithms, including the algorithm of converting service requirements to problem diagrams, the
consistency checking algorithm, the completeness checking algorithm, and the TAP generation
algorithm.

4.1 Algorithm for transforming service requirements into problem
diagrams

An algorithm for transforming service requirements into problem diagrams allows us to
realize the derivation of the system behaviors mentioned in Section 3.2. The main idea of the
algorithm is as follows. The “and” and “or” in the service requirements should be dealt with
firstly. Then the problem domain and reference of the problem diagram are created for each
service requirement according to the correspondence described in Section 3.2.

The specific steps are shown in Algorithm 1. The “and” and “or” in the service requirements
are pre-processed in Line 5–Line 7; entity.trigger of the requirement is traversed (if there is no
“and” relationship connecting multiple entity.triggers, the loop is only carried out once) and
the problem domain, requirement reference, and interface related to the trigger are constructed in
Line 9–Line 13; the entity.state is handled and the problem domains, requirement constraints,
and interfaces related to the entity.state are constructed in Line 14–Line 16. Assuming that
the total number of service requirements is n, since there are two loops in the algorithm, which
are both related to n, the time complexity of the algorithm is O(n2).

4.2 Consistency and completeness checking algorithms
According to the definitions of consistency and completeness given in Section 3.3, we

design the checking algorithms of requirements consistency and completeness. The main idea
of the consistency checking algorithm is as follows: All (trigger, state) pairs are obtained
according to the requirement references and constraints of the problem diagram firstly. Next,
whether the triggers corresponding to the states of the same entity overlap is checked with the
aim of checking the scope and overwriting inconsistency. The inconsistent requirements are fed
back to the users. If there is inconsistency, the corresponding requirements will be fed back to
the users.

The specific steps of the consistency checking algorithm are shown in Algorithm 2. The
second line of the algorithm extracts (trigger, state) pairs from all problem diagrams, and the
entityMap is constructed in Line 3 to store the triggers corresponding to the states with the
same entity but different contents. According to the entityMap, the loop from Line 4 to
Line 16 checks the scope and overwriting inconsistency. If the inconsistency occurs during the
checking process, the inconsistent requirements will be output and the algorithm will return
false; if no inconsistency occurs, the algorithm will finally return true. There are three nested
loops in the algorithm, but two loops are executed in constant times. Thus, the time complexity
of Algorithm 2 is O(n).

To obtain all the triggers and the corresponding states contained in the requirement
reference, this paper designs the resolveProDgm function to extract (trigger, state) pairs from
all the problem diagrams. The specific steps are shown in Algorithm 3. Line 3 traverses the
requirements in all the problem diagrams. The loop from Line 7 to Line 9 reads the phenomena
in the requirement references and obtains the triggers, and Line 10 reads the phenomena in the
requirement constraints and obtains the states. The number of requirements is assumed to be n

http://re4cps.org/dsigs
http://re4cps.org/examples#DSIGS
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and thus the time complexity of the algorithm is O(n).

Algorithm 1. Service requirements are converted into problem diagrams.
Input: all service requirements reqs, the environment ontology eo;
Output: problem diagram set ProDgms = {prodgm1, prodgm2, · · · , prodgmn}.
1. begin
2. Initialize the integer i = 1, the problem diagram set ProDgms, and the machine M of problem

diagram; //initialization
3. for req ∈ reqs do //convert each service requirement into a problem diagram
4. Initialize each part of problem diagram prodgmi, namely Pdsi, Reqsi, Inti, Refi, Coni //initialize

each part of the problem diagram
5. If there is no “and” and “or” relationship in entity.trigger of req, entity.trigger and

entity.state are read;
6. If there is an “or” in entity.trigger of req, the req is broken into multiple requirements and

processed separately; //process “or”
7. If there is an “and” in the entity.trigger of req, a set of triggers will be constructed, and

each entity.trigger that is connected via “&&” is added to the set; //deal with the “and”
relationship

8. The requirement Reqi in the problem diagram is constructed and added to Reqsi; //construct
the requirement in the problem diagram

9. for entity.trigger ∈ triggers do //construct requirement reference and corresponding
interface

10. Construct the problem domain pd according to the entity, and add pd to Pdsi; //construct
the problem domain according to the trigger

11. Construct requirement reference ref between Req1 and pro, add phenomenon to it
according to the trigger, and add ref to Refi; //construct requirement reference

12. Construct an interface int between M and pro, add phenomenon to it according to the
trigger, and add int to Inti; //construct the interface

13. end for
14. Construct the problem domain pd′ according to the entity in the entity.state and add pd′ to

Pdsi; //construct the problem domain according to entity.state
15. Construct the requirement constraint con between Reqi and pd′, add phenomenon to it

according to state, and add con to Coni; //construct requirement constraint
16. Construct the interface int′ between M and pd′, find the system behavior corresponding to

the state in the eo, add it to the phenomenon of the interface, and add int′ to Inti; //construct
the interface to derive the system behavior

17. Let the problem diagram be prodgmi = {M,Pdsi,Reqsi, Inti,Refi,Coni}, and add it to
ProDgms; //construct the problem diagram

18. i++;
19. end for
20. return ProDgms;
21. end

The main idea of the completeness checking algorithm is as follows: The (trigger, state)
pairs in all the problem diagrams are extracted firstly. Next, all involved states are compared
with the environment ontology for the checking of the state incompleteness, and the uninvolved
states are fed back to the users. Finally, according to the triggers corresponding to the states of
the same entity, the attribute incompleteness is checked and the uncovered cases are fed back
to the users. The main steps are shown in Algorithm 4. The Line 2 of algorithm calls the
resolveProDgm function and obtains all (trigger, state) pairs. The loop from Line 4 to Line
6 initializes the states. The Line 7–Line 10 check the state incompleteness with the states and the
environment ontology. The loop of Line 11–Line 18 checks the attribute incompleteness. The
number of requirements is assumed to be n. The Line 2 of Algorithm 4 uses the resolveProDgm
function, whose time complexity is O(n). All subsequent loops have only one layer and run for
n times at most. Thus, the time complexity of the algorithm is O(n).
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Algorithm 2. Consistency checking algorithm.
Input: problem diagram set ProDgms = {prodgm1, prodgm2, · · · , prodgmn};
Output: whether the consistency checking is passed and the inconsistent requirements.
1. begin
2. map = resolveProDgm(ProDgms); //obtain all (trigger, state) pairs and store them in map
3. Initialize a map entityMap // entityMap is a map. Its key is the names of controlled entities

and its value is a list. Each element in the list is also a list, storing all triggers corresponding to one
state of the key.

4. for controlled_entity of environment ontology do
5. Initialize a list entityList
6. for entityState ∈ all the states of controlled_entity do
7. Initialize a list tempList
8. for (trigger, state) ∈ map do
9. if state == entityState then
10. tempList.add(trigger)
11. end if
12. entityList.add(tempList)

13. end for
14. entityMap.put(controlledentity, entityList)

15. end for
16. end for
17. return true; //there is no error, and thus return true
18. end

Algorithm 3. resolveProDgm: resolve problem diagram, and extract all triggers and states.
Input: problem diagram set ProDgms = {prodgm1, prodgm2, · · · , prodgmn};
Output: all (trigger, state) pairs in ProDgms, which are stored in map.
1. begin
2. Obtain the reqirement of each problem diagram in ProDgms, and store it in reqs;
3. for req ∈ reqs do //obtain trigger and corresponding state according to requirement references

and constraints
4. Initialize a character string set trigger and a character string variable state; //initialization
5. Obtain problem domain linked with req; //obtain the entities in the corresponding requirements
6. Respectively obtain the reference of req in these problem domains, denoted as

ref1, ref2, · · · , refn−1, con; //obtain the carriers of trigger and state
7. for ref in ref1, · · · , refn−1 do //obtain trigger
8. Obtain the phenomenon of ref, and add this phenomenon to trigger; //obtain trigger
9. end for
10. Obtain the phenomenon phe of con, and let state = phe; //find the state corresponding to the

trigger
11. Add (trigger, state) pair to map;
12. end for
13. return map;
14. end

4.3 Generation algorithm of TAP rules
According to the generation method of TAP rules described in Section 3.4, a specific

generation algorithm can be designed. The main idea is as follows. Firstly, the content in the
corresponding interface is referenced according to the requirement of the problem diagram to
determine the trigger of TAP rule. After that, the corresponding interface is restrained according
to the requirement of the problem diagram to construct the system behavior. Finally, according
to the phenomenon-instruction look-up table, the corresponding instruction of the phenomenon
is obtained to transform the system behavior into a TAP rule.
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Algorithm 4. Completeness checking algorithm.
Input: problem diagram set ProDgms = {prodgm1, prodgm2, · · · , prodgmn}, environment

ontology eo;
Output: whether completeness is satisfied; if not, output the reasons.
1. begin
2. map = resolveProDgm(ProDgms); //call public functions
3. Define linked list states to record the states involved in reqirements;
4. for (trigger, state) ∈ map do
5. states.add(state); //initialize states to check the incompleteness of the state
6. end for
7. if not all states are involved then //state incompleteness occurs
8. Output the states not involved; //inform the user
9. return false;
10. end if
11. Add the triggers corresponding to the states of the same entity in map into the same set, and add

all this kind of sets into triggersList;
12. for triggers ∈ triggersList do //check the incompleteness attribute
13. Compare the range of all triggers;
14. if the range does not cover all the available values then //attribute incompleteness occurs
15. Output the values not covered; //inform the user
16. return false;
17. end if
18. end for
19. return true;
20. end

The main steps of the algorithm are shown in Algorithm 5. The Line 2 traverses all the
checked problem diagrams. The Line 6 obtains the problem domains corresponding to all
requirement references, and the loop from Line 7 to Line 10 obtains the phenomena in the
interfaces corresponding to these problem domains and regards them as the triggers of the TAP
rules. The Line 10 obtains the behaviors of the system and the Line 11 transforms the system
behaviors into the corresponding instructions according to the phenomenon-instruction look-up
table. Assuming that the number of requirements is n, the nested two loops, namely the loop in
the Line 6, are executed in constant times. Therefore, the time complexity of the algorithm is
O(n).

5 Evaluations
In the context of smart conference room systems, this section evaluates the proposed

approach and answers the following questions.
(1) How are the accuracy and efficiency of this approach? Is it more accurate and efficient

to write TAP rules using this approach than to write TAP rules manually?
(2) How is the performance of this approach? Is it suitable for large-scale systems?
(3) Does the construction time of environment ontology affect the use of this approach?

5.1 Accuracy and efficiency
To answer this question, we design a series of comparison experiments in this paper. First,

the users are divided into two groups: Our approach Group (OG) and the TAP Group (TG).
The OG first writes the service requirements, and then generates the TAP rules after checking
and modifying the consistency and completeness with the proposed method. The TG writes
the TAP rules manually and checks and modifies their consistency and completeness. To avoid
the differences caused by user background, we further divide the users into two categories:
professional users and non-professional users. Professional users are under graduate students
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majoring in software engineering, who have participated in some requirements related projects
with certain knowledge of requirements engineering. Non-professional users are undergraduate
students majoring in tourism economics, medicine, or linguistics, without any knowledge of
computer or software engineering. On this basis, four experimental groups are set in total.
Twenty-four users are invited, with six users in each group.

Algorithm 5. TAP generation algorithm.
Input: checked problem diagram set ProDgms = {prodgm1, prodgm2, · · · , prodgmn},

phenomenon-instruction look-up table;
Output: set of TAP rules.
1. begin
2. for prodgm ∈ ProDgms do //convert each problem diagram into a TAP rule
3. Initialize the variables triggers and behavior; //to store the content of IF and THEN in system

behavior
4. Let the requirement reference in prodgm be refs = {ref1, ref2, · · · , refm}, and the requirement

constraint be con; //obtain requirement reference and requirement constraint
5. Let the problem domains linked to refs be Pds = {pd1, pd2, · · · , pdm}, and the problem

domains linked to con be pdc; //obtain problem domains
6. for pd ∈ Pds do //obtain the trigger of each TAP rule
7. Let int be the interface between M and pd;
8. Add the phenomenon of int to triggers; if there are more than one phenomenon, “&&” is

used for connection; //obtain triggers
9. end for
10. Let intc be the interface between M and pdc and behavior be the phenomenon of intc; //obtain

system behavior
11. Let action = table.get(behavior); //obtain the instructions in TAP rules according to

phenomenon-instruction look-up table
12. Add a character string (IF triggers THEN action) in rules; //generate TAP rules
13. end for
14. return rules;
15. end

Each user is asked to write 10 requirements for a specific IoT scenario. The entities in
the scenario only include air, light, people, window, blind, projector, air conditioner, and bulb.
The air has two attributes (temperature and humidity). The light has one attribute (brightness).
People can press the switch of the projector. The states of window and blind are open and closed,
and the states of projector and bulb are on and off. The states of air conditioner can be cold, hot,
and off. For the professional users of the proposed method group, we tell them the writing format
of the requirements, the entities in the environment, and the state values of the entities. For
the non-professional users of the proposed method group, because they do not have the domain
knowledge, we directly tell them the available contents of entity.trigger and entity.state in
the requirement pattern “IF entity.trigger THEN entity.state”. For the professional users of
the TAP group, we tell them the format of the write rules, the entities in the environment, and
the state values of the entities and ask them to speculate on the instructions in the environment
ontology. For the non-professional users of the TAP group, we simply tell them the available
contents of entity.trigger and action in TAP rule pattern “IF entity.trigger THEN action”.
For the two kinds of users in the TAP group, we tell them the definitions of consistency and
completeness after they write the rules and ask them to check and modify the rules they wrote
manually.

In each group of experiments, the follwing statistics are made respectively: the time that
the users in the OG spend on writing, the time that the users in the OG spend on checking
and modifying the requirements to realize their consistency and completeness, the time that the
users in the TG spend on writing rules, the time that the users in the TG spend on checking the
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consistency and completeness manually, the time that the users in the TG spend on modifying
the rules, the number of consistency and completeness errors before and after user modification,
and the accuracy of the final TAP rules obtained by all users. In the actual recording, since the
two OGs use computer programs to automatically check the consistency and completeness, the
checking time is very short, which is ignored in the total time. The final experimental results
are shown in Table 2.

The accuracy and efficiency of this method do exceed the available thresholds (Table 2).
First, according to the number of inconsistent and incomplete cases before and after modification,
compared with the manual checking and modification of the TAP group, the checking and
modification using the proposed method greatly reduce the number of errors. As can be
observed from the last line of each group in the table, the accuracy of TAP rules obtained by
both professional and non-professional users of the OG is generally higher than that obtained
in the TG. Second, by comparing the first four lines of each group in the table, namely the
time-related data, we find that the time that both professional and non-professional users of the
OG spent on writing requirements is generally longer than the time that the TG spent on directly
writing the rules, but after checking and modifying the consistency and completeness, the total
time of the OG is basically shorter than that of the TG. Therefore, we can answer Question (1).
Compared with the TAP rules written manually, those generated with the proposed approach
are indeed more accurate and efficient.

Table 2 Result of user study

Items to be compared
Professional Non-professional

OG TG OG TG
Max Min Ave Max Min Ave Max Min Ave Max Min Ave

Writing time (min) 30 19 25.0 23 9 15.8 30 15 22.8 32 17 21.7
Checking time 24 ms 9 ms 16.7 ms 13 min 5 min 9.8 min 31 ms 8 ms 18.2 ms 6 min 3 min 4.7 min

Modifying time (min) 20 5 11.5 24 5 15.8 6 2 3.7 17 11 14.0
Total time (min) 39 35 36.5 52 28 41.5 33 17 26.5 48 35 40.3

Inconsistency before
modification

2 0 1.0 3 0 1.2 4 1 2.5 6 1 3.2

Incompleteness before
modification

4 1 2.5 4 2 3.0 5 1 3.3 5 0 2.7

Inconsistency after
modification

0 0 0.0 2 0 0.7 0 0 0.0 3 1 2.3

Incompleteness after
modification

0 0 0.0 2 0 1.2 0 0 0.0 4 0 1.7

Final accuracy (%) 100.0 90.0 95.8 100.0 78.6 84.0 100.0 83.3 89.9 75.0 60.0 66.0

This approach is more useful for non-professional users. Both the total time and the
final accuracy of the non-professional users in the OG are much better than those of the non-
professional users in the TG. The reason is that professional users can achieve a relatively high
accuracy in the manual consistency and completeness checking due to their rich background
knowledge. Therefore, this phenomenon is not very distinct among them, but is very obvious
among the non-professional users. As a result, we believe that the proposed approach is indeed
more user-friendly to non-professional users compared with the manual processing.

We also note that there may be significant differences in writing time and final accuracy
among different users in the same group, and there are two reasons for such differences.

Firstly, the complexity of requirements and rules are different, which results in differences in
accuracy. For example, the trigger of requirements or rules written by some users neither contain
the “and” and “or” connectors nor the states of the controlled entities, but only the attribute
values of the monitored entities. Such requirements or rules are relatively simple and can be
written with a high accuracy. However, other users are obsessed with complex requirements,
which leads to more errors.
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Secondly, differences in knowledge in other fields cause different writing time. For example,
with the major of software engineering and a certain understanding of requirements engineering,
a professional user spent only 12 min on writing the requirements, while another professional
user spent 30 min. Through inquiry, we find that the latter has no ideas about the unit of light
(lx) and the relative humidity, and thus more time is spent on checking the data to complete the
writing of the requirements. Therefore, although there is not much difference in professional
background, other factors such as life experience and knowledge in other fields can also lead to
the fluctuations of the evaluation results.

Contrary to the popular belief, the final accuracy of some professional users fails to reach
100%, and the writing time of professional users is generally longer than the writing time
of the non-professional users. The reason why the accuracy cannot reach 100% is that the
requirements themselves are wrong, even though they satisfy consistency and completeness. For
example, a professional user wrote the following requirement “IF Room.humidity > 45 THEN
Window.open”. When the air humidity is greater than a certain value (during rain), the window
is open, which deviates from the real life. Therefore, this is a wrong requirement that does not
break the consistency and completeness. The professional users take longer on average because
they have more background knowledge and think more about writing requirements, whereas the
non-professional users rely entirely on the practical experience.

5.2 Performance
This section analyzes the performance of the automation process of the proposed approach.

Five groups of experiments are designed for the performance evaluation of the algorithm of
converting service requirements to problem diagrams, the consistency checking algorithm, the
completeness checking algorithm, the TAP generation algorithm, as well as the whole approach
in this paper. Ten experiments are designed for each group to run the algorithms on 10, 30,
50, 100, 200, 300, 500, 800, 1,000, and 1,200 requirements respectively, and the time cost
is recorded. The experimental environment of this paper is 64-bit Win10 system, Intel(R)
Core(TM) i7-9700k CPU @ 3.60 GHz, 32 GB RAM.

The service requirements for each experiment are automatically generated by the program.
When the algorithm of converting the service requirements to the problem diagrams and
the TAP generation algorithm are evaluated, the exactly correct service requirements are
generated. When the consistency and completeness checking algorithms and the whole process
are evaluated, the probabilities of inconsistent requirements and incomplete requirements in
the generated requirements are both 20%. If the inconsistent requirements are generated, two
kinds of inconsistencies are randomly generated with a probability of 1/2 respectively. If the
incomplete requirements are generated, the state incompleteness, the attribute incompleteness
without “and” and “or”, and the attribute incompleteness with “and” and “or” are randomly
generated with the probabilities of 1/4, 1/4, and 1/2, respectively. To avoid the influence
of randomness on the evaluation results, we carry out each experiment 10 times. The
number of inconsistency/incompleteness and the time cost of each experiment are recorded
and the experimental results are averaged as the evaluation result. The average number of
inconsistency/incompleteness of the ten groups of experiments is listed in Table 3, and the final
results of performance evaluation are shown in Figure 8.

As can be seen from the change trend in Figure 8, the performance of the proposed
approach exceeds the available threshold. The time costs of the algorithm of converting service
requirements to problem diagrams, the TAP generation algorithm, and the consistency and
completeness checking algorithms all increase with the number of requirements, but the increase
rate is not very high, which is basically consistent with the algorithm complexity of O(n) and
O(n2) mentioned above. Therefore, this method can be applied to large-scale systems.
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Figure 8 also shows that when the number of requirements increases to a certain value,
the time cost of the algorithm of converting service requirements to problem diagrams is
significantly longer than those of the consistency and completeness checking algorithms and the
TAP generation algorithm. The reason is as below. Assuming that the number of requirements
is n, the time complexity of the consistency and completeness hecking algorithms and the
TAP generation algorithm is O(n), as described in Section 4. However, the complexity of the
algorithm of converting service requirements to problem diagrams is O(n2). Therefore, the
time complexity of the converting algorithm is higher than the two checking algorithms and the
TAP generation algorithm. With the increase in the number of requirements and thus the total
number of states in the environment ontology, the converting algorithm is supposed to take more
time.

Table 3 Average number of inconsistency/incompleteness and their distribution in experiments

Total number of
requirements

Inconsistency Incompleteness

Scope Overwriting State Attribute without
“and” and “or”

Attribute with “and”
and “or”

10 0.4 0.8 0.3 0.3 0.8
30 0.8 2.6 1.9 1.0 2.2
50 3.8 2.9 2.8 2.9 4.0
100 7.3 7.6 3.7 4.8 10.0
200 10.8 12.6 9.7 10.8 19.6
300 19.5 21.1 14.0 13.9 31.5
500 32.4 30.6 25.2 28.1 45.7
800 50.9 54.1 40.0 39.1 80.9

1,000 63.2 64.8 49.0 51.9 91.5
1,200 81.3 77.7 61.2 58.5 120.7
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Figure 8 Result of performance analysis

In addition, the time cost of the consistency and completeness checking algorithms in
Figure 8 is not strictly monotonically increasing. In our opinion, this is related to the number
of inconsistency/incompleteness in the service requirements in each group of experiment,
namely the time spent on checking consistent (complete) and inconsistent (incomplete) service
requirements is different. To prove this point, we design another four groups of experiments
for comparison. Groups 1 and 2 evaluate the performance of consistency and completeness
checking algorithms when there is no consistency and completeness error respectively, and
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Groups 3 and 4 evaluate the performance of consistency and completeness checking algorithms
when there are consistency and completeness errors respectively. The average number of
inconsistency/incompleteness in Groups 3 and 4 can still be seen in Table 3. Each group
is divided into 10 experiments according to the number of service requirements, and each
experiment is repeated 10 times, whose time cost is recorded. The results are averaged and the
final results are shown in Figure 9.
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Figure 9 Time cost of consistency and completeness checking

When there are no consistency and completeness errors in the problem diagram, the time
for consistency and completeness checking is greatly shortened (Figure 9). Therefore, when the
proposed approach is used to generate TAP rules, if the requirements written by users are of
high quality and have no errors, the time cost will not be increased due to the consistency and
completeness checking.

5.3 Construction time of environment ontology
Compared with directly writing the TAP rules, the proposed approach needs to construct

the environment ontology first. This section tries to discuss whether it is worth spending time
to construct the environment ontology, namely whether the construction of the environment
ontology can save more other time, and whether the time to construct the environment ontology
can be ignored as the number of requirements increases.

In the accuracy and efficiency evaluation experiments in Section 5.1, the environment
ontology contains 5 controlled entities, with a total of 11 states and 24 transition relationships.
Although users spend 7 min on average to construct and modify the environment ontology, this
method automatically checks the consistency and completeness errors and thus saves more time
as compared with the manual checking. In addition, the proposed method also prompts the
incorrect statements to help users make the modifications. As can be observed from Table 2,
when there are 10 requirements, the time spent to construct the environment ontology has been
less than the saved time. However, in the scenario with a large number of requirements, although
the construction time of the environment ontology also increases to a certain extent due to the
increased number of entities, it is inferior to the great time cost of the manual consistency and
completeness checking. Therefore, we believe that it is worth spending some extra time to
construct the environment ontology and thereby save more time.

This paper also designs a group of experiments to prove the above conclusions. We
argue that although the number of requirements increases continually, if the total time spent on
constructing the environment ontology, writing the requirements, deriving the system behaviors,
and checking and modifying consistency/completeness until the generation of the rules tends to
be stable, the impact of constructing the environment ontology on the efficiency can be ignored
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after the scale of requirements reaches a certain degree. Therefore, 10 experiments are designed
and numbered 1 to 10. The ratio of total time (the sum of the time to construct the environment
ontology and the time of the above steps) to the number of requirements, namely the average
time required for each requirement, is calculated in the scenarios with 10, 30, 50, 100, 200, 300,
500, 800, 1,000, and 1,200 requirements respectively. The experimental results are shown in
Figure 10.

When the number of requirements increases, the ratio of the total time to the number of
requirements gradually tends to be stable (Figure 10), namely that the relative time to construct
the environment ontology becomes shorter and even tends to 0. There are two reasons for
this phenomenon. First, domain experts become more familiar with the construction of the
environment ontology, and thus the construction of the environment ontology becomes faster.
Second, many elements in the same domain can be reused. For example, for a smart home IoT
system, when users write 10 requirements, the controlled entities involved in the environment
ontology only contain bulb, window, and blind. When users write 50 requirements, the controlled
entities involved in the environment ontology are bulb, blind, window, air conditioner, and TV.
The environment ontology of bulb, window, and blind can be reused, which thereby reduces
the construction time of the environment ontology. Under the influence of these two aspects,
the time to construct the environment ontology is shared by more and more requirements and
gradually becomes negligible.
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Figure 10 Ratio of total time to number of requirements

It is worth noting that the correct execution of the proposed approach depends on the
correct environment ontology. If an error occurs in the environment ontology, the correctness
of the method will be affected. If an environment entity that should not exist is mistakenly
added, some requirements without problems will be wrongly judged as state incompleteness
during the completeness checking. If there is a transition error in the environment ontology,
such as an incorrect transition condition, the corresponding system behavior may not be found
when the system behavior is deduced with the environment ontology, which thereby results in
errors. In fact, this problem has already arisen in the user study in Section 5.1. A professional
user spent 14 min modifying the requirements, which is quite a long time in the presence of
mistake prompts by the approach. After inquiry, the user found a mistake when constructing
the environment ontology in the process of modification, rebuilt the environment ontology and
modified the requirements, so a long time was spent. Therefore, for the construction of the
environment ontology, two points should be emphasized. The environment ontology should
be constructed by domain experts; once constructed, the environment ontology should be peer
reviewed for the minimization of the possible errors.
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6 Related Work
The work related to this paper includes the requirement acquisition approach of the

IoT system, the requirements consistency and completeness checking, and the consistency
and completeness checking method of TAP. There are already some efforts to capture the
requirements for the IoT systems. For example, Reference [2] introduces a set of methods for
formulating and standardizing the requirements of the IoT systems. Requirements specification
of the IoT systems includes domain model, target view describing the goals and their
relationships, and goals’ specification described by UML diagrams. It adopts the goal-oriented
method concept[14] and denotes requirements as goals, which is relatively subjective. However,
the requirements engineering concept based on environment modeling adopted by this paper
denotes requirements as state changes of environment devices, which is relatively objective.
In addition, the domain model in Reference [2] and the environment ontology in this paper all
belong to the domain knowledge. However, it is only used for requirement acquisition, not for the
consistency and completeness checking. Other work focuses on the non-functional requirements
of IoT systems. For example, based on the i* framework[16], Reference [15] captures the security
and privacy requirements in the early stage of the development of IoT systems. On the basis of
K-Model, Reference [17] allows developers to write the codes in JSON form according to the
template and then write and modify the non-functional requirements through these codes. This
paper only involves the functional requirements.

Much work has also been done on the requirements completeness and consistency
checking. Reference [18] describes the disastrous consequences that the inconsistent and
incomplete requirements bring to software development and proposes the indicators to measure
the completeness and consistency of Software Requirement Specification (SRS), but the
completeness and consistency need to be guaranteed manually. Reference [19] carries out the
automatic consistency checking. The requirement is expressed as SCR tabular and the software
system as finite state automata. The consistency is automatically checked by static analysis.
Reference [20] uses a state-based requirement specification language, RSML, to express the
requirements and makes use of the characteristics of RSML to analyze the completeness and
consistency. To improve the requirements completeness, Reference [21] provides a natural
language processing tool. During the writing of requirements, the tool automatically prompts
the terms or the relationships that may be used to help the requirements engineers find relevant
concepts and interactions, so that the requirements can be written more accurately. Depending
on an obstacle analysis, Reference [22] combines the model checking with the machine learning
to identify, evaluate, and solve abnormal situations that may hinder the system objectives, so
as to produce complete requirements. However, they are not applied in the IoT systems and
do not support user programming. In addition, they do not use the environment knowledge for
checking.

There are also efforts to conduct the consistency and completeness checking based on
knowledge. For example, Reference [8] proposes a knowledge-based requirements engineering
process method to ensure the requirements consistency and completeness. The authors propose
a hybrid model based on the framework ontology and the production rules to represent the
system requirements. The combined ontology framework and production rules are used
for the requirements consistency and completeness checking. The framework proposed in
Reference [23] uses expert agents to assist users in requirement definition. It uses knowledge
base and case base to help users define a set of system requirements that conform to the
completeness and consistency. It also allows the control power to switch between users and
expert agents, which provides a collaborative medium for requirements writing. Reference [24]
presents an ontology-driven goal-based requirements engineering meta-model, which is based on



284 International Journal of Software and Informatics, 2021, 11(3)

reasoning technology and combined with the ontology consistency checking and the rule-driven
completeness checking. This model can be used to both capture the requirements and measure
the correctness and coverage of the requirement models. These knowledge-based methods are
similar to this paper in some aspects. The environment ontology in this paper is also knowledge,
but it is the environment knowledge about IoT systems.

The consistency checking of many requirements are the formalization and formal
verification methods based on the pattern language. Reference [25] uses the restricted
natural language in the form of the Specification Pattern System (SPS) to describe the system
requirements and then automatically converts them into the timed computational tree logic and
then into the first-order logic formulas. Z3 is used to perform the SMT analysis and check
whether the requirements are consistent. Reference [26] adopts BTC mode to represent the
requirements[27]. To minimize the analysis cost, it utilizes bounded model checking to detect
consistency. Reference [28] defines a pattern language named SafeNL for safety requirements,
which expresses the requirements in a quasi natural language and then automatically transforms
it into the clock constraint specification language, and detects the consistency of security
requirements by means of bounded model checking. Reference [29] proposes a new concept
of formal consistency, namely the partial order consistency, to simplify the general pattern.
Partial order consistency can identify the key cases of a system and verify whether these cases
cause conflicts between the requirements. In this reference, the requirements expressed by the
simplified general pattern are subjected to formal modeling by counting automata, and then
the partial order consistency is formally defined. In addition, the method to detect whether
the requirement model deviates from the partial order consistency is given. Reference [30]
proposes a language for structured requirements of automobile systems. It uses the ontology
of automobile systems to provide lexical and syntactic standards and reduces the requirements
consistency checking into a proof of Boolean propositions. Afterward, it uses theorem proving
to check the requirements consistency. Among these methods, model checking and theorem
proving are both heavy-weight formal methods, whose efficiency is difficult to guarantee and
returned results are difficult to be understood by ordinary users.

At present, formal methods are used to check the consistency of TAP rules. For example,
AutoTap in Reference [7] allows users to utilize the TAP rules to describe the requirements
and also to define the attributes that the system must satisfy. AutoTap transforms the rules
and attributes written by the users into LTL formulas, and model checking is adopted to check
whether they have conflicts or not. The tool developed by Zhang et al.[31] uses formal methods to
transform the TAP rules into CTL and LTL formulas. Then their consistency is checked with the
help of the NuSMV tool. Reference [32] also adopts a formal method to model the IoT system
with the linear hybrid automata and then performs reachability analysis to check consistency.
All these methods check the TAP rules and are quite different from this paper, in which whether
there is a conflict between system behaviors is checked. Moreover, the approach in this paper is
actually based on rules, with a high efficiency and a large scale of use.

7 Conclusions and Future Work
To realize the automatic generation from service requirements to device scheduling

instructions and ask users to participate in the development of the IoT system, this paper proposes
an approach to generating the TAP rules based on environment modeling. It automatically
derives the system behaviors from the service requirements based on the environment model,
checks the completeness and consistency of system behaviors, and finally generates the TAP
rules. This paper constructs the environment ontology, provides the concepts and associations of
environment modeling, and describes the state, attribute, behavior, and their relationship of each
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device in the IoT system. Then, depending on the environment ontology, this approach supports
the whole process including the derivation of system behavior from the service requirements
written by the users, the consistency/completeness checking, and TAP rule conversion. The
evaluation results of the proposed method show that it has good performance, efficiency, and
accuracy. The evaluation also indicates that as the number of requirements increases, the time
to construct the environment ontology becomes negligible and saves plenty of time for manually
checking consistency and completeness.

This paper only focuses on the functional requirements of IoT systems and does not involve
non-functional requirements such as time, security, privacy, and reliability. Future work will
be conducted to capture and check these non-functional requirements. In addition, the current
construction of the environment ontology only relies on domain experts, and the next work will
consider the semi-automatic or even automatic methods for construction.
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