
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2021, 11(3): 357–378, doi: 10.21655/ijsi.1673-7288.00263
©2021 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

Structurally-EnhancedApproach forAutomaticCode
Transformation

Yingkui Cao (曹英魁)1,2, Zeyu Sun (孙泽宇)1,2, Yanzhen Zou (邹艳珍)1,2,
Bing Xie (谢冰)1,2

1 (School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China)
2 (Key Laboratory of High Confidence Software Technologies of Ministry of Education (Peking University),

Beijing 100871, China)
Corresponding author: Bing Xie, xiebing@sei.pku.edu.cn

Abstract In software development, developers often need to change or update lots of similar
codes. How to perform code transformation automatically has become a research hotspot
in software engineering. An effective way is extracting the modification pattern from a set
of similar code changes and applying it to automatic code transformation. In the related
work, deep-learning-based approaches have achieved much progress, but they suffer from the
problem of significant long-term dependency between the codes. To address this challenge,
an automatic code transformation method is proposed, namely ExpTrans. Based on the graph-
based representations of code changes, ExpTrans is enhanced with the structural information
of code. It labels the dependency between variables in code parsing and adopts the graph
convolutional network and Transformer structure to capture the long-term dependency between
the code. ExpTrans is first compared with existing learning-based approaches to evaluate its
effectiveness; the results show that ExpTrans gains 11.8%–30.8% precision increment. Then, it
is compared with rule-based approaches and the results demonstrate that ExpTrans significantly
improves the correct rate of the modified instances.
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1 Introduction
In software development, developers often need to change similar fragments of code.

However, changing similar code is time-consuming and makes developers liable to introduce
new mistakes when they finish the repeated tasks[1, 2]. Based on different version control systems,
the commit histories of software projects have been fully documented. In these committed code
changes, abundant similar code change scenarios and schemes can be found, from which change
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patterns are extracted and used to automatically change similar code, called automatic code
change transformation.

In previous work, automatic code change transformation was often carried out based on
manual feature engineering[7–11], namely that researchers manually propose rules to represent
change patterns and conduct transformation. However, these rules are often based on the
researchers’ expert knowledge of a particular programming language and require much time and
effort for summary and refinement. Recently, learning-based transformation approaches[12, 13]

have been emerging. A common practice is to use an end-to-end translation model, where
the code to be modified is “translated” into the modified code. However, the existing work
has not fully used the structural information of the modified code instances. On the one hand,
some existing work utilizes translation models to translate the code to be modified directly into
the modified code. However, in the absence of modified instances, trying to train a global
translation model for code transformation is undoubtedly difficult. On the other hand, compared
with natural language, code has significant long dependency between the information within it.
As shown in Figure 1, the variable name fis in the function call fis.close() is the same as the
one originally declared. However, existing approaches are often proposed based on recurrent
models, which are not good at capturing the long dependency between code statements where
variable fis is declared and used.

FilelnputStream fis = new FilelnputStream(new File(dir)), 
try { 

      fis.close(), 
} catch(IOException e) {

…

…
}

Figure 1 Long dependency between variable names

To solve these problems, this paper proposes an approach, ExpTrans, which uses structural
information to enhance code transformation. ExpTrans takes input as x and x∆ → y∆, where x
is code which needs to be modified and the modified instance x∆ → y∆ consists of pre-modified
code x∆ and post-modified code y∆. ExpTrans outputs code y as the result of modifying x.
On the one hand, ExpTrans parses x∆ and y∆ into ASTs (Abstract Syntax Trees) and looks
for the correspondence between their nodes. Based on the correspondence, the given modified
instances are represented by graphs which are used to enhance the ability of ExpTrans to capture
the structural information of the modified instance. On the other hand, ExpTrans combines
Graph Convolutional Network and Transformer structure[14] to enhance the model’s ability to
capture the dependency between code, especially the long-term dependency.

ExpTrans is based on an encoder-decoder architecture. The encoder encodes the information
of x, x∆ → y∆ and internal state information. The decoder predicts the modified code y

according to the encoder’s result. To ensure the generated code y can be compiled, ExpTrans
generates the code by predicting the rule sequence like the works of Yin et al.[15] and et al. [16]

did. A rule is like α → β1β2⋯βn, which means to expand a node α on AST with n child
nodes whose type is β1,⋯, βn, respectively. Specifically, a abstract syntax tree representing the
internal state will be maintained, and based on the next predicted rule, the current leftmost node
to be expanded is processed until all non-leaf nodes are expanded. The code corresponding to
the generated abstract syntax tree is the transformed one.

To verify the effectiveness of ExpTrans, this paper conducts a comparative experiment with
two data sets. The first data set includes 111,724 C# code modifications[13] open to the public
by Yin et al.[13]. The experimental results show that compared with the work of Yin (based on
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deep learning)[13], ExpTrans gains an 11.8%–30.8% precision increment. The second data set
comprises six groups of typical similar code modifications in the Java programming language
collected from GitHub. ExpTrans, the GenPat approach[17], and the ARES approach[10] (the
latter two based both on artificial rules) are used to automatically modify the code instances in
the second data set. The experimental results show that there are instances correctly modified
by ExpTrans in each group, and all the instances in each group can be correctly modified by
ExpTrans. Compared with the results of GenPat and ARES, the results obtained by ExpTrans
have been greatly improved in the correct rate of modified instances.

The contributions of this paper are mainly manifested in the following aspects:
(1) A graph-based representation approach for code modification is proposed. Compared

with the representation by word sequences, the graph-based structure can more accurately
represent the modification process, which has facilitated the capture of structural information in
code modification.

(2) An automatic code transformation method based on the structural information
enhancement of the Transformer structure is proposed. This approach uses a special copy rule
to explicitly express the extensive dependency between variable declarations and usage different
fragments of code, enhancing the ability of the model to capture the long-term dependency
between the code.

(3) This paper carries out comparative experiments with two data sets and makes all the
data public (https://github.com/caoyingkui/ExpTrans). Compared with the existing
machine learning-based approaches, ExpTrans gains an 11.8%–30.8% precision increment.
Moreover, it significantly improves the correct rate of modified instances, compared with the
rule-based approaches.

In this paper, Section 2 introduces the existing related work. Section 3 illustrates the
code generation model based on predicted rule sequences and the overall framework of the
approach proposed in this paper. Section 4 shows the specific implementation details of the
approach. Section 5 presents the experiments for verifying the effectiveness of the approach,
the experimental settings, and results. Finally, Section 6 summarizes the work of this paper.

2 Related Work
As mentioned above, the related work of this paper is divided into two categories, i.e., the

approaches based on artificial features and the automatic code transformation methods based on
deep learning.

2.1 Rule-based approaches
The main idea of these approaches is as follows: Based on the rules of artificial extraction, a

code transformation “script” is extracted from the given modified instances to explain and restrict
the modification conditions, patterns, and processes in the instances. Moreover, according to
the approach agreed in the script, this script is automatically matched to the qualified code area
to complete code transformation. In the existing work, this script is presented in multiple forms,
such as the code editing sequence[7], template[8], and Domain-Specific Language (DSL)[11].

In SYDIT proposed by Meng et al., an edit operation sequence is used to represent the
process of code transformation[7]. The edit operations include four types: addition, deletion,
update, and move of AST nodes. SYDIT leverages wildcards to generalize the class type
and location in the operation. For example, !config.inValid() is represented as !v2.m5(). The
operations in the sequence are performed successively to modify the code. LASE is another
code transformation method proposed by Meng et al.[9]. It also uses a set of editing operation

https://github.com/caoyingkui/ExpTrans
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sequences to represent the code transformation in the sample code. Different from SYDIT,
LASE extracts the code transformation from multiple similar modified instances.

In addition, some existing works use templates to represent the patterns in modified
instances. For example, spdiff extracts a term replacement patch from the modified instance
to characterize the code modification in the instance and takes the longest common sub-patch
in a group of modified instances as the code transformation[8]. Dotzler et al. proposed ARSE
for code transformation based on multiple instances[10]. However, unlike LASE, ARSE uses
a template to represent the pattern in the modified instances. Jiang et al. proposed GenPat
for extracting the code transformation pattern from a single modified instance[17]. With this
approach, the code transformation is finally represented as a tree structure. The information
of each node in the tree includes the node ID and a set of attribute values. At the same time,
the representation result of GenPat also contains a set of operations, each of which is a tuple⟨id, id′⟩. id and id

′ respectively represent a node in the AST of the code before and after
modification, namely that the node id is modified to the node id′.

In the REFAZER proposed by Rolim et al., a special Domain-Specific Language (DSL) is
defined[11]. Its main function is to define the operation of the AST and restrict the conditions
for the AST that meets the specific modification as well as the modification location and type.
Therefore, the goal is generating a piece of code based on DSL. The input of the generated code
is a piece of code before modification, and its output is a piece of modified code.

2.2 Learning-based approaches
The main idea of learning-based approaches is giving the code to be modified and using

the machine learning model to predict the modified code. Tufano et al. proposed an approach
for code transformation based on the translation model[12]. Specifically, the model takes as input
a given piece of code to be modified, and predicts a token sequence as the modified code. At
the same time, the approach also explores types of code modification scenarios the translation
model is suitable for, such as defect modification and code reconstruction. The function and
compilation of code strictly depend on a specific token sequence of the code and the positional
relationship between the tokens. However, the translation model cannot guarantee that the output
of the model can be compiled. To overcome this problem, the approach proposed by Yin and
Neubig generates code by predicting the rule sequence to ensure the grammatical correctness
of the output code[15]. Based on this mechanism, Yin et al. proposed a learning-based code
transformation model[13]. In addition to code to be modified, the model also input modification
instance. That is, the code transformation is realized by learning the code transformation from
the modified instance.

In summary, the approach proposed by Yin et al. is the most relevant approach with
this paper in the existing work. They use the LSTM model to process the text information of
code. Compared with natural language, the code has more significant long-term dependencies,
but studies have shown that the time series model is not effective in dealing with long-term
dependency[14]. Therefore, overcoming the long-term dependency of code is one of the main
reasons for the approach proposed in this paper.

3 Approach Framework
To ensure the code generated by the approach can be compiled, this paper draws attention

on the work of Yin and Neubig[15] and uses the approach of predicting rule sequences instead
of term sequences to generate code. At the same time, our approach adopts special copy rules,
so as to explicitly record the dependencies between the variables in the code. This section will
first briefly describe code generation based on predicting rule sequence.
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Code rules: In this paper, a rule takes form asα → β1β2⋯βn;α is a non-terminal symbol
while βi is a terminal symbol or a non-terminal symbol. In the abstract syntax tree of code,
each non-leaf node corresponds to a rule α → β1β2⋯βn, where α is the syntax type of the
node while βi is the syntax type (or term) of its child nodes.

Acquisition of rule set: Assuming that the node v in a given AST has the syntax type of
α and n child nodes with the syntax types (or terms) of β1,⋯, βn, respectively, then the rule
r ∶ α → β1⋯βn can be obtained. All non-leaf nodes of the abstract syntax tree are traversed
from top to bottom and from left to right to obtain the corresponding code rule sequence. At
the same time, the rule set {r1,⋯, rN} can be obtained by traversing the abstract syntax tree of
the code in the experimental data set.

Since developers can use any legal variable names and strings in code, the code has a more
significant Out-Of-Vocabulary (OOV) problem than natural language. Therefore, our approach
restricts and preprocesses the tokens in the rules to avoid the blow-up of the final rule set.
Specifically, before acquiring the rule, our approach counts all variable names, strings, numeric
constants, and character constants, as well as their number of occurrences in the code from the
experimental data set. One token will be reserved only when the number of its occurrences
exceeds a given threshold. When the number of occurrences of a token is lower than the
threshold, our approach will replace it in the form of type_id, where type represents the tokens’
type, namely variable name, string, numeric constant, or character constant; id indicates the
serial number. In this way, it can be ensured that the size of the final rule set is within a limited
range.

In addition, our approach includes a special copy rule in the rule set. In code, a clear
dependency can be found between variable declaration and usage. Our approach uses the copy
rule to explicitly record the dependency between variable declaration and usage. As shown
in Figure 1, the variable name fis in the statement “fis.close();” is declared by the statement
“FileInputStream fis=new FileInputStream(new File(dir));”. Therefore, when our approach
parses fis.close(), the copy rule is used to mark that the variable name fis is derived from copying
the previously defined fis. There are two main advantages of using the copy rule. The first one
is that the copy rule explicitly records the dependency between variables, which is conducive to
enhancing the ability of subsequent models to capture the dependency between variables. The
second is that the scope of the copy variable of the copy rule is the set of variable names defined
by the code. Therefore, the prediction space faced by the approach in the subsequent prediction
process is the set of variable names defined by the code. Compared with the entire term space,
the copy rule narrows the prediction space when predicting variable names, thereby improving
the correct rate of the approach.

The code generation based on predicting rule sequence. Figure 2 shows the process
of generating the code “fis.close();” based on the rule sequence [r1,⋯, r7]. Given the rule
sequence of Figure 2(a), an abstract syntax tree with only the root node is initiated, and its type
is Statement. Based on the first rule, Statement → ExpressionStatement, a child node with the
type of ExpressionStatement is added to the root node. As shown in Figure 2(b), when the first
three rules are completed, the lowermost layer of the current abstract syntax tree will contain
two nodes to be expanded, i.e. Expression and SimpleName. Because “.”, “(”, and “)” are
terminal symbols, they will not be expanded in the subsequent process. At this time, the next
rule r4 is used to expand the leftmost node (non-terminal symbol) to be expanded, namely the
Expression node on the left. According to the above approach, a complete abstract syntax tree
will eventually be generated. The code is generated by obtaining all the leaf node content from
left to right.

Based on the above approach, this paper will implement automatic code transformation by
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predicting the rule sequence. The input are x and x∆ → y∆, where x is the code to be modified,
and x∆ → y∆ represents a modified instance (x∆ and y∆ represent the code before and after
modification, respectively). The final output, ȳ, represents the modified code generated by our
approach. In the process of generating code ȳ, an abstract syntax tree that represents the internal
state will be maintained. By predicting the next rule, the leftmost non-leaf node will be expanded
until the final code is generated. The probability of generating code ȳ are calculated as follows:

p(ȳ) = ∏ p(ri∣x, x∆ → y∆, r1,⋯, ri−1) (1)

where r1,⋯, ri is the generated rule sequence.

(a) Instruction sequences of fis.close(); (b) Generation of fis.close();

Figure 2 Rule sequences and generation of fis.close();

Figure 3 shows the overall framework of ExpTrans as introduced in this paper.
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Figure 3 Neural network of ExpTrans

The approach follows the encoder-decoder architecture, which mainly includes four
modules, i.e., a code-diff encoder, a code encoder, an AST encoder, and a decoder. These
four modules all adopt the multi-block Transformer structure[14], namely that each module is
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composed of multiple blocks with the same structure. For example, in the code-diff encoder,
each block is composed of the same neural network, including the Graph-conv layer, the Self-
attention layer, the Char-gating layer, and the Rule-gating layer, where the output of the previous
block is taken as the input of the next for connection. Residual connection[18] is adopted in the
internal structure of each block, and adjacent network layers (such as the Graph-conv layer and
the Self-attention layer) are connected. It should be noted that Figure 3 only shows one block of
each module. The main functions of the four modules are as follows:

• Code-diff encoder: It models the information of the input modified instance x∆ → y∆.
• Code encoder: It models the input information of code x to be modified.
• AST encoder: During code generation, an abstract syntax tree representing the internal

state needs to be maintained. This module models the information of the abstract syntax
tree to provide the global syntax tree information while predicting the code rules.

• Decoder: During code generation, the decoder will predict the next rule according to
the node to be expanded in the generated abstract syntax tree. Specifically, the node
information to be expanded is taken as a query and input in the decoder. Based on
the input query, the decoder adopts an attention mechanism to combine the modeling
information of the code encoder, code-diff encoder, and AST encoder. Then, according
to the output of the decoder, the next rule is predicted by the proposed approach in
combination with softmax and pointer network[19].

4 Approach
Given the code x to be modified and the modified instance x∆ → y∆, the goal of ExpTrans

is to realize the code transformation ȳ = Trans(x, x∆ → y∆),where ȳ is code after modification
predicted by ExpTrans. We will describe the details of the different parts of ExpTrans in this
section.

4.1 Code-diff encoder
The code-diff encoder is used to model the modification and code structure information of

x∆ → y∆. Given x∆ → y∆, the code before and after modification (x∆ and y∆, respectively)
is represented in the form of ASTs. The node sequences of these two ASTs are obtained
from top to bottom and from left to right, and recorded as [v(ori)

1 ,⋯, v
(ori)
L(ori)] and [v(mod)

1 ,

⋯, v
(mod)
L(mod)], separately. Then the two sequences are merged into one sequence, recorded as

V = [v1,⋯, vL(ori) ,⋯, vL(ori)+L(mod) ,⋯, vL], where L is the pre-defined maximum length; the
first L(ori) nodes are the node sequence before modification and the following L

(mod) nodes are
the node sequence after modification. When the lengths of node sequences before and after
modification are less than L, a special placeholder symbol, < EMPTY >, is used for expansion.
The code-diff encoder models the modified instance x∆ → y∆ as a node sequence [v1,⋯, vL],
and the output of the code-diff encoder is Y (diff) = [y(diff)

1 ;⋯; y
(diff)
L ]T, where y(diff)

i ∈ RH is the
representation vector of node vi, and H is the embedding size (128 in the approach).

4.1.1 Graph-conv
The modified instance x∆ → y∆ takes the form of separated fragments of code before

and after modification. Separately modeling x∆ and y∆ will lose the relations between the
pieces of code before and after modification and their structural information. For this, ExpTrans
represents x∆ → y∆ as a unified graph G = ⟨V , E⟩, where the node set V is the set of abstract
syntax tree nodes corresponding to x∆ and y∆, and E is the set of linked edges between nodes.

To establish the linked edge between the x∆ and y∆ nodes, ExpTrans uses GumTree[20] to
obtain the corresponding relationship between the nodes before and after modification. GumTree
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is a code-difference extraction tool based on ASTs. It first obtains the abstract syntax trees, treex
and treey , corresponding to the code x∆ and y∆ before and after modification, respectively.
Then, the syntax type and text information of the treex and treey nodes are compared in a
bottom-top order and the similarity of the nodes is calculated accordingly to obtain the optimal
matching relationship between treex and treey nodes. On this basis, the code modification
process can be accurately deduced.

In this paper, if there is an edge from vj to vi, node vj is called the parent node of node
vi. Further, the parent node of vj is the grandparent node of vi. According to the outcome of
GumTree, when nodes vi and vj satisfy one of the following three relations, a linked edge from
vj to vi is built, and the edge is added to the set E.

(1) Nodes vi and vj are both on treex, and vj is the parent node of vi.
(2) Nodes vi and vj are both on treey , and vj is the parent node of vi.
(3) Nodes vi and vj are on treey and treex, respectively, and they have a correspondence

according to the results of GumTree.
Based on the set E, the adjacency matrix M between nodes can be constructed. When

vj is the parent node of vi, M[i][j] = 1; otherwise, M[i][j] = 0. For example, the code
“fis.close();” is modified into “inputFile.close();”, and Figure 4 shows a graph structure to present
the process and results of code modification. As shown in Figure 4(a), the codes before and after
modification are represented in the form of abstract syntax trees (symbols such as “.” and “(”
are omitted for ease of display). Based on the obtained abstract syntax trees, GumTree is used to
obtain the correspondence between the abstract syntax tree nodes of the codes before and after
modification. In Figure 4(a), nodes ni and n

′
i represent a correspondence between two nodes.

Finally, the graph structure of code is represented as the adjacency matrix shown in Figure 4(b).

(a) Abstract syntax trees corresponding to “fis.close();”
and “inputFile.close();”

(b) Adjacency matrix

Figure 4 Construction of the code-differential adjacency matrix

4.1.2 Extraction of encoding information

Before calculating Y
(diff), the code-diff encoder first obtains the initial information of

different aspects of each node.
Word embedding: In the AST, each non-leaf node has a specific syntax type, and it

corresponds to a token in the code. Based on the node set V of graph G, a word sequence[w1,⋯, wL] can be obtained. When vi is a non-leaf node, wi is the syntax type of vi. When vi
is a leaf node, wi is the token which vi corresponds to in the node. Through embedding, each
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word wi has an initial representation vector, y(w)
i ∈ RH ; the word embedding corresponding to

the node sequence [v1,⋯, vL] is Y (w) = [y(w)
1 ;⋯; y

(w)
L ].

Character embedding: Some semantically similar words have the same character
sequence, such as the words derived from the same root. The above approach encoding
the information of the word as a whole will discard the character information of the terms.
To introduce the character information of the term into the representation vector of nodes,
ExpTrans uses the approach proposed by Sun et al. to encode the character information of
words[16]. Specifically, based on [w1,⋯, wL], each word wi is split into a character sequence[ci,1 ,⋯, ci,L′ ], where L

′ is the pre-defined maximum length of the term preset by ExpTrans.
Similarly, ExpTrans randomly obtains an initial representation vector y(char)

i,j ∈ RH
, for each

character ci,j and leverage the fully connected layer to calculate the character representation
vector of term wi according to Eq. (2):

y
(char)
i = W

(char)[y(char)
i,1 ;⋯; y

(char)
i,L′ ] (2)

where y
(char)
i ∈ RH

, and W
(char) is the network parameter. Then the character embedding

information corresponding to the node sequence [v1,⋯, vL] is Y (char) = [y(char)
1 ;⋯; y

(char)
L ].

Rule embedding: In the AST, each non-leaf node vi corresponds to a rule ri: α
(i) →

β
(i)
1 ⋯β

(i)
ni

, where α(i) is the syntactic type of node vi, and all β(i) are the syntax types or tokens
of the child nodes of node vi. Similarly to Eq. (2), each rule ri: αi → β

(i)
1 ⋯β

(i)
ni

is represented
with a vector y(rule)

i ∈ RH . In addition, the rule corresponding to the leaf node is replaced
by <EMPTY_RULE>. Therefore, the rule embedding information corresponding to the node
sequence [v1,⋯, vL] is Y (rule) = [y(rule)

1 ;⋯; y
(rule)
L ].

Position embedding: In the Transformer structure, the sequential data (such as the
representation vector of the node sequence of code) is packed into a vector matrix so that the
model can be trained in parallel. However, it will lose the position information of the data.
In this paper, the approach of Dehghani et al.[21] is used to artificially construct the position
information of each node with the following formula:

pb,i[2j] = sin((i + b)/(100002j/H)) (3)

pb,i[2j + 1] = cos((i + b)/(100002j/H)) (4)

where pb,i ∈ RH represents the location information of the i-th node in the b-th block. Then,
the position information corresponding to the node sequence [v1,⋯, vL] is P (diff) = [pb,1; ⋯;

pb,L].
4.1.3 Network structure of the code-diff encoder

Graph-conv: After x∆ → y∆ is represented as a node sequence, ExpTrans uses a graph
convolution layer to capture the structural information of the code.

Based on the graph G = ⟨V , E⟩ and the adjacency matrix M , the representation vector
matrix of the current node is F = [f1;⋯; fL], and then the representation vector of the parent
node of each node will be calculated according to Eq. (5):[f (par)

1 ;⋯; f
(par)
L ] = [f1;⋯; fL]M (5)

where f
(par)
i ∈ RH is the representation vector of the parent node of the i-th node; [f1; ⋯;

fL]M2 is the representation vector of the grandparent node of the node, and so on. Convolution
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is performed as follows:

Conv(F,M) = f(W (conv)[F ;FM ;⋯;FM
K−1]) (6)

where K is the window size, W (conv) is the convolution parameter, and f is the ReLU activation
function.

The input of this layer is the sum of the representation vector and the position embedding
of the node, namely I = [xb,1 + pb,1;⋯;xb,L + pb,L]; the output of this layer is

Y
(conv) = Conv(I,M) (7)

where when b = 1 (the first block), xb,i represents the word embedding (y(w)
i ) of the

corresponding node; for other blocks, xb,i is the output of the previous block.
Self-attention: This layer uses the self-attention mechanism in Transformer to capture

long-term dependency in code[14].
In Transformer, the attention mechanism is expressed as the process of mapping query Q

and key-value pair K and V to the output, where Q, K, and V are all vector matrixes. The
output is the result of the weighted summation of the components in V . The corresponding
weight of each value in V will be given according to the degree of matching between Q and the
corresponding keyword K; the result of the weighted summation is

Attention(Q,K, V ) = softmax(QK
T√

dk
)V (8)

where dk denotes the length of each features vector. At the same time, Transformer uses a
multi-head attention mechanism, which enables the model to notice information at different
locations from various perspectives of the representation space, namely

Multihead(Q,K, V ) = concat(head1,⋯, headh)WO (9)

where headi = Attention(QW
(Q)
i ,KW

(K)
i , V W

(V )
i ), h is the number of heads, and W

O ,
W

(Q)
i , W (K)

i , and W
(V )
i are all model parameters.

When Q, K, and V are the same, namely in the form of Multihead (Q,Q,Q), it is called
self-attention. This layer implements the self-attention mechanism; the output of this layer is

Y
(self) = Multihead(Y (conv)

, Y
(conv)

, Y
(conv)) (10)

Char-gating: Before this layer, the node sequence is represented as a vector matrix
Y

(self). To capture character information, a gating mechanism is used in this layer so that the
representation vector matrix of the node is updated to the weighted sum of Y (self) and Y

(char).
Given the representation vectors f1 and f2, the goal of the gating mechanism is to perform

the weighted summation of f1 and f2 to obtain the representation vector f
(gate), where the

weights of f1 and f2 are calculated according to Eq. (11):[γ1, γ2] = weight(f1, f2) = softmax{f1, f2} (11)

Then the weighted result f (gate) is

f
(gate) = gate(f1, f2) = [γ1, γ2] × [f1, f2]T (12)
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Similarly, given the vector matrixes F1 = [f1,1;⋯; f1,∣F1∣] and F2 = [f2,1,⋯, f2,∣F2∣],
which satisfy ∣F1∣ = ∣F2∣, the weighted result Gate(F1, F2) of the two by the gating
mechanism is

Gate(F1, F2) = [gate(f1,1, f2,1); gate(f1,2, f2,2);⋯] (13)

To ensure that Y (self) is still the main information of the weighted result, the control vector C(self)
is obtained through the linear transformation of Y (self). Then the weighted results of Y (self) and
Y

(char) are calculated according to Eq. (14) as the output of this layer:

Y
(char-gate) = Gate(Y (self)T

C
(self)

, Y
(char)T

C
(self)) (14)

Rule-gating: Similarly, this layer also adopts a gating mechanism to capture rule
embedding information. The output of this layer is

Y
(diff) = Gate(Y (char-gate)T

C
(char-gate)

, Y
(rule)T

C
(char-gate)) (15)

where C(char) is the control vector obtained by the linear transformation of Y (char-gate).
Finally, the output of the code-diff encoder is Y (diff).

4.2 Code encoder
ExpTrans uses a code encoder to model the information of code x. As shown in Figure 3,

the code encoder and the code-diff encoder have the same neural network while different ways
of obtaining the input of this layer.

The code x is parsed into an AST treex and the node sequence V
(x) = [v(x)1 ,⋯, v

(x)
L ] is

obtained in a top-to-bottom, left-to-right manner. Based on treex, the graph G
(x) = ⟨V,E⟩ is

constructed, where V = V
(x); E is the set of linked edges of nodes in treex. In addition, the

adjacency matrix M
(x) between nodes is constructed.

The code encoder adopts the same preprocessing approach of data as the code-diff encoder
to obtain the word embedding, character embedding, rule embedding, and position embedding
corresponding to the node sequence V (x). Then, the information passes through the Graph-conv
layer, Self-attention layer, Char-gating layer, and Rule-gating layer in turn. The final output of
the code encoder is Y (x).
4.3 AST encoder

During code generation, an internal AST is maintained and used to track the generation
process. The leftmost non-leaf node (to be expanded) of the current abstract syntax tree is taken
as a query to predict the next rule and the predicted rule is used to expand this node. Therefore,
it is necessary to encode the information of the abstract syntax tree during code generation
to provide a global view of the AST while predicting the next rule. In the AST encoder, the
generated rule sequence [r1,⋯, rp] represents the generated abstract syntax tree. The goal of
the AST encoder is to calculate the representation [y(ast)

1 ;⋯; y
(ast)
P ], for rule sequence, where

y
(ast)
i is the representation vector of rule ri, and P is the pre-defined maximum length of the rule

sequence.
4.3.1 Extraction of the encoding information

Initial embedding: With the embedding approach, each rule r has an initial vector r̄.
Therefore, given the rule sequence [r1,⋯, rR], the initial representation vector matrix of the
rule sequence is obtained by table lookup, namely R

(init) = [r(init)
1 ;⋯; r

(init)
P ].



368 International Journal of Software and Informatics, 2021, 11(3)

Character embedding: In the rule representation form asα → β1β2⋯, α and βi are very
important to express the semantic information of the rule. For example, when the type of the
node to be expanded is Statement, the type of the non-terminal symbol α of the next predicted
rule must also be Statement. However, the above approach of encoding the rule will ignore the
character information of the rule. To capture character information of rules, ExpTrans adopts
the approach of Sun et at.[16]. To be specific, given the rule ri:α → β1β2⋯, α and all βj are
words in the standard word set. Through table lookup, the representation vector α(w) or β(w)

j is

obtained. Similarly to Eq. (2), the fully connected layer is used; α(w) and all β(w)
j are taken as

the input; the output is recorded as r(char)
i . Finally, the fully connected layer is adopted again to

calculate the character embedding as follows:

r
(rule)
i = W

(rule)[r(init)
i , r

(char)
i , ᾱ] (16)

where W
(rule) is the network parameter; the character embedding corresponding to the rule

sequence [r1,⋯, rp] is R(rule) = [r(rule)
1 ;⋯; r

(rule)
P ].

Position embedding: Similarly, ExpTrans uses Eq. (3) and Eq. (4) to calculate the
position embedding of the rule sequence, P (ast) = [p(ast)

b,1 , p
(ast)
b,2 ,⋯], where p

(ast)
b,i is the position

embedding of the i-th rule in the b-th block.
4.3.2 Network structure of the AST encoder

Self-attention: A Self-attention layer is used to capture the dependency between rules.
The structure of this layer is consistent with that in the code-diff encoder. The input of this
layer is the sum of the rule representation vector and the position embedding of rules, namely
I
(ast) = [rb,1 + p

(ast)
b,1 ;⋯; rb,P + p

(ast)
b,P ]. The output of the layer is

R
(self) = Multihead(I(ast)

, I
(ast)

, I
(ast)) (17)

When b = 1 (the first block), rb,i represents the initial vector of the rule ri (r(init)
i ); in other

blocks, rb,i is the output of the previous block.
Rule-gating: The AST encoder uses this layer to capture the character information of

rules. Similar to the previous gating layer in the code-diff encoder, a control matrix C
(r-self) is

first calculated based on R
(self). The output of this layer is

R
(gate) = Gate(R(self)T

C
(r-self)

, R
(rule)TC

(r-self))) (18)

Code-attention: The code transformation needs to be conducted by the code to be
modified, so the model needs to capture the embedding information of x in the subsequent
prediction process of code rules. This layer is used to introduce the information of the code to
be modified, Y (x), into the encoding result of the rule sequence. The output of this layer is

R
(x) = Multihead(Y (x)

, R
(gate)

, R
(gate)) (19)

Diff-attention: When code x is modified, the modification depends on the given modified
instance x∆ → y∆. Therefore, the model also needs to capture the modification information.
This layer is used to introduce the information of x∆ → y∆, Y (diff), into the encoding result of
the rule sequence. The output of this layer is

R
(diff) = Multihead(Y (diff)

, R
(x)

, R
(x)) (20)
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Graph-conv: An internal abstract syntax tree can be constructed from the generated
code rules; the predicted rules correspond to specific nodes. Therefore, there is a meaningful
structural relationship between the rules (nodes). However, representing the generated abstract
syntax tree with the rule sequence will lose the structural information between rules. Therefore,
a Graph-conv layer is adopted to capture the structural information of the AST to enhance the
encoding information of rules.

According to the adjacency between the corresponding nodes of rules, an adjacency matrix
Mp∗p between rules can be obtained. When M[i][j] = 1, it means that the rule rj (its
corresponding node) is the parent node of rule ri (its corresponding node). Based on this, the
output of this layer is

R
(ast) = Conv(R(diff)

,M) (21)

The final output of the AST encoder is R(ast).
4.4 Decoder

The decoder takes the current non-leaf node to be expanded as its input, namely Q
(d) =[q1;⋯; qR], where qi is the representation vector of each node to be expanded. Since the decoder

still follows the multi-block design, q1 is the syntax type or word information corresponding to
the node in the first block; qi is the output of the previous block for other blocks. The goal of
the decoder is to generate a query matrix, D(query) = [d(query)

1 ;⋯; d
(query)
R ], where d

(query)
i is the

query vector corresponding to the i-th node. The i-th rule will be predicted based on d
(query)
i .

The decoder first uses the Self-attention layer to obtain the dependency between the nodes to be
expanded. Then, the data stream will pass through the AST-attention layer, the Code-attention
layer, and the Diff-attention layer in turn, which is used to obtain the abstract syntax tree, the
code to be modified, and the information of modified instances respectively.

Self-attention: In the above query matrix, each query component qi represents the
information of a node to be expanded in the AST. A self-attention layer is used to capture the
dependency betweeng queries (namely the dependency between nodes), and the output of this
layer is

D
(self) = Multihead(Q(d)

, Q
(d)

, Q
(d)) (22)

AST-attention: This layer is used to enhance the query information with the information
of the generated AST (Y (ast)). In this layer, Q = D

(self), K = Y
(ast), V = Y

(ast), and the output
is

D
(ast) = Multihead(D(self)

, Y
(ast)

, Y
(ast)) (23)

Code-attention: This layer is used to capture the information of code x (Y (x)) to enhance
the query information. In this layer, Q = D

(ast), K = Y
(x), V = Y

(xt), and the output is

D
(x) = Multihead(D(ast)

, Y
(x)

, Y
(x)) (24)

Diff-attention: This layer is used to enhance the query information with the information
of the modified instance x∆ → y∆ (Y (diff)). In this layer, Q = D

(x), K = Y
(diff), V = Y

(diff),
and the output is

D
(query) = Multihead(D(x)

, Y
(diff)

, Y
(diff)) (25)

Finally, the output of the decoder is D(query).
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4.5 Rule prediction
When the next rule is predicted, the prediction range of the model will be based on two types

of rules. First, when the data is processed, the standard data rule set R = {r1, r2,⋯, rN} is
obtained, which can meet the needs for normal code generation. However, there is a dependency
between the definition and the usage of variable names in code. The rule copy(n) is added to
capture this dependency, which means that the variable name in the n-th rule of the generated
rule is copied. When the i-th rule is predicted, in addition to calculating the probability p(rj)
of rule rj , the probability of p(copy(t)) will be calculated according to the pointer network.
Therefore, the final prediction result of the i-th rule needs to be chosen from the rules rj and
copy(t). The gating mechanism shown in Eq. (26) will be adopted in this paper to filter the
rules of the two types:

p(op) = {g × p(rj), op is instruction rj(1 − g) × p(copy(t)), op is copy(t) (26)

where g represents the probability that the current predicted rule belongs to R, namely that the
probability of the copy rule is 1 − g. The final predicted rule is op = argmaxopp(op).

The probability p(rj) of the next rule rj is calculated according to Eq. (27):

p(rj) = softmax(d(query)
i W )[j] (27)

When the i-th rule is predicted, the variable name copied by the copy rule is the variable
declared in the previous i − 1 rules. Therefore, p(copy(t)) will be calculated according to
Eq. (28) and Eq. (29):

ξt = v
T
tanh(W (query)

d
(query)
i +W

(rule)
r
(init)
t ) (28)

p(copy(t)) = exp ξt

∑i−1
1 ξj

(29)

where 1 ≤ t ≤ i − 1, r
(init)
t is the representation vector of the generated t-th rule; W (query) and

W
(rule) are network parameters.

5 Evaluation
Two experiments are carried out to compare ExpTrans with the existing deep-learning-based

and rule-based approaches to verify the effectiveness of our approach.

5.1 Experiment 1
This experiment compares the approach presented given in this paper with the existing

deep-learning-based methods to verify the effectiveness of ExpTrans.

5.1.1 Data set

The experiment is conducted on the data set of Yin et al.[13]. In the work of Yin et al., 54
C# open source projects were collected from GitHub, and then 111,724 C# code modifications
were extracted and screened out from the submission history of these software projects, of
which 91,372/10,176/10,176 pieces of data were used for training/validation/test, respectively.
In this data set, data examples can be expressed as <xi, yi>, where xi is the code before
modification, and yi is the code after modification. The example <xi, yi> was transformed into
<xi, xi → yi, yi>, and the preprocessing was conducted following the model input requirements.



Cao YK, et al. Structurally-enhanced approach for automatic code transformation 371

Specifically, xi and yi were parsed into the form of abstract syntax trees first, and then the node
sequences were obtained in a top-to-bottom, left-to-right order, i.e., [v(ori)

1 ,⋯, v
(ori)
L(ori)] and[v(mod)

1 ,⋯, v
(mod)
L(mod)]. In addition, according to the abstract syntax tree corresponding to yi, the

rule sequence [r1,⋯, rR] was obtained. The node sequence of the code before modification is
taken as the input of the code encoder, with a length of L(ori); the node sequences of the pieces
of code before and after modification are combined as the input of the code-diff encoder, with
a length of L(ori) + L

(mod); the rule sequence is the prediction target, with a length of P . The
distribution of the four lengths of the data is shown in Table 1. As shown in the second row of
Table 1, 92.2% of the instances have the length L

(ori) less than 100; 7.7% of the instances have
the length L

(ori) between 101 and 200; 0.1% of the instances have the length L
(ori) between 201

and 300; the maximum length is 239. In addition, the terms contained in the preprocessed data
are counted. A total of 2,931 unique terms are found, of which the maximum character length
was 70; the character length of 80.3% of the terms was less than 20.

5.1.2 Comparison approach

The work of Yin et al. is currently the latest work most relevant to the work of this paper[13].
They represented the modification approach in the instances to guide code transformation. In
addition, the authors tried to represent the code and modified instances in several ways, to verify
the performance by combining different models.

Table 1 Data length distribution in the first experiment

Data length ≤ 100 101–200 201–300 301–400 >400 Maximum
length

Code (L(ori)) 102,949 (92.2%) 8,574 (7.7%) 142 (0.1%) — — 239
Code difference

(L(ori) + L
(mod)) 55,960 (50.1%) 46,839 (41.9%) 7,070 (6.3%) 1,672 (1.5%) 124 (0.1%) 464

Rule 108,929 (97.5%) 2,736 (2.5%) — — — 185

Character ≤ 5 6–10 11–15 15–20 ≥ 21 Maximum
437 (15.0%) 836 (28.5%) 687 (23.4%) 404 (13.8%) 567 (19.3%) 70

5.1.3 Parameter settings

In order to find the optimal number of blocks in the Transformer structure, the number of
blocks has been ranged over 4, 6, and 8. The experimental results show that when the number of
blocks is 6, the performance of the model is optimal (the specific results are shown in Table 3).
Therefore, the number of blocks (N1/N2/N3/N4) for the code-diff encoder, code encoder,
AST encoder, and decoder is set to 6. In addition, as shown in Table 1, because all code lengths
are less than 300 and more than 98% of the code difference lengths are less than 300, the
maximum input length L of the code-diff encoder and the code encoder is set to 300. At the
same time, the rule length of all data instances is less than 200, with the maximum length being
185. Therefore, the maximum rule length P allowed by the model is set to 200. In addition,
there are more than 80% of the terms with the number of characters at most 20, where the
maximum length is 70. Therefore, the maximum term length L

′ allowed by the model is set at
20 to ensure that this value can cover most words while avoiding the introduction of too many
placeholders that affect the model performance.

5.1.4 Experimental process

During the comparison with the work of Yin et al. [13], their experimental settings are also
adopted in this paper, and the training and validation sets of their data set are used to train our
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approach. Then, the test set is used to test our approach, namely whether the approach can
correctly transform the code xi before modification into yi.

5.1.5 Evaluation criterion
Correct rate is used in this paper to quantify the performance of the approach. In a piece of

data < x, x∆ → y∆, y >, x is the code before modification; x∆ → y∆ is the modified instance;
and y is the modified code; if the prediction result ȳ given by the approach is the same as y, then
x is modified correctly. The correct rate of the approach is defined in this paper as

Acc = Correctly modified instances
All instances

5.1.6 Experimental results

The comparative results with the work of Yin et al. [13] are shown in Table 2. Compared
with the different models proposed by Yin et al. [13], ExpTrans gains an 11.8%–30.8% precision
increment. In the work of Yin et al. [13], two different sub-modules were used to encode the
information of the code to be modified and that of the modified instance. At the same time,
they also tried two different ideas to model the information, namely the term-sequence-based
approach and the graph-structure-based approach, so they explored the actual effect of different
combinations of information modeling approaches. From the results of Yin et al. [13], the results
of term-sequence-based models (such as Seq2Seq-Seq) are better than those of graph-structure-
based models (such as Graph2Tree-Graph). The reason for this result is the particularity of the
experimental data. Because the modified instance of the model input contains the modification
result of the code to be modified, it is more conducive to the prediction of modification results
by term-sequence-based models.

Table 2 Comparative results with the work of Reference [13]
Method Model Acc@1 (%)

Work of Reference [13]

Seq2Seq-Bag-of-Edits Encoder 44.05
Seq2Seq-Seq Edit Encoder 59.63

Graph2Tree-Bag-of-Edits Encoder 40.66
Graph2Tree-Seq Edits Encoder 57.49

Graph2Tree-Graph Edit Encoder 48.05
The approach in this paper ExpTrans 71.45

According to the results of ExpTrans, if ExpTrans is compared with the graph-structure-
based model in the work of Yin et al. it gains a 23.4% precision increment. This demonstrates
that ExpTrans using graphs to represent modified instances and combined with convolutional
neural networks can enhance the ability of the model to capture the structural information of code
so that the correct rate of ExpTrans is greatly improved. Compared with the term-sequence-
based approach by Yin et al., ExpTrans also has an improvement of at least 11.8%. These
experimental results show that ExpTrans is effective.

In addition, in ExpTrans, the number of blocks of the Transformer structure, copy rules,
and different modules all influence the code transformation. Therefore, based on ExpTrans, this
paper changes the architecture or parameter settings of the model to produce different variants,
thereby exploring the effectiveness of the above factors during the code transformation made by
ExpTrans. Settings and performances of different variations are listed in Table 3.

First of all, for a better setting for the number of Transformer structure layers in the model,
this paper draws on the work of Vaswani et al.[14]. The number of layers in the model is set to 4,
6, and 8 successively. The specific experimental results are shown in line (A) of Table 3. From
the results, when the number of layers is set to 4, the correct rate of the approach is 67.37%,
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which is 4.08% lower than that when the number of layers is 6. When the number of layers is set
to 8, the correct rate is 64.37%. Given the above results, the number of Transformer structure
layers in ExpTrans is finally set to 6.

At the same time, ExpTrans is applied again to the data set of the work of Yin et al. to
verify the effectiveness of the copy rule. The difference is that the copy rule is canceled when
the data set is processed. The specific experimental results are shown in line (B) of Table 3.
When the rule set does not contain the copy rule, the correct rate of the model drops to 60.12%,
which means that the additional copy rule can improve the ability of the model to capture the
long-term dependency between fragments of code and the correct rate of the approach.

Table 3 Performances of different variations on ExpTrans

Line N1/N2/
N3/N4

Whether the
copy rule is
contained in
the rule set?

Whether the
code-diff
encoder is
contained

Whether the conv
layer is contained

in code-diff encoder

Whether the
Graph-conv layer
is contained in
code encoder

Acc@1
(%)

ExpTrans 6 Y Y Y Y 71.45

(A) 4 — — — — 67.37
8 — — — — 64.37

(B) — N — — — 60.12

(C)
— — N — Y 6.36
— — Y N Y 68.01
— — Y Y N 65.69

Finally, we proposes another three variant models by removing the code-diff encoder and
the Graph-conv layer in the code-diff encoder and the code encoder respectively. The results are
shown in row (C) in Table 3. When the model remove the code-diff encoder, the accuracy drops
to 6.36%. The results illustrate that modifcation instances can improve the performance of code
transformation, and it also illustrates the effectiveness of the code-diff encoder in ExpTrans. In
addition, when remove the Graph-conv layer in the code-diff encoder and the code encoder, the
accuracy drops to 68.01% and 65.69%, respectively. Without Graph-conv layer，the model is
actually modeling a linear sequence of tokens when modeling the input information. It will
ignore the structural information of the code. These results show that ExpTrans can effectively
capture the structural information of the code by using graph convolution and improve the
performance of code transformation.

5.2 Experiment 2
This experiment compares ExpTrans with the existing rule-based approaches to verify the

effectiveness of our approach.

5.2.1 Data set

Because the rule-based approach is designed for the Java language, the code-modification
data set in the Java language is collected. Before data collection, the additional features of
the Java language in different versions are checked, of which five features are selected, and
six possible modification patterns are summarized. The corresponding query sentences and
modification patterns of different Java features are shown in Table 4. Based on each feature,
the corresponding query statement is constructed, and related commits are searched on GitHub.
According to the search results, 10 code modifications with corresponding modification patterns
are manually filtered out for each query, namely similar code modifications.

5.2.2 Comparison approaches

In this experiment, two rule-based code transformation methods, GenPat and ARES, are
adopted for comparison.
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(1) GenPat[17]: It is a single-example-based code transformation method and generalizes
or limits the attributes of specific nodes on the abstract syntax tree by parsing a given single
modified instance into an abstract syntax tree. Moreover, it marks the change process of the
nodes of the abstract syntax tree. During the code transformation, GenPat will match codes
according to the extracted abstract syntax tree and use the change process of the marked nodes
to transform the code.

Table 4 Corresponding query statements and modification patterns of different Java features

Version Feature Query statement or
keyword Modification pattern example

Java 5

EnhancedFor for loop replaced with
enhanced for loop

– for (int i = 0; i < names.length; ++i) {
– String val = getAttributeValueString(names[i]);
+ for (String name:names) {
+ Stringval = getAttributeValueString(name);
⋯
}

replaced while
iterators with for
iterators

– Iterator it = names.iterator();
– While(it.hasNext()) {
– String query = it.next();
+ for (String name:names) {
+ String query = name;
⋯
}

Generic type
replace explicit types
with diamond
operator

– List ⟨GroundItem⟩ check = new ArrayList⟨GroundItem⟩ ();
+ List ⟨GroundItem⟩ check = new ArrayList⟨⟩();

ValueOf replace new Double
with Double.valueOf

– retrydelay = new Double(childval);
+ retrydelay = Double.valueOf (childval);

StringBuilder
replaced String co
ncatenation with
StringBuilder

– String score = "";
– score += "Love";
+ StringBuilder score = new StringBuilder();
+ score.append("Love");

Java 7 Try-With-resource use try-with-resources

– FileInputStreamfis = new FileInputStream(new
File(dir));
– try {
+ try (FileInputStreamfis = new
FileInputStream(new File(dir))) {
⋯
– fis.close();
}

(2) ARES[10]: It is a multiple-examples-based code transformation method and uses a
template to represent the modification pattern in modified instances. The common part of
modified instances is retained in the template, and wildcards are used to generalize different
parts. During code transformation, ARES will match the code according to the extracted
template and use the pattern described by the template to modify the matched code.

5.2.3 Experimental process

Experiments are conducted with the six sets of similar code modifications that have been
collected. Specifically, a group of similar modification sets P = {p1,⋯, p10} is given, and code
modification is pi = ⟨xi, yi⟩, where xi is the code before modification, and yi is the code after
modification. To train the approach proposed in this paper, we construct the following equation
based on the set P :

P
′ = {pi,j∣pi,j = ⟨xi, xj → yj , yi⟩},
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where, for 1≤ i, j ≤10, pi,j means that using the modification pattern of pj to modify the code
xi; P

′ is divided as follows:
Training set: {pi,j}, 1 ≤ i ≤ 10, 1 ≤ j ≤ 8;
Validation set: {pi,j}, 1 ≤ i ≤ 10, j = 9;
Test set: {pi,j}, 1 ≤ i ≤ 10, j = 10.
In the experiment, three approaches were adopted to modify the instances in the test set.

Because ARES is for multiple-examples-based code transformation, we provide ARES with P

as a set of similar code changes to extract the required modification pattern.
5.2.4 Parameter settings

In this experiment, we use the same parameter setting as in Experiment 1.
5.2.5 Experimental results

The output results are divided into four types:
3 The output result of the representation approach, ȳ, is the same as the expected result y.
○ The approach cannot extract a unified modification pattern from the given modified

instances, resulting in no output.
⦸ The extracted modification pattern cannot be applied to the code to be modified, resulting

in no output.
4 The output result ȳ of the approach is inconsistent with the expected result y.
The comparative results on six groups of data are listed in Table 5. The results show

that ExpTrans is significantly better than the other two approaches. ExpTrans has correctly
modified instances in all groups. Particularly, it can modify all code instances successfully
in the second group of data. We manually checked the instances modified incorrectly by
ExpTrans and found they mainly occurred when predicting multiple parameters of the same
function. The reason may be that ExpTrans lacks the sequence location information of parameters
while predicting the parameters of a function, leading to incorrect results. For example, an
expected result is byteBufferReadCheck(in, buf, 11);, but the prediction result of ExpTrans is
byteBufferReadCheck(in, 11, 11), where 11 is the parameter incorrectly predicted.

Further, we checked the output results of GenPat and ARES to explore the reasons for the
unsatisfactory results of the two approaches.

The reason why GenPat fails lies in the following points: (1) It relies on the similarity
of the structure and syntactic type between the modified instance code and the code to be
modified. For example, due to the different syntactic types, the modification approach in
“return new Double(0.0);”→“return new Double.valueOf (0.0);” cannot be used to modify the
code “val=new Double(0.0);”. However, similar code modifications cannot be guaranteed of
a similar structure and syntax features in the data obtained in this experiment. Therefore, the
modification pattern extracted from instances by GenPat cannot be adapted to the code to be
modified (Type ⦸). (2) GenPat needs to use the definition information of the variables in the
code. However, only the modified code is extracted when code modifications are obtained, so
the extracted code modifications may not include the definitions of all the variables involved.
Because GenPat cannot obtain enough information, an incorrect match occurs when the extracted
pattern is matched to the code to be modified, leading to incorrect modifications (Type 4).

ARES is a code transformation method based on multiple examples. Therefore, when a
group of similar code-modified instances is given, it needs to generalize the different parts of the
modified instances so that the modification pattern can fit the given modified instances. However,
when the given modified instances have similar modification semantics but different structures,
ARES may fail to extract a unified modification pattern. For example, ARES cannot extract a
unified modification pattern from Groups 2, 4, and 6, so it is impossible for ARES to modify the
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corresponding code (Type ○). In addition, there are some incorrect examples because ARES
retains the unique variable names of the modified instances in the extracted pattern. Therefore,
when the extracted pattern is adapted to the code to be modified, these variable names are
introduced into the modified result, causing unsuccessful modifications (Type 4).

Table 5 Comparative results with GenPat and ARES

x
Group 1 Group 2 Group 3

GenPat ARES ExpTrans GenPat ARES ExpTrans GenPat ARES ExpTrans
x1 4 4 3 4 3 3 4 ○ 4
x2 4 4 4 4 3 3 4 ○ 4
x3 ⦸ 4 4 4 4 3 4 ○ 3
x4 4 4 3 4 3 3 3 ○ 3
x5 4 4 3 4 4 3 4 ○ 3
x6 4 4 3 4 4 3 4 ○ 3
x7 4 4 3 4 4 3 4 ○ 3
x8 ⦸ 4 3 4 3 3 4 ○ 4
x9 ⦸ 4 4 4 4 3 4 ○ 3
x10 4 4 3 4 4 3 3 ○ 3

x
Group 4 Group 5 Group 6

GenPat ARES ExpTrans GenPat ARES ExpTrans GenPat ARES ExpTrans
x1 4 ○ 3 4 ○ 3 3 4 4
x2 4 ○ 4 4 ○ 4 4 4 4
x3 4 ○ 4 4 ○ 4 4 4 3
x4 4 ○ 3 4 ○ 4 4 4 4
x5 4 ○ 3 4 ○ 3 4 4 4
x6 4 ○ 3 4 ○ 4 3 4 4
x7 4 ○ 3 4 ○ 4 4 4 4
x8 4 ○ 3 4 ○ 4 4 4 4
x9 4 ○ 4 4 ○ 3 4 4 4
x10 3 ○ 3 4 ○ 4 4 4 4

5.3 Discussion
Application scope of the approach: Based on the approach presented in this paper, the

maximum length for the input codex to be modified and the modified instancex∆ → y∆ is preset.
When the code length exceeds the preset length, the code content exceeding the preset length will
be intercepted. This affects the code modification scenarios which are available for the approach
to a certain extent. However, in some similar modification tasks with frequent occurrences, such
as API version migration, the modified code is often partial and short. Therefore, the preset
maximum length does not seriously restrict the practicability of our approach. Nevertheless, in
future work, we still need to try to propose different network models to reduce the impact of
modifying the code length on the approach.

Data size: The collection of Java data relies on manual screening of search results, which
limits the size and efficiency of data collection and thus the greater potential of ExpTrans. In
future work, automatic methods will be used to collect data on a large scale, and the effectiveness
of the approach will be improved at a lower labor cost.

6 Conclusion
In this paper, we proposed a deep-learning-based code transformation method. By

representing modified instances with a graph structure and combining convolutional network
and Transformer structure, we enhanced the ability of the approach to capture code structural
information. The experimental results show that compared with the existing deep-learning-
based and rule-based approaches, the approach developed in this paper gains a remarkable
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improvement. For factors that may affect the effectiveness of the approach, we will propose
optimization models and automated data collection methods to reduce the effects of these factors
in future work.

References
[1] Hunter A, Eastwood JD. Does state boredom cause failures of attention? Examining the relations

between trait boredom, state boredom, and sustained attention. Experimental Brain Research, 2016,
1–10. [doi: 10.1007/s00221-016-4749-7]

[2] Ko AJ, Myers BA. A framework and methodology for studying the causes of software errors in
programming systems. Journal of Visual Languages and Computing, 2005, 16(1-2): 41–84. [doi:
10.1016/j.jvlc.2004.08.003]

[3] Barr ET, Brun Y, Devanbu P, Harman M, Sarro F. The plastic surgery hypothesis. In: Proc. of the
22nd ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering. ACM, 2014. 306–317.

[4] Nguyen HA, Nguyen AT, Nguyen TT, et al. A study of repetitiveness of code changes in software
evolution. Proc. of the 28th IEEE/ACM Int’l Conf. on Automated Software Engineering. IEEE Press,
2013. 180–190.

[5] Nguyen TT, Nguyen HA, Pham NH, et al. Recurring bug fixes in object-oriented programs. Proc. of
the 32nd ACM/IEEE Int’l Conf. on Software Engineering, Volume 1. ACM, 2010. 315–324.

[6] Ray B, Nagappan M, Bird C, et al. The uniqueness of changes: Characteristics and applications. Proc.
of the 12th Working Conf. on Mining Software Repositories. IEEE Press, 2015. 34–44.

[7] Meng N, Kim M, McKinley KS. Sydit: Creating and applying a program transformation from an
example. Proc. of the 19th ACM SIGSOFT Symp. and the 13th European Conf. on Foundations of
Software Engineering. ACM, 2011. 440–443.

[8] Andersen J, Nguyen AC, Lo D, et al. Semantic patch inference. Proc. of the 27th IEEE/ACM Int’l
Conf. on Automated Software Engineering. IEEE, 2012. 382–385.

[9] Meng N, Kim M, McKinley KS. LASE: Locating and applying systematic edits by learning from
examples. Proc. of the 2013 Int’l Conf. on Software Engineering. 2013. 502–511.

[10] Dotzler G, Kamp M, Kreutzer P, et al. More accurate recommendations for method-level changes.
Proc. of the 11th Joint Meeting on Foundations of Software Engineering. ACM, 2017. 798–808.

[11] Rolim R, Soares G, D’Antoni L, et al. Learning syntactic program transformations from examples.
Proc. of the 39th Int’l Conf. on Software Engineering. IEEE Press, 2017. 404–415.

[12] Tufano M, Pantiuchina J, Watson C, et al. On learning meaningful code changes via neural machine
translation. Proc. of the 41st Int’l Conf. on Software Engineering. IEEE Press, 2019. 25–36.

[13] Yin P, Neubig G, Allamanis M, Brockschmidt M, Gaunt AL. Learning to represent edits. arXiv:
1810.13337. 2018.

[14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Advances in Neural Information
Processing Systems. 2017. 5998–6008.

[15] Yin PC, Neubig G. A syntactic neural model for general-purpose code generation. arXiv: 1704.01696.
2017.

[16] Sun Z, Zhu Q, Xiong Y, et al. Treegen: A tree-based transformer architecture for code generation.
Proc. of the AAAI. 2020.

[17] Jiang J, Ren L, Xiong Y, et al. Inferring program transformations from singular examples via big code.
Proc. of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). IEEE, 2019.
255–266.

[18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proc. of the CVPR. 2016.
770–778.

[19] See A, Liu PJ, Manning CD. Get to the point: Summarization with pointer-generator networks. Proc.
of the ACL. 2017. 1073–1083.

[20] Falleri JR, Morandat F, Blanc X, et al. Fine-grained and accurate source code differencing. Proc. of
the 29th ACM/IEEE Int’l Conf. on Automated Software Engineering. ACM, 2014. 313–324.

10.1007/s00221-016-4749-7
10.1016/j.jvlc.2004.08.003


378 International Journal of Software and Informatics, 2021, 11(3)

[21] Dehghani M, Gouws S, Vinyals O, et al. Universal transformers. arXiv: 1807.03819. 2018.

Yingkui Cao Ph.D. His
research interests include
software engineering, software
reuse, and program generation.

Yanzhen Zou Ph.D., associate
professor, and professional
member of CCF. Her research
interests include software
engineering, software reuse,
knowledge graph, and intelligent
software development.

Zeyu Sun Ph.D., student
member of CCF. His research
interests include software
engineering, software analysis
and testing, and program
generation.

Bing Xie Ph.D., professor,
Ph.D. supervisor, and senior
member of CCF. His research
interests include software
engineering, formal approaches,
software reuse, and intelligent
software development.


	1 Introduction
	2 Related Work
	2.1 Rule-based approaches
	2.2 Learning-based approaches

	3 Approach Framework
	4 Approach
	4.1 Code-diff encoder
	4.1.1 Graph-conv
	4.1.2 Extraction of encoding information
	4.1.3 Network structure of the code-diff encoder

	4.2 Code encoder
	4.3 AST encoder
	4.3.1 Extraction of the encoding information
	4.3.2 Network structure of the AST encoder

	4.4 Decoder
	4.5 Rule prediction

	5 Evaluation
	5.1 Experiment 1
	5.1.1  Data set
	5.1.2 Comparison approach
	5.1.3 Parameter settings
	5.1.4 Experimental process
	5.1.5 Evaluation criterion
	5.1.6 Experimental results

	5.2 Experiment 2
	5.2.1 Data set
	5.2.2  Comparison approaches
	5.2.3  Experimental process
	5.2.4 Parameter settings
	5.2.5 Experimental results

	5.3 Discussion

	6 Conclusion
	Yingkui Cao
	Yanzhen Zou
	Zeyu Sun
	Bing Xie


