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Abstract In recent years, with many devices continuously joining the Internet of Things (IoT),
data sharing as the main driver of the IoT market has become a research hotspot. However, the
users are reluctant to participate in data sharing due to security concerns and lacking incentive
mechanisms in the current IoT. In this context, blockchain is introduced into the data sharing
of IoT to solve the trust problem of users and provide secure data storage. However, in the
exploration of building a secure distributed data sharing system based on the blockchain, how
to break the inherent performance bottleneck of blockchain is still a major challenge. For this
reason, the efficient blockchain-based data sharing incentive scheme is studied for IoT. In the
scheme, an efficient data sharing incentive framework based on blockchain is proposed, named
ShareBC. Firstly, ShareBC uses sharding technology to build asynchronous consensus zones
that can process data sharing transactions in parallel and deploy efficient consensus mechanisms
on the cloud/edge servers and asynchronous consensus zones in sharding, thus improving the
processing efficiency of data sharing transactions. Then, a sharing incentive mechanism based
on a hierarchical data auction model implemented by a smart contract is presentedto encourage
IoT users to participate in data sharing. The proposed mechanism can solve the problem of
multi-layer data allocation involved in IoT data sharing and maximize the overall social welfare.
Finally, the experimental results show that the proposed scheme is economically efficient,
incentive-compatible, and real-time, with scalability, low cost, and good practicability.
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In the wake of advances in 5G and mobile cloud computing technology, data sharing is
playing an increasingly important role in the development and application of the Internet of
Things (IoT). This is because most of the underlying deployment of the IoT applications are
based on data sharing[1]. According to the statistics based on big data, the number of IoT devices
is expected to soar to 41.6 billion by 2025, implying that 127 new devices will be connected
to the Internet per second worldwide. IoT devices generate about 500 million bytes of data per
day, and the number is expected to reach 79.4 zettabytes by 2025[2]. Such an massive amount
of data will be shared and analyzed between IoT devices, inevitably leading to an ultra-large
data transaction market[3, 4]. However, the current IoT data market is far from meeting that
expectation. On the one hand, practical data sharing usually consumes resources and increases
the costs of data sharing participants[5–9]. In the absence of an effective incentive strategy for
participants, it is difficult to balance interests between multiple parties. Hence, most IoT users
are reluctant to share data or forward messages. On the other hand, massive sensing data (such
as locations) are vulnerable to the risk of personal privacy leakage. Such a security issue hinders
IoT users from joining the data sharing market.

A good way is to encourage users to take the initiative to participate in IoT data sharing
through an effective incentive mechanism. So far, there has been some research on introducing an
incentive mechanism to IoT application scenarios such as crowd sensing or resource transactions
to encourage users to participate in data sharing[10–13]. For example, Gao et al.[10] proposed a
truthful incentive mechanism for the vehicle-based non-deterministic ad-hoc network. Pu et
al.[11] studied an incentive-based hybrid edge computing framework for large-scale vehicular
crowd sensing applications. Petrov et al.[12] designed an incentive mechanism based on
opportunistic crowd sensing over NarrowBand IoT (NB-IoT). However, most of these approaches
are centralized, facing security challenges in IoT applications that do not guarantee data integrity
and are not trusted[14]. For example, in IoT, the data server may be attacked by malicious users
or service providers, and the data stored in the server may be tampered with. Unscrupulous IoT
users may provide false or even malicious data for their interest or illegal purposes[15].

Considering that the security challenge is extremely important, blockchain, owing to
its inherent security properties, such as decentralization, anonymity, traceability, and non-
tampering, is introduced into IoT data sharing to solve the trust problem of IoT users and provide
secure data storage[16]. Substantial research on blockchain-based IoT data sharing has been
put forward and implemented. For example, Kang et al.[17] proposed a blockchain-enabled
Internet of vehicle data sharing scheme by optimizing consensus mechanisms. Yu et al.[18]

proposed a crypto currency LRCoin based on Bitcoin, whose core idea is to design a leakage-
resilient digital signature scheme for data transactions in the IoT to improve the security of
data transactions. Yang et al.[19] designed a blockchain-based trust management system using
the Bayesian inference model. These studies tried to solve the problem of data sharing in
IoT by leveraging the blockchain technology. However, while constructing a blockchain-based
secure distributed sharing system, they ignored the key performance bottleneck inherent in
blockchain[20]. For example, the maximum transaction throughput of Bitcoin is about seven
transactions per second, and the client that creates the transaction has to wait for at least
10 minutes on average to ensure that the transaction is chained; the maximum throughput of
Ethereum is limited to 20 transactions per second, with an average latency of 12 seconds. By
contrast, a centralized payment system, such as Visa, is usually able to complete transactions
within several seconds, with a throughput reaching 10,000 transactions per second[21, 22]. The
performance bottleneck of blockchain has become another important factor impeding IoT users’
participation in data sharing. Therefore, to use the blockchain technology to facilitate the
potential large-scale data sharing market comprising billions of IoT devices, we must improve its
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performance as much as possible while maintaining its security and decentralization properties.
It is urgent to study and propose an efficient blockchain-empowered IoT data sharing incentive
scheme.

To solve the above problem, this paper first proposes an efficient blockchain-empowered
IoT data sharing incentive framework, called ShareBC. In this framework, ShareBC introduces
sharding technology[23] to divide the IoT devices into several Asynchronous Consensus Zones
(ACZs). Specifically, it processes, in parallel, transaction verification in various sharding ACZs,
which usually requires the joint action of all nodes in the system. The above steps aim to enhance
the transaction processing ability of the blockchain-empowered data sharing system. In addition,
according to the properties of consortium blockchain and IoT data sharing[24], this paper designs
an efficient consensus process for ShareBC. The consortium blockchain committee relies on a
set of distributed ACZs while maintaining complete control over data sharing transactions. Such
a consensus mechanism is open and can be audited, with superiority in computation cost and
scalability. Second, to encourage IoT users to participate in data sharing, this paper also proposes
a sharing incentive mechanism based on the hierarchical data auction model implemented by a
smart contract to maximize the overall social welfare of all participants. In practice, data sharing
among IoT devices is usually subjected to the limitations caused by a multi-layer communication
network[25]. Therefore, our mechanism designs a three-layer data auction model including data
agents and corresponding data allocation and pricing rules, and it considers the impact of data
transmission cost on social welfare. Finally, the mechanism is enforced in the form of a smart
contract, which ensures the non-repudiation and execution efficiency of auction rules in data
sharing transactions.

The main contributions of this paper are summarized as follows:
(1) It proposes an efficient blockchain-empowered IoT data sharing incentive scheme

framework, i.e., ShareBC. To improve the transaction processing capability of the system,
ShareBC introduces sharding and outlines the sharding construction steps of the blockchain-
empowered IoT data sharing. In addition, ShareBC deploys an efficient consensus mechanism in
the ACZs and cloud/edge servers, avoiding the high computational cost caused by the traditional
block generation based on the workload proof and improving the efficiency of consensus-
generated blocks.

(2) It introduces a sharing incentive mechanism based on hierarchical data auction model
implemented by a smart contract. To ensure that the maximum number of IoT devices can
participate in data sharing, we propose a three-layer data auction model based on the proposed
ShareBC framework. In the framework, data sharing resources can be accessed indirectly by
communication-constrained low-level devices via data agents to maximize social welfare.

(3) It develops a prototype system. For the simpler logic of the auction mechanism, the
smart auction contract is designed in layers and deployed in the three layers of the data auction
model respectively. The test results show that the smart contract has low computing cost and
good practicability. Finally, massive simulation experiments prove the economic feasibility,
incentive compatibility, real-time performance, and scalability of the data sharing incentive
mechanism.

1 Literature Review
1.1 Centralized IoT data sharing incentive

With the exponential growth in IoT data, the research on IoT data sharing has attracted broad
attention from the academic community[26–33]. For example, Wang et al.[26] proposed a vehicle-
based recruitment strategy for ad hoc data sharing participants, which is applicable to vehicle
trajectory prediction, minimizing the total recruitment cost. Ni et al.[27] proposed a fog-based
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vehicular crowd sensing framework to address the security and privacy problems between the
task requester and the worker. Xiao et al.[28] studied the problem of data sharing of the Internet
of vehicles based on game theory and used the Q-Learning algorithm to implement a vehicle
payment strategy. However, there is still a lack of effective incentive mechanisms in these studies.
In most schemes, the data sharing behavior of IoT players is voluntary and proactive and does
not conform with the objective reality. Concerning the incentive problem of data sharing among
IoT devices, various single-layer auction mechanisms have been proposed. For example, Jin
et al.[31] proposed an incentive-compatible auction mechanism to determine resource quotation
in line with the demands of mobile devices and implemented resource-sharing transactions
between mobile devices (buyers) and cloud service providers (sellers). Wen et al.[32] proposed
a quality-driven auction-based incentive mechanism, which can compute participants’ payment
in accordance with the quality of sensing data to increase users’ motivation to participate in
acquiring and sharing sensing data.

In large-scale IoT data sharing incentive scenarios, the application of a single-layer auction
mechanism is limited[30]. In a wireless network, the geographic locations of smart IoT devices
are decentralized, and their data sharing service covers a limited range. Due to the limitations
of communication and services, some terminal devices cannot access the data market. In this
case, other IoT devices have to serve as intermediary agents to assist these terminal devices
in accessing shared data resources. The single-layer auction model is not suitable for such
hierarchical structure scenarios, nor can it solve the maximal social welfare. In this context, the
hierarchical auction mechanism has been proposed and considered as a promising solution to the
maximization of social welfare among IoT sharing devices. For example, Kiani and Ansari[29]

studied and proposed a three-layer resource allocation model based on dynamic programming
problems. Wang et al.[30] proposed a hierarchical auction-based mechanism for multi-robot
real-time communication and efficient data retrieval. However, under conventional incentive
mechanisms, most data sharing models are centralized and usually rely on a trusted third-party
centralized mechanism, thus being vulnerable to attacks and a Single Point Of Failure (SPOF).
In addition, unscrupulous users may provide false or even malicious data out of self-interest,
further intensifying the trust crisis of data sharing[34].

1.2 Application of blockchain-empowered IoT data sharing and incentive
mechanism

The blockchain-based distributed system is an effective technology for establishing secure
and trusted data sharing[2, 35–38]. For example, Li et al.[36] implemented a blockchain-based
mobile crowdsensing system that enables task requesters to send tasks directly to workers,
avoiding the involvement of traditional centralized trusted third-party platforms. Cai et al.[16]

developed a blockchain-assisted trust access authentication system for the Solid (Social linked
data) project using the threshold RSA signature technology. This system, focusing on data
sharing and privacy security, is also applicable to data sharing applications in IoT. However,
most of the existing studies only apply blockchain to IoT to build a secure data sharing system,
ignoring the performance bottleneck of the blockchain itself. In this paper, we will focus
on the performance bottleneck of blockchains. In terms of the incentive mechanism, the
blockchain technology has collaborated with various single-layer resource allocation protocols.
For example, He et al.[37] proposed a truthful incentive mechanism that can meet the diverse
resource allocation requirements of IoT users in dynamic and distributed P2P (Peer-to-Peer)
environments. Kang et al.[38] proposed a localized P2P electricity trading model for locally
buying and selling electricity among Plug-in Hybrid Electric Vehicles (PHEVs). Yao et al.[2]

established a decentralized autonomous trading platform for Industrial IoT (IIoT) networks and
modeled the interaction between the cloud provider and miners as a Stackelberg game. However,
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few of these existing studies explored the blockchain-empowered multi-layer auction incentive
mechanism. Our paper studies the hierarchical auction model and solves the security, efficiency,
and incentive problems of multi-layer data sharing based on a blockchain framework, which will
set our paper apart from existing research.

2 Efficient Blockchain-Empowered IoT Data Sharing Incentive
Framework (ShareBC)
In its nature, ShareBC integrates the incentive mechanism and blockchain technology. To

improve the consensus efficiency of a blockchain system, ShareBC proposes to enable some
nodes to work in parallel through the sharding technology based on consortium blockchains to
replace conventional network-wide consensus, thus avoiding the high computational cost caused
by the Proof-of-Work (PoW) based consensus mechanism in public unlicensed blockchains[22, 23].
In this section, we first describe the constituent entities of ShareBC. Then, we introduce the
process and key steps of data sharing implemented by ShareBC.

2.1 Framework description
As indicated by Figure 1, ShareBC includes three types of IoT sharing players: data

providers, data agents, and data users.
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Figure 1 Efficient blockchain-based data sharing incentive framework for IoT (ShareBC)

The data provider refers to an IoT device with shared data resources. Both the data agent
and the data user are the IoT devices with a demand for data. In a hypothetical scenario, each
IoT data user connects directly to a nearby data agent and communicates with a cloud/edge
server through a data agent. Each IoT data user can only connect to a unique data agent, so
all data users connecting to one data agent will be assigned to the same zone, which is called
ACZ. In addition, each data agent and each data user are configured with a separate data sharing
transaction account, the address of which is required to be set as the information independent of
the user’s privacy, such as a public key. In the ShareBC mechanism, the data provider requests
data sharing transactions through a cloud/edge server. Then, after the data provider’s registration
information is received by the auction platform consisting of cloud/edge servers, the amount
and the payment of sharing data for the data agent and the data user respectively are determined
by the hierarchical data auction mechanism in line with purchase demand, auction prices, and
transmission data cost. Then, the data agent and the data user access the data resources obtained
by their respective auctions and complete the corresponding payment. Finally, these data-
sharing transactions are packaged into blocks in sharding ACZs, and the final audit is completed
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by the pre-selected consortium blockchain committee and then added to the blockchain after a
consensus has been reached.

2.2 Key steps of data sharing implemented by ShareBC
2.2.1 System initialization

System initialization includes two steps, i.e., the registration of IoT devices and the
deployment of smart contracts. First, after the system is established, the Certificate Authority
(CA) initializes the system parameters and generates the public and private keys for the newly
registered IoT devices using asymmetric cryptography. For security concerns, the private key,
once sent to the user, will be destroyed immediately, while the public key exists as the unique
identity of the IoT device in the system. Considering the regulatory requirements for anonymous
transactions in the consortium chain, CA implements a supervised anonymous authentication
scheme[39] by storing the association table of the mapping relationship between the truthful
identity information and the public key of the IoT device. As such, when there is a dispute
over the identity of the IoT data user, its data agent can request the CA to arbitrate the dispute
and track the truthful identity. Second, the compilation and deployment of the smart contract
are completed. ShareBC automatically executes data-sharing transactions through the smart
contract. After the smart contract is initialized in the blockchain network, the data provider
can participate in customizing a data sharing incentive mechanism. Once deployed, the smart
contract will have an independent ID and be permanently logged in the blockchain.

2.2.2 Construction of sharding

ShareBC introduced sharding[23] to divide the IoT devices in the network into several sub-
networks to process the transaction verification, which needs to be performed by all the network
nodes, in parallel in each sharding network area to enhance the transaction processing capability
of the blockchain system. The specific steps for constructing the sharding are detailed as follows:

(1) Network sharding: According to a key property value of the IoT device (e.g. geographic
coordinates), IoT devices are divided into different ACZs, each of which is homogeneous and
has the same function and equal status. In light of fault tolerance, there is a threshold for the
number of nodes in each ACZ.

(2) Work division of nodes: Each ACZ authenticates data transactions through the IoT
devices within it. In sharding ACZs, the work of IoT device nodes will be divided. One of the
nodes will be selected as a leader while some as followers. For the security of sharding, the next
round of leaders will be re-selected after one round of work division is executed. In light of the
property of consortium blockchains, the leader of each ACZ in the first round can be designated
in advance. Afterward, the leader to be selected in each round can be determined randomly
through a random-number-based computation[22].

(3) Increase or decrease in shard number: Given the entry of new IoT devices and the
motion of original nodes, ShareBC requires that the threshold of the number of nodes in each
ACZ is fixed. The number of nodes in each ACZ is proportional to the weight of the ACZ,
thereby ensuring that ACZs can still keep balanced with each other after the increase or decrease
in the number of sharding. For example, when the workload of the current ACZ is high, the
system’s throughput can be improved by adding shards. If the number of nodes in the current
ACZ is lower than the security threshold value, the ACZ is canceled and the nodes within the
zone are transferred to other ACZs.

2.2.3 Role setting of IoT devices

In the simulated data sharing incentive scenario shown in Figure 1, the data provider can
broadcast its data transaction requests using the blockchain network and get paid by sharing



Cai T, et al. Efficient blockchain-empowered data sharing incentive scheme for ... 293

the data. There are mainly two types of data demanders, i.e. the data agent and the data
user. Considering that the node communication within the sharding ACZ is affected by the
geographical location and the coverage of the data sharing service is limited, ShareBC requires
that the data user cannot directly request data sharing transactions from the data provider, and
the data user has to rely on the data agent in the sharding ACZ to access the shared data; the
data agent can directly trade data with the data provider to access shared data resources.

2.2.4 Data sharing incentive mechanism implemented by smart contracts

Figure 1 shows the six main Functional Interfaces (FI) of the smart contract. Critical events
of IoT data sharing are automatically executed by calling these interfaces. The data provider
first calls the Register interface of the smart contract to register the service of data sharing
resources, and then the data agent calls the Register interface to join data sharing transactions.
At the Register interface, the smart contract defines all the corresponding variables of the data
sharing mechanism, such as the quantity of data resource sets D, initial data quotation p, data
price increment C, and data demand r. After both the data provider and the data agent complete
their registration, the smart contract creates the top-level market for data transactions between
the two. Next, the data agent creates a sub-contract, H′, through the Create interface of the
smart contract and establishes the low-level market for data transactions between data users in
the sharding ACZ where the data agent is located. Data users join the data sharing transactions
through the Register interface of the sub-contractH′.

After the above steps are completed, the data provider, the data agent, and the data user
can begin data sharing. To maximize social welfare and encourage IoT devices to actively
participate in data sharing transactions, the smart contract provides an UpdateDemand interface,
and the data users in sharding ACZ updates their data demand through the UpdateDemand
interface of the contract H′. When collecting enough low-level data demands, the data agent
calls the UpdateDemand interface of the smart contract H to update its data demand in the
top-level market. When the supply and the demand of data transactions are equal, the auction
is completed. Before that, the smart contract provides the UpdatePrice interface for the data
provider to update its data quotation, and then a new auction round begins. For each winner
device (data agent and data user), payment is made to the data provider through the Pay interface.
After the auction is completed, the data agent and the data user can withdraw their remaining
account funds through the Withdraw interface.

2.2.5 Access to shared data and transactions

The winner data agent (data user) downloads the corresponding shared data resources from
the data provider (data agent), completes the decryption, and accesses the shared data. To
ensure the security of data resources during resale, the data provider can encrypt shared data
using the One-Time Password (OTP)[40] technology. In this way, it can prevent the data agent
from receiving repeated proceeds by reselling the data resources accessed through the auction of
the data provider to the data user. After being broadcast by the smart contract, the data sharing
transaction is completed. Each data sharing transaction consists of the transaction information
and the digital signature[35]; the transaction information includes the payment log, the transaction
cost, and the transaction-generated timestamps. Considering the limited storage capability of
the blockchain system, the transaction data often contains an index to log the storage location
of the encrypted shared data outside the chain; the digital signature is generated by the private
keys of both parties of the transaction. Finally, after a certain number of transaction logs are
collected by the nodes in the sharding ACZ, the transactions will be packaged into a block and
enter the next process of consensus.
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2.2.6 Process of consensus
A ShareBC-based blockchain consensus process mainly consists of two stages. First,

transactions are authenticated within the sharding ACZ, and blocks are identified through
consensus. Each sharding can select the consensus algorithm[20] within the zone (for example,
PoW, PoS, PoB, or PBFT). Then, based on a certain pre-set agreement, a consensus will be
reached between the ACZs to implement a global system in which ACZs are interconnected.
Figure 2 shows the blockchain consensus process of the IoT data sharing framework; the two
stages of the consensus process adopt the Practical Byzantine Fault Tolerance (PBFT) algorithm.
In Figure 2(a), for example, the consensus process for nodes within each sharding ACZ is divided
into five steps: block generation, pre-preparation, preparation, confirmation, and response.
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Figure 2 ShareBC based blockchain consensus process

• Block generation: The completed data sharing transactions will be authenticated by all
nodes in the network. The transactions, once authenticated to be true, will be signed by
these authentication nodes and submitted to the leader node in their respective sharding
ACZ. In each sharding ACZ, the leader node is responsible for packaging the collected
and confirmed transactions as candidate blocks.

• Pre-preparation: Each leader node manages a unique list that logs the information of all
the follower nodes inside the sharding ACZ in the current round. Based on this list, the
leader node in the current round will forward the candidate blocks to the follower nodes
in the sharding ACZ where the leader node is located for consensus.

• Preparation: Each follower node that receives the message will authenticate the validity
of the candidate blocks.

• Confirmation: Each follower node completes the authentication of the candidate blocks
and broadcasts the feedback with its own signature to the other nodes in the sharding ACZ.
If more than a certain number of follower nodes, such as two-thirds of the total, reach
consensus, the process will enter the submission phase and the request for submission
is broadcast. Otherwise, the leader node will, based on the feedback results, consider
whether to initiate the next round of consensus.

• Response: The leader node in the sharding ACZ submits the consensus-reached candidate
blocks to the committee for final audit.

Upon the completion of the above steps, the leader node in the consensus-reached sharding
ACZ will submit the candidate blocks to the consortium blockchain committee for final audit
via a nearby cloud/edge server, as shown in Figure 2(b). In ShareBC, the committee consists
of a set of cloud/edge servers provided by the consortium blockchain players. The final audit
of the candidate blocks will be completed between the committee nodes by running the PBFT
consensus protocol, and the blocks approved by the final audit will be added as new ones to the
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blockchain and then broadcast synchronously to the other sharding ACZs in the network. In
addition, the Committee is also responsible for generating a computational random number in
each round to select the leader node in the sharding ACZ. In such a consensus mechanism, the
Committee relies on distributed sharding ACZs and maintains complete control over data sharing
transactions. This mechanism is highly open and can be audited, with advantages in computation
cost and scalability. The consensus within the sharding will be detailed in Section 4.1.

3 Data Sharing Incentive Mechanism
How to design an effective incentive mechanism to drive IoT users to actively participate

in data sharing is another focus of this paper. As a core part of ShareBC, this paper proposes
a data sharing incentive mechanism based on the hierarchical data auction model implemented
by the smart contract. This mechanism is able to maximize the participants’ social welfare and
ensure the efficiency of data sharing transactions. In this section, the data sharing problem in
IoT is abstracted. Then, the formal representation is given. Afterward, the paper defines the
research problem and puts forward the mathematical model of the hierarchical data auction. On
this basis, a three-layer data auction algorithm based on the smart contract is proposed. Finally,
relevant theorems about the algorithm are proved.

3.1 Problem description
The problem of IoT data sharing based on blockchain can be abstracted into a hierarchical

data transaction market, as shown in Figure 3. The transaction market mainly consists of the
data provider P , the data agentsM = {1, 2, · · · ,M}, and the data user N = {1, 2, · · · , N}.
P andM form the top-level market of data sharing transactions, whileM andN constitute the
low-level market. It is assumed that the shared data resources are divisible and homogeneous,
with D = {1, 2, · · · , D} being the shared data resource possessed by P , where D denotes an
integer. The utility vector of each data agent j ∈M to the data setD is defined as uj , which is
the same as the proceeds obtained by the data agent in its sharding ACZ through data auction.
Nj is the set of data users in the sharding ACZ of the data agent j, j ∈ Nj . This is because
the data agent j can also participate in data transactions as a data user in the low-level market.
The utility vector of each data user i ∈ Nj to the data set D is defined as vi, and the elements
in vi are ranked in a descending way according to the principle of diminishing marginal utility.
Considering that data resources can be divided, it is assumed that the size of the k-th data
resource accessed by the data user i is Di[k].

The system requires that after a data sharing transaction takes effect, the user which wants
to access data has to rely on a data agent to connect to the data provider to download resources.
The IoT data user cannot access the shared data from the data provider unless the user is
assisted by the data agent in the sharding ACZ. The network channel capacity on both sides of
communication is represented by Hi,j , and the transmission time required for the data user (or
the data agent) i ∈ N ∪M to access the k-th data resource from the data agent (or the data
provider) j ∈M∪P is

Ti,j(Di[k]) = Di[k]/Hi,j (1)

According to the computation method of Hong et al.[9], transmission power consumption
is defined as the product of transmission power and time of the data user or the data agent. The
transmission power between the two parties is Pi,j , and the transmission power consumed by
the data user (or the data agent) i ∈ N ∪M to access the k-th data resource via the data agent
(or the data provider) j ∈M∪P is

Ei,j(Di[k]) = Pi,jTi,j(Di[k]) (2)
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According to Formulas (1) and (2), the transmission cost required for the data user (or the
data agent) i ∈ N ∪M to access the k-th data resource from the data agent (or the data provider)
j ∈M∪P is represented by

Ci,j(Di[k]) = fEEi,j(Di[k]) + fTTi,j(Di[k]) (3)

where fE and fT are two cost factors, fE > 0 and fT > 0.
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Figure 3 Hierarchical data sharing trading market based on blockchain

3.2 A formal definition of problems
It is assumed that the network topology of the three-layer data transaction market is fixed in

the process of auction. In other words, it is required that the data provider, the data agent, and the
data user cannot alter their current data transaction market during the auction. The objectives
of data sharing participants conflict with each other: The data provider seeks to maximize their
proceeds from sharing data; the data agent expects to maximize their proceeds from data resale;
the data user hopes to minimize the cost of accessing data. In this case, the auction model
should solve, to the greatest extent, the social welfare problem of all participants in data sharing
to achieve an effective market equilibrium. The objective function is to maximize the difference
between the data user’s utility of shared data resources and the transmission cost for accessing
data resources, which is formally defined as

SW (q) = max
q

 ∑
i∈Nj ,j∈M

qi∑
k=1

(vi[k]− Ci,j(Di[k])− Cj,P(Di[k]))


s.t.

∑
i∈N

qi = D
(4)

where q is the allocation vector of data resources in the three-layer data transaction market;
vi[k] is the k-th element in the utility vector vi of the data user i ∈ N , namely the utility of i
to the k-th data resource; Ci,j is the transmission cost to the data user i accessing data via the
data agent j; Cj,P is the transmission cost to the data agent j accessing the data resources of
the data provider P ; and Di[k] is the size of the k-th data resource accessed by the data user i.
The optimal data resource allocation vector q can be obtained by maximizing social welfare.

For the above objectives, it is necessary to provide the utility and cost of data-sharing
individual participants. However, given the limitations on communication and services in the
hierarchical structure of the data sharing market, the auction information between the top-level
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market formed by P andM and the low-level market formed byM and N is incomplete. In
the top-level market, the data provider cannot directly access the data user’s data request in the
low-level market located in the zones not covered by its data sharing services. Similarly, in the
low-level market, the amount of data that the data agent can supply to the data user is not clear
at the beginning of the auction, because at that time the data agent has not yet accessed the
data quotation from the data provider. Therefore, this paper proposes a hierarchical data auction
mechanism to solve the problem of maximizing the social welfare when the auction information
in the multi-layer market is incomplete.

3.3 Hierarchical data auction mechanism
In this section, the SW problem is first transformed into the optimal data allocation problem

in the hierarchical data transaction market. Next, the mathematical expression of the hierarchical
data auction mechanism is given. Finally, the theorems and proof are given.

Definition 1 (Optimal data allocation problem in the top-level market). In the top-level
market, the data provider shares the data with the data agent. The optimal data allocation
problem is to maximize the difference between the data agent’s utility of sharing data resources
and its transmission cost of accessing data. The problem is formally defined as

max
qm

∑
j∈M

qm
j∑

k=1

(uj [k]− Cj,P(Dj [k]))

s.t.
∑
j∈M

qm
j = D

(5)

where qm is the data allocation vector of all data agents in the top-level market; qm
j is the

amount of data allocated to the data agent j by the data provider; uj [k] is the utility of the
data agent j for the k-th data resource, uj [k] ∈ uj ; Dj [k] is the size of the k-th data resource
accessed by the data agent j; and Cj,D is the transmission cost to the data agent j accessing the
data resource of the data provider.

Definition 2 (Optimal data allocation problem in the low-level market). The vector qm∗

denotes the optimal data allocation solution for the top-level market. In the low-level market, the
data agent j forwards the data resource qm∗ accessed from the top market to the data users within
its sharding ACZ. The optimal data allocation problem is to maximize the difference between
the data user’s utility for data resources and the transmission cost to the data user accessing data
resources. The optimal data allocation problem is formally defined as

max
qe
j

∑
i∈{Nj}

qe
j [i]∑

k=1

(vi[k]− Ci,j(Di[k]))

s.t.
∑

i∈{Nj}

qe
j [i] = qm∗

j ,
∑
j∈M

qm∗
j = D

(6)

where qe
j is the data allocation vector for all data users in the sharding ACZ where the data agent

j is located; qe
j [i] is the amount of data allocated to the data agent i by the data agent j; vi[k]

is the data user i’s utility for the k-th data resource, vi[k] ∈ vi; Di[k] is the size of the k-th
data resource accessed by the data user i; and Ci,j is the transmission cost to the data user i
accessing the data resource via the data agent j.

The process of data allocation is described below: First, the data provider provides qj units
of data resources to the data agent j. Then, the data agent j resells qj to the data usersNj in the
sharding ACZ where the data agent j is located. If the data demand ofNj in the low-level market
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of the sharding ACZ equates to the data supply qj of the data agent j, then the optimal data
allocation vector qe∗

j of the data usersNj can be obtained. In other words, when data supply and
demand are equal between the top-level and the low-level markets, the vectors of solutions to
optimal data allocation problems (5) and (6), qm∗ and qe∗, can be obtained, which is equivalent
to the maximization problem (4) of SW. However, given the limitations on the hierarchical
structure of the transaction market, the utility vector uj of the data agent j ∈M is unknown at
the beginning of the auction. Accordingly, qm∗ and qe∗ cannot be directly computed. In this
case, the hierarchical data auction mechanism has to obtain complete information to solve the
maximization problem of SW.

This paper introduces a synchronization mechanism into the hierarchical data auction to
solve the problem of maximizing the social welfare of the data provider forwarding the data
sharing set D via M data agents to N data users. Specifically, on the one hand, in the top-
level market, the Ascending Clock auction with Clinching (ACC) mechanism put forward by
Ausubel et al.[39] is used to solve the optimal data allocation Problem (5). The data provider
will publish the data quotation p0 to the data agent at the beginning of the auction. Upon
receipt of the quotation, the data agent, taking into account the utility at the quotation, provides
the corresponding data demands to the data provider. The data provider then raises the data
quotation (namely p0+C) in an increasing constant ratio C and starts the next round of auction.
The auction process continues to iterate until the data demands of the data agent are equal to the
shared data resource set D of the data provider. On the other hand, a scalable ACC mechanism
is adopted in the low-level sub-market to solve the optimal data allocation Problem (6). The
data resources that each data agent can provide to data users within the ACZ where the data
agent is located are accessed through auction in the top-level market by the data agent. As
the utility of the data agent is unpredictable, the data agent is required to broadcast the auction
information of the top-level market to the sharding ACZ where it is located. Finally, to ensure
the synchronization of hierarchical auctions, the data provider needs to formulate rules on the
allocation and pricing of data transactions.

• Allocation rule: The data resources that the data agent auctions and accesses in the
top-level market have to be re-auctioned immediately in the sharding ACZ where the data
agent is located.

• Pricing rule: The auction price of data resources in the sharding ACZ shall not be higher
than its final auction price in the top-level market.

Next, this paper will give a mathematical description of the hierarchical data auction
mechanism. The data provider’s quotation set for its shared data resource set D is p =

{p0, p1, · · · , pl}, where p0 denotes the initial auction price and pl the final auction price.
According to Theorem 1, the quotation sets of the data sharing setD in the top-level market and
its low-level sub-market are the same, namely p = {p0, p1, · · · , pl}.

Theorem 1. In a hierarchical data auction mechanism, the data auctions in the top-level
market and the low-level sub-market are terminated simultaneously.

Proof : The data quotation set in the top-level market is pt = {p0, p1, · · · , pl}, and
the auction termination quotation is pl; the data quotation set in the low-level sub-market is
ps = {p0, p1, · · · , p′l}, and the auction termination quotation is p′l, pl ̸= p′l. At this point,
pl < p′l implies that the auction in the top-level market is terminated, but that in the low-level
market continues. Then, when the termination quotation is p′l, there is a case where a winner
data user accesses the data through the auction while the other users give up the auction. In other
words, when the termination quotation is p′l, it is inevitable that the data user changes its demand
for the shared data resources. However, in the hierarchical data auction mechanism, the data
agent must first collect the demands of all data users for data sharing in its low-level sub-market
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before determining its own utility and submitting the corresponding data demands to the data
provider. In this context, there will be data agents that have changed their data demands in the
top-level market when the quotation is p′l. Then it proves that the data auction in the top-level
market is not terminated when the quotation is p′l, which contradicts the assumption that the
auction termination quotation in the top-level market is pl. In the same vein, if pl > p′l, the data
users in the low-level sub-market will not be able to change their data demand; accordingly, data
agents will not change their data demands. Therefore, pl > p′l does not hold. To sum up, data
auctions in the top-level market and the low-level sub-market will be terminated simultaneously.

When the data quotation is pt ∈ p, the data demand of the data agent j is expressed as

rm
j (pt) =

∑
i∈Nj

re
j (pt)[i]− Cj,P (7)

whereCj,P is the transmission cost of the data agent j accessing data resources of data providers;
re
j (pt) is the data demand vector of the data user Nj for data quoted at pt in the sharding ACZ

where the data agent j is located; and re
j (pt)[i] is the demand of the data user i ∈ Nj for data

quoted at pt in the sharding ACZ.
When the data quotation is pt ∈ p, the data demand of the data user i is expressed as

re
j (pt)[i] =

∑
k∈vi

I(k − Ci,j , pt) (8)

where Ci,j is the transmission cost of the data user i accessing data via the data agent j; and
I(x, y) is the indicator function. When x ≤ y, I(x, y) = 0; when x > y, I(x, y) = 1. As such,
the data user i’s demand for data quoted at pt, namely re

j (pt)[i], decreases as the quotation pt
increases. For any k ∈ vi, if y′ > y and {y, y′} ∈ p, then I(k, y′) ≤ I(k, y).

It is assumed that when the quotation is p ∈ p, the data agent j resells the k-th data resource
that it accesses in the top-level market through auction to the data user i. Then, the utility of the
k-th data resource is expressed as uj [k] = p − Ci,j(Dj [k]), where uj [k] is the k-th element
in the utility vector of the data agent j; and Ci,j is the transmission cost for accessing data
resources. According to the allocation rule, when the data quotation is pt ∈ p, the sums of the
data accessed through auction by the data agent j and the data user i ∈ Nj are respectively

qm
j (pt) = max

0,D −
∑

k∈M\j

rm
k (pt)

 (9)

qe
i (pt) = max

0, qm
j (pt)−

∑
k∈Nj\i

re
j (pt)[k]

 (10)

When pt = pl, the auction is terminated, and then the solution vectors qm∗ and qe∗ of
the optimal data allocation Problems (5) and (6) can be obtained. Furthermore, Formulas (9)
and (10) mentioned above can be further expressed as

Qm
j (pt) =

{
max{0, qm

j (pt)}, t = 0

max{0, qm
j (pt)− qm

j (pt−1)}, t ∈ {1, 2, · · · , l}
(11)

Qe
i (pt) =

{
max{0, qe

i (pt)}, t = 0

max{0, qe
i (pt)− qe

i (pt−1)}, t ∈ {1, 2, · · · , l}
(12)
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As long as the data agent or the data user can access the shared data resources quoted at
pt ∈ p, transactions can be carried out. Moreover, the data agent or the data user needs to pay
the price pt for each unit of data resources. According to the payment rule, the prices that the
data agent j and the data user i ∈ Nj have to pay are respectively

Pm
j (p,Qm) =

t=l∑
t=0

k=Qm
j (pt)∑

k=1

(pt − Cj,P(Dj [k])) (13)

P e
i (p,Q

e) =

t=l∑
t=0

k=Qe
i (pt)∑

k=1

(pt − Ci,j(Di[k])) (14)

where Cj,p is the transmission cost to data agent j for accessing data resources shared by the
data provider j; Ci,j is the transmission cost to data user i for accessing data resources through
the data agent j; Dj [k] is the size of the k-th data resource of the data provider that the data
agent j accesses through auction; and Di[k] is the size of the k-th data resource accessed by the
data user i after the auction through the data agent j.

3.4 Three-layer data auction algorithm based on smart contracts
In the three-layer data auction mechanism, the data provider can gradually access the

demand of the data user in the low-level market for the shared data resources during the auction
process, and the data user can gradually access the shared data provided by the data agent in
this process. Thus, upon the completion of the auction, the optimal solutions qm and qe∗ are
obtained to maximize the social welfare. Algorithm 1 describes how the three-layer data auction
based on smart contracts works. The concrete steps are as follows:

Step 1. The smart contractH for auction is compiled and deployed during the initial phase
of the blockchain system. The data provider P calls the Register interface in the smart contract
H for registration and initializes the top-level data market, providing relevant bidding data, such
as the number D of the data sharing set D, initial quotation p, and price increment C for each
round of the auction iteration. Similarly, each data agent j with their account reserve funds
is registered through the Register interface to join the top-level market and initializes its data
demand rm

j ← 0.
Step 2. The data agent j calls the Create interface of the smart contract H to create the

smart contractHj of the low-level sub-market to which the data agent j is connected to. Then,
the data users with their reserve funds in the ACZ can join the low-level sub-market by calling
the Register interface of the smart contractHj and initialize their data demand re

j ← [0, · · · , 0].
Step 3. According to the initial quotation p, the data user in the low-level sub-market

updates its data demand re
j [i] through the UpdateDemand interface of the smart contract Hj .

Taking into account the updated demands from the data users, the data agent updates its data
demand rm

j through the interface UpdateDemand of the smart contractH.
Step 4. The data provider P shares a corresponding amount of data with the data agent

in line with Formula (9), and the data agent allocates the corresponding data to the data user in
line with Formula (10).

Step 5. According to Formulas (9) and (10), the data agent and the data user call the Pay
interface of the smart contractsH andHj respectively to complete the payment.

Step 6. In case of supply-demand imbalance in the top-level and low-level markets, it is
necessary to perform the next round of auction. The data provider P calls the UpdatePrice
interface of the smart contract H to update the quotation p ← p + C, and then starts the next
round of iteration from Step 3 of Algorithm 1.
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Step 7. After the whole data auction is completed, the data agent and the data user can
call respectively the Withdraw interface of their corresponding smart contracts to withdraw the
remaining funds in their own account.

Algorithm 1. Three-layer data auction algorithm based on the smart contract.
Input: D, p← p0, C = 1, rm

j ← 0, re
j ← [0, · · · , 0];

Output: qm∗, qe∗,pm,pe.
1. In the top-level market, the data provider P registers data resource services through the Register

interface of the smart contractH;
2. Set the global variable of H, including the amount of auction data resource set D, initial data

quotation p← p0, and price increment in each round C = 1
3. for j ∈M do
4. The data agent j with account reserve funds participates in the auction in the top-level market

through the Register interface of the smart contractH;
5. The data agent j creates a smart sub-contract Hj through the Create interface of the smart

contractH to manage its low-level sub-market transactions;
6. for i ∈ Nj do
7. The data user i with account reserve funds registers through the Register interface of the

smart contract Hj and participates in the auction in the low-level market to which its
data agent j is connected to;

8. end for
9. Set the global variable ofHj , including the data demand rm

j ← 0 of the data agent j and the
demand re

j ← [0, · · · , 0] of the data user i ∈ Nj for shared data resources;
10. end for
11. whileD ̸=

∑
j∈M rm

j do
12. for j ∈M do
13. for i ∈ Nj do
14. The data user i calls the UpdateDemand interface of the smart contract Hj to

update its demand for data re
j [i];

15. end for
16. The data agent j calls the UpdateDemand interface of the smart contract H to update

its data demand rm
j ;

17. end for
18. The data provider P provides the corresponding amount of data in line with Formula (9) to

the data agent, and the data agent j provides the corresponding amount of data in line with
Formula (10) to the data users in the sharding ACZ where the data agent j is located;

19. According to Formulas (13) and (14), the data agent j and the data users Nj complete the
payment for the data resources accessed through auctions via the Pay interface of smart
contractsH andHj respectively.

20. The data provider P calls the UpdatePrice interface of the smart contract H to update data
quotation p← p+ C;

21. end while
22. After the auctions are completed, the data agent j and the data usersNj withdraw their remaining

reserve funds in their own account by calling the Withdraw interface of smart contractsH and
Hj respectively.

3.5 Main theorem about the algorithm
The hierarchical data auction algorithm proposed in this paper has high efficiency and

practicability. To prove these attributes, this paper compares it with the classic ACC-based
double auction algorithm[41]. Double auction[31] is a practical auction mode extensively used
in actual transactions. Both parties of the transactions submit the asking price and the bidding
price to the agent of the auction. Finally, the agent of the auction matches the tender prices
of both parties and sets the corresponding rules for resource allocation and pricing. However,
standard auction algorithms are often inefficient when bidders have multi-unit demands. The
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double auction algorithm based on ACC adopts the ACC mechanism in which the auction
price increases by competition between similar products, which can cope with the problem of
efficiency and produce an efficient and practical auction model. Therefore, it is selected as the
benchmark algorithm to prove the effectiveness of the algorithm proposed in this paper. Next,
the proof process of the theorem is given.

Theorem 2. When the limitations on communication and sharing services of ShareBC
and the transmission cost for accessing the shared data are not considered, the hierarchical
data auction algorithm proposed in this paper is equivalent to the ACC-based double auction
algorithm.

Proof : It is assumed that the data provider will conduct data sharing transactions of D units
of data resources. First, the double auction mechanism based on ACC is adopted, namely that
IoT data users directly conduct data transactions with data providers. Qi is the data allocation
vector of the data user i ∈ N ; data auction quotation is p = {p0, p1, · · · , pf}; and r(pd)[i] is
the demand of the data user i for shared data resources when the auction quotation is pd ∈ p. It
is set that pd ∈ p is the price of the first shared data resource of the data user i. Afterward, the
auction quotation becomes pd ← pd + C in each round, satisfying{

1 = Qi(pd) = D −
∑

k∈N\i r(pd)[k]∑
i∈N

∑pd−C
k=p0

Qi(k) = 0, pd > 0
(15)

According to Formula (15),

D −
∑
k∈N

r(pd)[k] +Qi(pd) = 1 (16)

Next, the hierarchical data auction mechanism proposed in this paper is adopted for analysis.
There are two data agents in the three-layer data sharing transaction market, i.e., M1 and
M2, and i data users are in the low-level sub-market to which M1 is connected. The data
allocation vectors of M1 and M2 are Qm

1 and Qm
2 respectively, and the data auction quotation

is p = {p0, p1, · · · , pf}. When the auction quotation is pt ∈ p, the amount of data that M1

and M2 can access is respectively{
Qm

1 (pt) = max{0, D − rm
2 (pt)}

Qm
2 (pt) = max{0, D − rm

1 (pt)}
(17)

where rm
j is the demand of shared data resources of the data agent j ∈ {1, 2}; Qe

i is the data
allocation vector of the data users i ∈ M1; and ph ∈ p is the price of the data accessed by the
data user i in the first auction in the low-level sub-market. Afterward, the quotation becomes
ph ← ph + C in each round of the auction. Then{

1 = Qe
i (ph) = Qm

1 (ph)−
∑

k∈N1\i r
e
1(ph)[k]∑

i∈N1

∑ph−C
k=p0

Qe
i (k) = 0, ph > 0

(18)

where r
ph
1 [i] is the demand of the data user i for shared data resources priced at ph ∈ p.

According to Formula (18), we can get

Qm
1 (ph)−

∑
k∈N1

re
1(ph)[i] +Qe

i (ph) = 1 (19)
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According to Formulas (17) and (19), the calculations are as follows:

1 = D − rm
2 (ph)−

∑
i∈N1

re
1(ph)[i]+Qe

i (ph)

= D − rm
2 (ph)− rm

1 (ph) +Qe
i (ph)

= D −
∑
i∈N

re(ph)[i] +Qe
i (ph) (20)

The comparison between Formulas (16) and (20) reveals pd = ph. Therefore, when
ShareBC communication and service limitations and the transmission cost for accessing shared
data resources are not considered, the hierarchical data auction proposed in this paper is
equivalent to the ACC-based double auction.

4 Performance Evaluation
4.1 Comparison between sharding protocols and analysis

This section evaluates the ShareBC sharding protocol in terms of sharding formation, Inter-
shard consensus, security, and scalability. Table 1 shows a comprehensive comparison with the
current classic blockchain sharding protocols. Section 2.2 of this paper has expounded on the
key steps for the sharding protocol in data sharing implemented by ShareBC, such as sharding
formation and consensus process. Next, sharding settings and performance comparisons are
described.

Table 1 Sharding settings and performance comparisons

Protocol Node
joining

Transaction
model

Protocol
consis-
tency

Node
allocation

Inter-shard consensus Security (fault
tolerant
capability)

Scalability
Node con-
figuration Leader

Communi-
cation

complexity

RSCoin[42] License
based UTXO ! % Static state Internal

election O(n) 1/3 2,000 tx/s

Chainspace[43] Flexible account/
balance ! % Flexibility Internal

election O(n2) 1/3 350 tx/s

Elastico[44] PoW UTXO !
Dynamic

randomness

Periodic
transforma-
tion (Full
exchange)

Internal
election O(n2) 1/3 16 blocks/110 s

OmniLedger[45] PoW/PoS UTXO !
Dynamic

randomness

Periodic
transforma-

tion
(Replace
subsets)

Internal
election O(n) 1/4 6,000 tx/s

RapidChain[46] Off-line
PoW UTXO !

Dynamic
randomness

Periodic
transforma-

tion

Internal
election O(n) 1/3 7,300 tx/s

Monoxide[47] PoW Account/
balance ! Static state Static state % % 1/2 11,694 tx/s

ShareBC License
based

Account/
balance ! Static state

Periodic
transforma-

tion

Internal
election O(n) 1/3 !

! denotes containing the property;% indicates not containing the property.

Regarding the protocol setting, node joining implies that nodes are allowed to join the rules
and standards on which the current epoch is based. For example, ID accessing based on the
PoW or PoS mechanism is an important way for unpermissioned blockchain systems to prevent
Sybil attacks. However, ShareBC is proposed based on permission blockchains and allows the
blockchain system to operate in a relatively trusted environment, in which successfully registered
IoT devices are allowed to participate in nodes. In addition, ShareBC adopts an account/balance
transaction model. This is a user-friendly model applicable to the smart contract, and the
transactions of any amount can be executed by one sending account and one receiving account
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rather than multiple bilateral UTXOs. Such an equilibrium can extend to more complex states,
thus supporting the logic of programmable applications. Finally, the classic Byzantine fault
tolerance protocol adopted in the ShareBC sharding scheme has high consistency in negotiated
consensus.

Node allocation refers to how participating nodes are allocated to corresponding shardings
in the blockchain system. Most of the existing research is based on the random number generated
by epoch, i.e., a Verifiable Random Function (VRF). In a few studies, Monoxide[47] protocol
nodes are not randomly allocated but based on addresses. In the ShareBC sharding protocol,
for each successfully registered IoT device, the system will allocate the device, in line with one
key property value (such as its geographical coordinates), to the corresponding ACZ. In terms
of consensus within the sharding, in general, its node configuration can be (permanently) static
or dynamically and periodically changed, as happens with alternate replacement, full exchange,
or replacement of subset nodes. Considering the mobility of IoT devices and the security of
the ACZ, ShareBC will set the device nodes in the ACZ to change periodically. In addition,
each ACZ will conduct a leader election within each epoch. The leader comes from the IoT
device nodes within the shard. The communication complexity denotes the time complexity of
the communication between the internal nodes of ACZ. Assuming that it denotes the number of
nodes within an ACZ, the communication complexity within each ACZ in ShareBC is expressed
as O(n).

Concerning security and scalability, the ShareBC competitor model is set on the basis of
BFT. The number of malicious or erroneous nodes, which can be tolerated by its consensus
protocol, is at most 1/3. The throughput values shown in Table 1 are correlated to the settings
of experimental parameters[45]. Specifically, the experimental parameters are listed as follows:
RSCoin includes 3 nodes/shard and 10 shards; Chain Space includes 4 nodes/shard and 15 shards;
Elastico includes 100 nodes/shard and 16 shards; OmniLedger includes 72 nodes/shard (12.5%
of the competitors) and 25 shards; RapidChain includes 250 nodes/shard and 4,000 nodes;
Monoxide includes 2,048 shards and 48,000 nodes. Throughput values show that these sharding
systems have scalability. The ShareBC sharding protocol requires two rounds of verification.
The IoT device node (follower) first verifies the internal consistency of ACZ sharding through
PBFT consensus and then submits it to the consortium blockchain committee to achieve a
global consistency and adds the verified block to the chain. The proposed scheme reduces the
transaction latency and improves the transaction throughput because the chained block does not
need to wait for the confirmation time of six blocks as the Bitcoin network does. In addition, the
consensus mechanism in this paper is inspired by RSCoin to some extent. The Committee in
the ShareBC system relies on the distributed sharding ACZ while maintaining full control over
data sharing transactions, ensuring highly open auditable secure transactions.

4.2 Prototype implementation
The smart contract enforces key events in the incentive mechanism in a non-repudiation

and automated manner, improving the security and efficiency of data sharing. This experiment
develops a prototype system for the performance test of the smart contractH and its sub-contract
Hj and deploys it to the Ethereum test network to compute the Gas cost of the smart contract
and each interface. In the Ethereum blockchain, the Gas price represents the Ether consumed
to perform a task. The unit of measurement is Wei, and 1 Wei = 10−18 Ether. Table 2 shows
the average Gas cost for each interface in the smart contracts H and Hj (after 20 rounds of
tests). In the table, the execution cost represents the Gas consumption of the smart contract
executing the instruction; other costs indicate the amount of Gas consumed by the transaction
that calls the interface. According to the test results in Table 2, the Create interface of the entire
smart contract consumes the most Gas, but it is only called once when a data agent creates the
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low-level sub-market to which it is connected to.
Table 2 Gas cost of interfaces in the smart contractsH andHj

Interface Execution cost (Gas) Other costs (Gas) Transaction cost (Gas) Transaction cost ($)
Create 1,120,572 382,327 1,502,899 0.71537992

Register (H) 652,320 21,191 673,511 0.32059124
Register (Hj ) 60,978 21,191 82,169 0.03911244

UpdateDemand 20,671 21,442 42,113 0.02004579
UpdatePrice 5,565 21,442 27,007 0.01285533

Pay 27,260 21,191 48,451 0.02306268
Withdraw 12,884 5,799 18,683 0.00889311

It is assumed that there is one data provider, two data agents, and ten data users in a
hierarchical data auction system. According to the current exchange rate of 1 Ether ≈ 238$
and 1 Gas = 2 × 10−11 Ether, the data provider in this system only needs 0.32059124$ to
publish a data sharing transaction in the blockchain network. The total cost of data demanders
(including one data agent and five data users) in each low-level sub-market after one round of
data auction is 1.490184$. The average cost of each data demander is 0.248364$. It should be
noted that one round of data auction computed here specifically includes one call to the Register
(H) interface, one call to the Create interface, five calls to the Register (Hj) interface, six calls
to the UpdateDemand interface, and six calls to the Pay interface. After repeated tests, the
results show that the cost for executing smart contracts H andHj is low, which proves that the
hierarchical auction mechanism implemented by the smart contract, if applied to the IoT data
sharing incentive framework, is economically feasible.

4.3 Simulation results and analysis
The performance of the hierarchical data auction algorithm proposed in this paper

is tested by simulation. In the experiment, the scale of the data-sharing participants is
(x, y, (z1, z2, · · · , zy)), where x is the number of data providers, y the number of data agents,
and zi the number of data users in the relevant sharding ACZ. The simulation parameters are set
as follows: The scale of the participants in the three groups is #1:(1, 3, (5, 5, 5)), #2:(1, 3, (10,
10, 10)), and #3:(1, 3, (15, 15, 15)), respectively.

In the top-level market, the amount of shared data of the data provider is D = 50; in
the low-level market, the transmission power of the data user i ∈ Nj is Pi = 2 W, and the
communication bandwidth is B = 10 MHz; and the distance between the data user (or the data
agent) i ∈ N ∪M and the data agent (or the data provider) j ∈M∪P is randomly set within
a range of (0, 20] m. The value range of the cost factor fE is [0, 1], and fT = 1− fE . The size
of the data resource accessed by the data user is 1, and the size of the element corresponding
to the utility vector vi of the data user i ∈ Nj is within [0, 100]. According to Hong et al.[9],
the noise power and the channel power per unit distance di,j = 1 m are δ2 = −120 dBm and
β0 = −50 dB respectively. Then, the channel capacity between the data user i ∈ Nj and the
data agent j is Hi,j = B log2(1 + λ0

i /d
2
i,j), in which λ0

i denotes the receiving Signal-to-Noise
Ratio (SNR) of the data user i when di,j = 1 m, and λ0

i = β0Pi/δ
2. Finally, for accurate

experimental results, data of each experiment are the means of 100 independent simulation
results.

To test the effectiveness of the algorithm, experiments are carried out on the social welfare
when the scale of the participants is #1, #2 and #3 respectively. Figure 4 shows the convergence
of the social welfare function of the hierarchical data auction algorithm at different scales.
From the figure, this algorithm can quickly obtain the maximum social welfare at different
data sharing scales. As the scale of the participants (x, y, (z1, z2, · · · , zy)) expands, the value
of the converged social welfare becomes increasingly large. This is because the resource
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competitiveness of the three-layer data transaction market increases with the larger number of
data sharing users. It also means that the data user has to pay higher prices to become the auction
winner to access data.

Figure 5 describes the relationship between the total demand on data demand side (including
data agents and data users) and the supply of data providers. The overall trend shows that the
data supply by data providers grows with the higher data auction price, while the total demand
of data agents and data users will decrease with the higher data auction price. Eventually, the
two curves converge to the same value, namely the number of data sharing resources owned by
the data provider D = 50. From Figures 4 and 5, social welfare is maximized when the total
demand of data agents and data users for data sharing is equal to the supply by data providers.
In addition, the changing trend of the social welfare curve shown in Figure 4 is the same as that
of the supply curve of data providers shown in Figure 5, because social welfare will not change
unless the number of data resources that data providers are willing to share varies. Experimental
results demonstrate that the hierarchical data auction mechanism is effective and can maximize
social welfare.
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Figure 6 shows the impact of the transmission cost on social welfare in the algorithm when
the scale of the participants is #2. A smaller cost factor fE can lead to greater convergence of
the social welfare function, namely that a higher transmission cost results in lower maximum
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social welfare. Before the convergence, a larger cost factor fE leads to a faster change in social
welfare curves. Accordingly, the data users in the auction system will access data resources more
quickly. This is because, in the hierarchical data auction mechanism, the transmission cost of the
low-level sub-market is the cost to the data users within the sharding ACZ. On the precondition
that the utility of data sharing is the same, a higher transmission cost indicates a lower price
of an auction in which data users participate. Considering the same market competitiveness, a
lower auction quotation leads to a lower transaction price, and the winner will access the data
resources sooner.

Figure 7 illustrates the total utility of data providers, data agents, and data users when the
scale of the participants is #1, #2, and #3 respectively after social welfare is maximized. The
first column bar is the net utility of the data provider; the difference between the center and left
bar is the net utility of the data agent; the difference between the right and the center bar is the
net utility of the data user. The net utilities of data providers, data agents, and data users are
all positive, indicating that the proposed hierarchical data auction mechanism satisfies the weak
budget balance.
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In the hierarchical data auction mechanism, the data agent is required to immediately resell
the data sharing resources to the data user in the low-level sub-market, once accessing data
sharing resources through the auction in the top-level market. The experiments are carried out
on the real-time performance of the hierarchical data auction mechanism, as shown in Figures 8
and 9.
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Figure 8 shows the average reduced time versus the number of demanders (data agents and
data users) in the three-layer data auction algorithm. It concludes that the reduction in latency
will decrease as the number of data sharing users rises.

Figure 9 explains this trend. It shows the whole auction process of data agents and data
users when the scale of participants is #1, #2, and #3 respectively. xi (i ∈ {1, 2, 3}) denotes
the process from data users winning the first shared data resource set through the auction to the
completion of the auction while x1 > x2 > x3 indicates that a smaller scale of participants
relates to fewer data users. Accordingly, as the auction is completed sooner, data resources
will be accessed more quickly. Hence, the scale of participants in data sharing transactions
determines market competitiveness. When the market competitiveness is poor, it will take data
users a shorter time to access shared data resources. Therefore, when the number of devices
participating in data sharing in the IoT is small, the real-time performance of the algorithm will
be better.
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Finally, given different numbers of data users, experiments are conducted to compare
algorithms in terms of maximal social welfare. The test algorithms include the double auction
algorithm based on ACC and the three-layer data auction algorithm based on the smart contract.
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Experimental results show that the maximum social welfare implemented by the two auction
algorithms is basically the same.

Figure 10 shows a small gap between the two; this may be because the values of the two
algorithms in the experiments are all means. The experimental results verify the correctness of
Theorem 2. When ShareBC communication and service limitations and the transmission cost
for accessing shared data resources are not considered, the hierarchical auction proposed in this
paper is equivalent to the ACC-based double auction.

Figure 11 illustrates the testing effect after the algorithm expands the node scale. With more
ACZ groups and data users in each sharding ACZ, the number of rounds of iteration required for
the algorithm execution increases gradually. From the plot, the algorithm has a linear growth
trend, with good scalability.
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5 Summary and Prospect
In this paper, we studied an efficient IoT data sharing incentive scheme based on blockchain.

On the one hand, the scheme proposes an efficient blockchain-empowered IoT data sharing
incentive framework, called ShareBC. ShareBC relies on sharding technology to divide the
IoT devices in the network into several ACZs, thereby enhancing the transaction processing
capability of the system. It processes the transaction verification, which needs to be performed
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by the whole network nodes, in parallel in each sharding ACZ. On this basis, ShareBC provides an
efficient consensus mechanism, which is highly transparent and can be audited, with advantages
in computation cost and scalability. On the other hand, the scheme proposes an incentive
mechanism based on a hierarchical data auction model, which solves the problem of shared
data resource allocation between data providers and data demanders. The data users that cannot
access the shared resources themselves can access the resources via data agents. It aims to
encourage more IoT users to join data sharing. In the hierarchical data auction mechanism, a
three-layer data auction model is built, and relevant data allocation and pricing rules are designed.
The impact of the data transmission cost on social welfare has also been investigated. Finally,
to ensure the non-repudiation and execution efficiency of the auction mechanism, we deployed
a smart contract to make the auction mechanism work automatically. Theoretical results and
experimental evaluation show that the data sharing incentive scheme proposed in this paper has
individual rationality, incentive compatibility, weak budget balance, real-time performance, and
scalability, with low computing cost and good practicability.

Future studies are expected to explore blockchain-based data sharing in IoT. To remove
the inherent performance bottleneck of blockchains, further research should be conducted on
the system scalability such as sharding and off-chain payment channels. In this paper, we offer
suggestions on the setting of ShareBC sharding protocols and compare the performances of
different algorithms. In the future, we will continue to study the specific implementation
of ShareBC sharding protocols and investigate how to form sharding in a dynamic IoT
environment and how to dynamically adjust sharding while balancing decentralization, security,
and scalability. In addition, multi-chain-driven heterogeneous IoT sharing application platforms
can also improve the performance of blockchain systems. In the model proposed in this paper,
ShareBC is based on permissioned blockchains, and data sharing transactions are performed in an
environment assumed to be relatively trusted. In this environment, all participating nodes, such
as data providers, possess the member qualification strategically authorized by the consortium
organization. For follow-up research, we consider credit rating and reward-punishment practice
in the incentive mechanism to improve the quality and transaction security of data sharing.
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