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Abstract Distributed algorithms are subtle and error-prone. Still, very few of them have

been formally verified, most algorithm designers only giving rough and informal sketches of

proofs. We believe that this unsatisfactory situation is due to a scalability problem of current

formal methods and that a simpler model is needed to reason about distributed algorithms.

We consider formal verification of algorithms expressed in the Heard-Of model recently

introduced by Charron-Bost and Schiper. As a concrete case study, we report on the formal

verification of a non-trivial Consensus algorithm using the proof assistant Isabelle/HOL.
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1 Introduction

Distributed algorithms are often quite subtle, both in the way they operate and
in the assumptions under which they work correctly. Indeed, several algorithms have
been found to be erroneous, and numerous misunderstandings have arisen due to dif-
ferent interpretations of the precise objectives of the algorithms and of the underlying
hypotheses. Formal verification is therefore crucial in distributed computing.

To facilitate their design and understanding, distributed algorithms are gener-
ally structured in rounds: during every round, each process first sends messages, then
receives messages from other processes, and finally makes a local state transition.
However, most existing formal models of distributed algorithms (e.g., Refs. [1, 2, 5, 8,
13]) do not take advantage of this structure, but are based on a fine-grained descrip-
tion of systems whose individual processes are represented by communicating state
machines. Executions of these models are represented as sequences where events per-
formed by the component state machines are interleaved. Charron-Bost and Schiper[4]

recently proposed the Heard-Of (HO) model, a round-based model for fault-tolerant
distributed computing, in which executions of distributed algorithms are modeled as
infinite sequences of global rounds, which are executed atomically. This coarse-grained
abstraction is justified by the assumption that rounds are communication-closed lay-
ers: processes react solely to messages sent for the round they currently execute. The
second new idea in the HO model is the way system properties (such as degree of
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synchronism or failure model) are captured by a single predicate on the communi-
cation exchanges between processes that can be guaranteed round by round. The
coarse-grained atomicity of rounds, obviating the need to consider intermediate sys-
tem states, and the high level abstraction of communication predicates, encapsulating
system guarantees as a whole, both promise to simplify verification of non-trivial dis-
tributed algorithms.

In this article we test this expectation by verifying the correctness of Paxos, a
quite sophisticated Consensus algorithm due to Lamport[11], in the interactive proof
assistant Isabelle/HOL[15]. We first describe a generic representation of HO algo-
rithms in Isabelle and then study the LastVoting algorithm, the HO version of Paxos,
as an instance of the generic model. We formally prove that LastVoting achieves
Consensus among processes despite (benign) communication errors.

Our experience indicates that adopting a round-based model is indeed helpful for
formal verification, because it induces a significantly higher level of abstraction than
traditional fine-grained models. The proof script is significantly (at least 5 times)
shorter than that of the verification of another variant of Paxos in Isabelle/HOL[9],
based on a fine-grained model. We should emphasize that in this article we do not
employ a specific formal method of system development, but focus on the mathemati-
cal properties of the HO model. Our results can help to reduce the cost of verification,
by model checking or theorem proving, of HO algorithms in standard formal methods
for distributed systems, such as I/O automata[14], TLA+[12] or process algebras.

The paper is structured as follows: Section 2 reviews the HO model and its coor-
dinated variant, formally introduces the Consensus problem, and gives a justification
for a coarse-grained abstraction of runs that essentially underlies the verification.
Section 3 gives a traditional presentation of the LastVoting algorithm, whose formal
model in Isabelle is described in Section 4. A detailed correctness proof for the algo-
rithm, following the Isabelle proof, appears in Section 5. Finally, Section 6 discusses
what has been achieved and what lies ahead.

2 The Round-Based HO Model

Computations in the HO model are composed of rounds, in which each process
exchanges messages, and then takes a step. In the parlance of Elrad and Francez[7],
each round is a communication-closed layer in the sense that any message sent in
a round can be received only in that round. The technical description of compu-
tations is thus similar to the ones proposed by Dwork, Lynch, and Stockmeyer[6],
and so the model generalizes the classical notion of synchronized rounds developed
for synchronous systems[13]. Typically, communication-closedness in non-synchronous
settings is ensured by buffering messages which are early, and by discarding messages
which are late.

2.1 Processes, states, and state transitions

We suppose that we have a non-empty finite set Π of cardinality N > 0 and a
set of messages M (possibly with a designated element specifying the null message).
We let ⊥ /∈ M be a placeholder indicating the absence of a message, and we denote
by �M⊥ the set of vectors of elements in M ∪{⊥} indexed by Π. Associated with each
p in Π, we have a process, which consists formally of the following components:
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• Statesp, a set of states;

• Initp, a non-empty subset of Statesp known as the initial states;

• for each integer r ∈ N, a message-sending function Sr
p mapping Statesp × Π to

elements of M ;

• for each integer r ∈ N, a state-transition relation T r
p ⊆ Statesp× �M⊥×Statesp.

That is, each process has a set of states, among which is distinguished a subset
of initial states. The parameter r in the message-sending function and the state-
transition relation is called round number1. The message-sending function at round
r specifies, for each state and each process q, the message that p has to send to q in
the given state. The state-transition relation at round r specifies, for each state and
each vector of messages received from the other processes, the new state to which p

moves. The collection of processes is called an algorithm on Π.

2.2 Runs and communication predicates

In each round r, process p emits the messages to be sent to each process according
to Sr

p, waits for the messages sent to it at round r, and then executes a state transition
according to T r

p in its current state and with the vector �μr
p of messages that it has

received. Process p need not receive all of the messages sent to it (some components
of �μr

p may be equal to ⊥), and the subset of processes which p hears of at round r is
denoted by HO(p, r).

Computation evolves in an infinite sequence of rounds. Associated with each
computation is its heard-of collection, which is the collection of subsets of Π indexed
by Π × N:

(HO(p, r))p∈Π,r∈N
,

recording the sets of processes whose messages were received by process p ∈ Π at
round r ∈ N.

System models differ in the sets of heard-of collections that they provide. The
features of a specific computational model (synchrony degree, failure model) are thus
captured as a whole in the predicate over heard-of collections that it guarantees.
Formally, such a predicate P , that we call a communication predicate, is a boolean
function over the collections of subsets of Π indexed by Π × N:

P : (2Π)Π×N → B

(where B = {ff, tt} is the set of truth values), different from the constant predicate ff.
The weaker the communication predicate is, the more freedom the system has to
provide heard-of sets, the harder it will be to achieve coordination among processes
in the corresponding model.

As an example, a communication predicate Pf
HO that can be guaranteed in an

asynchronous message-passing system with reliable links and at most f processes that
fail by crashing, i.e., by halting prematurely, is

Pf
HO :: ∀p ∈ Π, ∀r ∈ N : |HO(p, r) | � N − f.

1Round numbers could also be local variables, and so be part of the local states. As will be seen

later, it is preferable to consider round numbers as parameters of the message-sending functions and
state-transition relations.
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Using a simple time-out mechanism, we have shown in Ref.[4] that the same failure
model in the synchronous case is captured by the predicate Pf ∧ Preg where

Pf :: |
⋂

p∈Π,r∈N

HO(p, r) | � N − f

expresses that there are at least N−f processes which are always heard by all processes
(as the system is synchronous and at most f processes are faulty), and

Preg :: ∀p, q ∈ Π, ∀r ∈ N : HO(p, r + 1) ⊆ HO(q, r)

guarantees some regularity among heard-of sets, namely any process that is not heard
by some process at round r is no more heard by any process at the subsequent rounds
(crash failures).

A run of A under the communication predicate P is then defined to be a set of
initial states (s0

p)p∈Π, a heard-of collection (HO(p, r))p∈Π,r∈N that satisfies P , and a
collection of state transitions ((sr

p, �μ
r
p, s

r+1
p ))p∈Π,r∈N starting from (s0

p)p∈Π, compatible
both with the sending functions Sr

p and the heard-of collection (HO(p, r))p∈Π,r∈N, and
such that (sr

p, �μ
r
p, s

r+1
p ) ∈ T r

p .
Most fault-tolerant distributed algorithms given in the literature are structured

in rounds. This is why we consider that the restriction to round-based models is
a reasonable assumption for the formal verification of such algorithms. However,
concerning sheer expressiveness of the computational models, it is not clear whether
every problem that can be solved in a finer-grained model (such as the asynchronous
model in Ref.[8]) in which “late” messages are not discarded, also has a solution in
round-based models.

2.3 Events and fine-grained executions

From the definition of a process in the HO model, it follows that each process p

can execute three types of atomic actions that may change the state of p itself and
the state of the channels incident on p: the sending of a message, the reception of a
message, or an internal action. Moreover, the sending of a message does not modify
the sender’s state, and process states at the end of round r do not depend on the
order in which messages are received at round r. The state of a channel c from p

to q is entirely determined by the actions that are executed by p and q, and can be
modelled by the set of messages that have been sent along c and not yet received.
A (global) configuration is a tuple of component process and channel states, one per
component. An initial configuration is one in which the state of each process p is in
Initp, and the state of each channel is the empty set.

An event e takes one configuration to another one, and involves a single action by
one process. An event by process p is formally defined as a triple (sp, a, s′p), where a

is an action (a sending, a receipt, or an internal action) executed by p in the state sp,
and s′p is the new state of p. For each event e, let round(e) denote the round at which
e occurs. From the definition of processes, we easily deduce conditions under which
an event is enabled in a configuration σ2. In this classical fine-grained modelling, an

2 We do not make the conditions explicit as it would require to introducing some heavy additional

notation, and as we do not use the conditions in the following. See Ref.[3] for an explicit formalization
of these concepts.
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execution of an algorithm is then defined to be an infinite sequence

λ = σ0, e0, σ1, e1, . . .

of alternating configurations and events where σ0 is an initial configuration, and σi+1

is the configuration reached from σi by event ei (which must be enabled in σi).
Reasoning about a distributed algorithm in a round-based model such as the HO

model would be highly simplified if we could ignore intermediate system states of
(event-by-event) executions, and could instead pretend that processes execute rounds
as single atomic actions and synchronously. In other words, we would like to substitute
the notion of a run for the one of an execution when verifying algorithms, since the
structure of the former is much simpler. A reduction result is shown in Section 2.5
that proves the validity of such reasoning in the HO model, for interesting properties.

2.4 The Consensus problem

A problem Σ for Π is a set of executions, or equivalently, a predicate over exe-
cutions:

Σ : λ 
→ Σ (λ) ∈ B.

In this paper, we concentrate on the well-known agreement problem, called Consensus,
regarded as the fundamental problem that must be solved to implement a fault-
tolerant system. In this problem, each process p has an initial value vp from a fixed
set V , and must reach an irrevocable decision on one of the initial values. Thus each
value v in V corresponds to an initial state sv

p of process p where p holds v as its
initial value:

σ0(p) = sv
p.

Process p has also disjoint sets of decision states Δv
p, one per value v in V , meaning

that p has decided on value v. Let σ(p) denote process p’s state in the configuration σ.
is true of an execution λ = σ0, e0, σ1, e1, . . . if λ satisfies the four following properties.

Irrevocability. Once a process decides a value, it remains decided on that value.

∀p ∈ Π, ∀v ∈ V, ∀i ∈ N : σi(p) ∈ Δv
p =⇒ ∀j � i : σj(p) ∈ Δv

p.

Agreement. No two processes decide differently.

∀p, q ∈ Π, ∀v, w ∈ V, ∀i, j ∈ N : σi(p) ∈ Δv
p ∧ σj(q) ∈ Δw

q =⇒ v = w.

Integrity. Any decision value is the initial value of some process.

∀v ∈ V, ∀p ∈ Π, ∀i ∈ N : σi(p) ∈ Δv
p =⇒ ∃q ∈ Π : σ0(q) = sv

q .

Termination. All processes eventually decide.

∀p ∈ Π, ∃i ∈ N, ∃v ∈ V : σi(p) ∈ Δv
p.

It is easy to devise Consensus algorithms for synchronous systems, i.e., Consensus
algorithms that work under the communication predicate Pf ∧ Preg. Besides, it has
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been proven that there is no Consensus algorithm in asynchronous systems that are
subject to even a single crash failure[8], which corresponds to the impossibility re-
sult in a round-based model to solve Consensus under the communication predicate
P1

HO
[16]. In fact, partial synchrony assumptions are sufficient to make Consensus

solvable: Dwork, Lynch, and Stockmeyer[6], and then Lamport[11] presented round-
based Consensus algorithms that maintain Agreement in the event of any number of
benign errors, and take a decision if the system is stable during a “sufficiently long”
period, which is captured by a communication predicate that holds when the heard-
of sets at several (namely 4) consecutive rounds are “large enough”. Our purpose
here is precisely to give a formal proof of Lamport’s algorithm, known as the Paxos
algorithm.

2.5 Causality relation. Equivalent executions

More important than the total ordering of events in an execution, which may
be purely accidental, is the causality relation between events originally defined by
Lamport[10]. Formally, this relation is defined as follows. Given two events ei and
ej in some execution λ, ej directly depends on ei, denoted ei ≺1 ej , if one of the
following conditions holds:

1. ei and ej are events by the same process, and ei occurs before ej in λ.

2. ei is the sending of some message, and ej is its reception.

The causal ordering of the set of events occurring in λ, written ei ≺ ej , is the
transitive closure of the relation ≺1. Obviously, the relation ≺ is an irreflexive partial
ordering, and the total ordering e0, e1, e2, . . . preserves the causality relation, i.e., is
a linear extension of ≺. Conversely, any linear extension of the causality relation
provides a possible execution with the same initial configuration. We say that two
executions λ and λ′ are equivalent, written λ � λ′, if they share the same initial
configuration, the same set of events and the same causality relation. The definitions
of � and of events ensure that whenever λ � λ′ for two executions λ = σ0, e0, . . .

and λ′ = σ′
0, e

′
0, . . ., then the sequences of local states (σi(p))i∈N and (σ′

i(p))i∈N of a
process p obtained from these two executions agree up to finite stuttering.

As Chandy and Lamport explain in Ref.[2], problems that correspond to predi-
cates the truth-value of which depends on the total ordering of events in an execution
(and not only on the causality relation) cannot be solved in a distributed system.
Thereby, we only consider predicates Σ that are invariant under �, i.e,

λ � λ′ =⇒ Σ(λ) = Σ(λ′).

The Consensus problem is easily seen to be invariant under �.
Due to the particular structure of algorithms in the HO model, executions inherit

some nice properties. First, we show that the round order is consistent with the
causality relation.

Proposition 2.1 If e and e′ are two events in an execution such that e ≺ e′, then
round(e) � round(e′).

Proof : By definition of the relation ≺, it is sufficient to argue when e ≺1 e′. There
are two cases to consider.
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1. e and e′ are events by the same process p. From the definition of p’s computation
round by round, it follows that round(e) � round(e′).

2. e is the sending of some message, and e is its reception. Since every round is a
communication-closed layer, e and e′ occur at the same round, i.e., round(e) =
round(e′). �

It follows that events in any given execution λ can be reordered without affecting
the causality relation in a way that preserves round numbers, as expressed in the
following proposition.

Proposition 2.2 For any given execution λ, there exists some equivalent execution
λr that preserves round numbers, i.e., e occurs before e′ in λr only if round(e) �
round(e′).

Proof : Consider an arbitrary total ordering p1, . . . , pN on the set Π. We construct λr

inductively, round by round. For each round r, the events in λ that occur in round r

are ordered in λr as follows: we consider the sequence of the message emissions by
p1 at round r in λ, followed by the sequence of the emissions by p2 at round r in
λ, and so on up to pN . Then we carry on with the sequence of the receptions by p1

at round r in λ, and so on up to the sequence of the receptions by pN at round r

in λ. Finally, we complete this fragment by the sequence of the internal actions by
p1, · · · , pN that occur in λ at round r. The resulting infinite sequence of events is
obviously a total ordering of all the events in λ that extends the causality relation
in λ. From this linear extension of the events in λ and the initial configuration of λ,
we get an infinite sequence λr of alternating configurations and events which is an
execution equivalent to λ. Moreover by construction, for any pair of events e and e′

such that round(e) < round(e′), e occurs before e′ in λr. �
The execution λr reorders the events in λ round-by-round. Note that there are

actually many round-by-round executions that are equivalent to λ: they differ only
in the way the events of each round are ordered.

Each round-by-round execution λr of algorithm A can be naturally mapped into
a run of A that we denote ρ(λr). Moreover, we easily check that two equivalent
round-by-round executions correspond to the same run in this mapping. Thanks to
the latter remark and Proposition 2.2, for any execution λ, we can define ρ(λ) to be
equal to some ρ(λr) where λr is a round-by-round execution equivalent to λ. Then
we introduce a weakening of the relation � as follows: λ and λ′ are weakly equivalent,
denoted λ ∼ λ′, if λ and λ′ are mapped into the same run, i.e., ρ(λ) = ρ(λ′). Clearly,
∼ is an equivalence relation that contains the relation �. The latter inclusion is strict
since in each round of a run, neither the ordering of send events by process p nor the
ordering of its receptions are specified. A problem Σ that is invariant under the weak
equivalence ∼, i.e., a predicate over executions such that

λ ∼ λ′ =⇒ Σ(λ) = Σ(λ′),

actually corresponds to a predicate no more over executions but over runs. For such
a problem Σ, the coarse-grained abstraction of runs in the HO model is justified, and
we say that the HO algorithm A solves Σ under the communication predicate P if
any run of A under P satisfies Σ.
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Due to the very definition of a process in the HO model, the configuration at the
end of each round does not depend on the ordering of events in each round, as it is
formally expressed in the following proposition.

Proposition 2.3 If λ and λ′ are two weakly equivalent round-by-round executions,
then for any round r ∈ N, the configurations in λ and λ′ just at the end of round r

are equal.

In other words, the sequence of the configurations at the end of each round in a
round-by-round execution λr is entirely determined by the corresponding run ρ(λr).
Combined with the invariance of the Consensus problem under �, Proposition 2.3
ensures that Consensus is actually invariant under ∼. This formally justifies that the
coarse-grained abstraction of runs in the HO model is sufficient with regard to the
Consensus problem and the correctness of Consensus algorithms. Another proof of
this reduction result is given in Ref.[3], and is applied for model checking Consensus
algorithms.

2.6 Coordinated HO model

Numerous algorithms for Consensus are coordinator-based – e.g., the Consen-
sus algorithms proposed by Dwork, Lynch, and Stockmeyer[6], Chandra and Toueg’s
algorithm[1], as well as Lamport’s Paxos [11]. The correctness of these algorithms is
guaranteed by certain properties concerning the choice of coordinators: for example,
Termination in Paxos requires that during some phase, a majority of processes hears
of the coordinator of the phase. For such algorithms, we introduce a slight variation
of the HO model3, namely the Coordinated HO (CHO) model, for which algorithms
refer to the notion of coordinators, and predicates are stated not just about heard-of
sets, but also about coordinators.

A CHO algorithm is much like an ordinary HO algorithm. Reflecting the fact
that the messages sent by a process p in a round of a CHO algorithm do not uniquely
depend on the current state, but also on the identity of a coordinator, the message-
sending function Sr

p is no longer a function from Statesp × Π to M but instead a
function

Sr
p : Π × Statesp × Π → M.

Similarly, the state of process p at the end of a round does not only depend on its
current state and the collection of the messages it has just received, but also on the
identity of its coordinator. So, the state-transition relation T r

p is such that

T r
p ⊆ Statesp × �M⊥ × Π × Statesp

where �M⊥ still denotes the set of vectors, indexed by Π, of elements in M ∪{⊥}. The
functions (Sr

p)r∈N and the relations (T r
p )r∈N define the coordinated process p, and the

collection of coordinated processes is called a coordinated algorithm.
In every round r, each process p (1) applies the message-sending function Sr

p to
the current coordinator and the current state to generate the messages to be sent,
and (2) changes its state according to T r

p , the current state, the incoming messages,

3 The reader is referred to Ref. [4] for a discussion of the differences between the HO and CHO
models.
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and its current coordinator. The combination of the two steps is called a coordinated
round, and p’s coordinator at r is denoted Coord(p, r).

We say that r is a uniformly coordinated round if

∀p, q ∈ Π : Coord(p, r) = Coord(q, r)

and r is well coordinated if

∀p ∈ Π : Coord(p, r) ∈ HO(p, r).

Uniformly and well coordinated rounds play a key role for reaching Agreement in
coordinated Consensus algorithms such as the LastVoting algorithm presented in Sec-
tion 3.

With each computation we associate not only the heard-of set collection, but also
the coordinator collection (Coord(p, r))p∈Π,r∈N, that the system provides. A predi-
cate over both heard-of sets and coordinator collections is called a communication-
coordinator predicate. For example, we shall consider the predicate

∃r0 ∈ N, ∀p, q ∈ Π : Coord(p, r0) = Coord(q, r0) ∧ Coord(p, r0) ∈ HO(p, r0)

which guarantees that there is eventually a uniformly and well coordinated round.
A run of a CHO algorithm A under the communication-coordinator predicate PC

consists of an initial configuration (s0
p)p∈Π, a heard-of collection (HO(p, r))p∈Π,r∈N

and a coordinator collection (Coord(p, r))p∈Π,r∈N that satisfy PC , and a collection
of state transitions ((sr

p, �μ
r
p, q, s

r+1
p ))p∈Π,r∈N starting from (s0

p)p∈Π, compatible with
the sending functions Sr

p , the heard-of and the coordinator collections, and such
that(sr

p, �μ
r
p, q, s

r+1
p ) ∈ T r

p . Finally, the notion of what it means for a CHO algo-
rithm to solve a problem that is invariant under the relation ∼ is similar to the one
for an HO algorithm.

As for heard-of sets, processes are provided with coordinators by the system, and
the properties of the collections (Coord(p, r))p∈Π,r∈N are part of the system assump-
tions. The way coordinators are provided is not specified in the model: processes
may use some external devices (physical devices or oracles) that are capable of re-
porting the name of coordinators to every process, or it may be the result of some
computation (in other words, the CHO algorithm is emulated by an ordinary HO
algorithm). In the second case, a very common “off-line” strategy, usually called the
rotating coordinator strategy, consists in selecting for every process p in Π:

Coord(p, r) = p1+(r mod n)

when Π = {p1, . . . , pn}. With the rotating coordinator strategy, Agreement on the
name of a coordinator is for free, that is, every round is uniformly coordinated. On
the other hand, the on-line strategy that consists in selecting p’s coordinator in its
heard-of set provides well coordinated rounds for free (in the case heard-of sets do
not vary too much in time). A critical point is to achieve rounds which are both
uniformly and well coordinated.
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3 The Paxos Algorithm and Its CHO Version

Most Consensus algorithms work correctly only if some invariant properties on
the system behavior are satisfied. That corresponds in the HO model to communi-
cation predicates which are conditions that hold at all rounds (e.g., Pf

HO or Preg).
Taking a closer look at these algorithms, it turns out that the safety conditions of
Consensus, namely Integrity and Agreement, may be violated if there are some “bad”
periods during which these predicates do not hold.

In a seminal paper[6], Dwork, Lynch, and Stockmeyer showed how to cope with
such bad periods, and designed an algorithm, which solves Consensus if a “sufficiently
long” good period occurs. The very novel and basic idea of this algorithm is to satisfy
safety conditions no matter how badly processes communicate, that is even if many
errors occur in the system.

The same idea is followed in the Paxos algorithm designed by Lamport[11]. Like
many Consensus algorithms, Paxos is a coordinated algorithm. However, it was the
first coordinated algorithm that does not rely on any particular coordinator scheme,
such as the rotating coordinator scheme mentioned in Section 2.6.

In Ref. [4], we designed a CHO algorithm corresponding to Paxos that we call
LastVoting4. Rounds in LastVoting are grouped into phases5: phase φ ∈ N consists
of the consecutive four rounds 4φ, 4φ + 1, 4φ + 2, and 4φ + 3. Processes keep the
same coordinator during each phase φ, denoted by Coord(p, φ).

Algorithm 1 The LastVoting algorithm.

1: Initialization:

2: xp ∈ V , initially vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?

4: decidep ∈ V ∪ {⊥}, initially ⊥
5: commitp a Boolean, initially false

6: readyp a Boolean, initially false

7: tsp ∈ N, initially 0

8: Round r = 4φ :

9: Sr
p :

10: send 〈xp , tsp〉 to Coord(p, φ)

11: T r
p :

12: if p = Coord(p, φ) and

number of 〈ν , θ〉 received > N/2 then

13: let θ be the largest θ from 〈ν , θ〉 received

14: votep := one ν such that 〈ν , θ〉 is received

15: commitp := true

16: Round r = 4φ + 1 :

17: Sr
p :

18: if p = Coord(p, φ) and commitp then

19: send 〈votep〉 to all processes

20: T r
p :

21: if received 〈v〉 from Coord(p,φ) then

22: xp := v; tsp := φ + 1

23: Round r = 4φ + 2 :

24: Sr
p :

25: if tsp = φ + 1

26: send 〈ack〉 to Coord(p, φ)

27: T r
p :

28: if p = Coord(p, φ) and

number of 〈ack〉 received > N/2 then

29: readyp := true

30: Round r = 4φ + 3 :

31: Sr
p :

32: if p = Coord(p,φ) and readyp then

33: send 〈votep〉 to all processes

34: T r
p :

35: if received 〈v〉 from Coord(p,φ) then

36: decidep := v

37: if p = Coord(p,φ) then

38: readyp := false

39: commitp := false

Every process p maintains a variable xp initialized with its initial value vp, and
another variable tsp that p sets to φ + 1 when p updates xp at phase φ. At round

4 The reader is referred to Ref. [4] for a discussion about the precise differences between Paxos and
LastVoting.
5 Similar to round numbers, phase numbers are not part of local states, but are instead parameters.
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4φ, p sends the current value of xp timestamped by tsp to its coordinator. Then,
in round 4φ + 1, a coordinator of φ casts a vote if it has received conclusive infor-
mations from enough (namely a strict majority of the) processes; otherwise it casts
no vote and misses its turn. A coordinator determines its vote value according to a
timing criterion: a coordinator votes for some value it has heard of with the most
recent timestamp. Upon receiving a vote v, process p sets xp to v, and sends an ac-
knowledgement to its coordinator at round 4φ + 2. If a coordinator receives enough
acknowledgements, then it is ready to decide, and informs all processes by broad-
casting its vote. If process p knows that its coordinator is ready to decide and has
voted for v in phase φ, then p decides v at round 4φ + 3 by assigning v to its variable
decidep. The code of the LastVoting algorithm is given as Algorithm 1. Here, only
the emissions of non-null messages and the state transitions with a non-null effect are
specified. Moreover, as processes are all deterministic in the LastVoting algorithm, the
T r

p ’s are specified as functions (of p’s current state, p’s coordinator, and the messages
that p receives at round r).

The following theorem asserts that LastVoting is always safe, even in the pres-
ence of multiple coordinators at some phases. Moreover, Termination at phase φ0 is
achieved if all processes share the same coordinator c0 at φ0, c0 hears of a strict ma-
jority of processes at the first and third rounds of φ0, and c0 is heard by all processes
in rounds 4φ0 + 1 and 4φ0 + 3.

Theorem 3.1 Any run of the LastVoting algorithm satisfies the Integrity, Agreement,
and Irrevocability conditions. Moreover, Termination is guaranteed by the communi-
cation-coordinator predicate PLastV oting:

∃φ0 �0, ∃c0 ∈ Π, ∀p ∈ Π :

|HO(c0, 4φ0)| > N/2 ∧ |HO(c0, 4φ0 + 2)| > N/2

∧ c0 = Coord(p, φ0) ∧ c0 ∈ HO(p, 4φ0 + 1) ∧ c0 ∈ HO(p, 4φ0 + 3)

Hence, the LastVoting algorithm solves Consensus under PLastV oting.

We have formally proved this theorem in the interactive proof assistant Isabelle.
The following sections explain our encoding of the algorithm, and of its proof, in
Isabelle.

4 Representing Heard-Of Algorithms in Isabelle

The HO model is attractive for formal, tool-supported verification of distributed
algorithms because many problems, such as Consensus, can be studied over a coarse-
grained abstraction of runs. Tsuchiya and Schiper[17,18] have used model checking
techniques to validate some of the algorithms presented in Ref. [4]. In Ref. [3], we
have similarly used tlc[20], the model checker for Lamport’s specification language
TLA+[12], to validate certain HO algorithms. However, it is well known that model
checking suffers from the state-space explosion problem. In the case of algorithms
such as LastVoting, even symbolic model checkers will typically be able to handle
finite instances of no more than three or four processes even if using the reduction in
Proposition 2.3, and considering only coarse-grained representations of runs.
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In this article, we report on the formal verification of Theorem 3.1 in the in-
teractive proof assistant Isabelle/HOL[15]. In contrast to model checking, we obtain
a formal correctness proof for the LastVoting algorithm, for an arbitrary number of
processes. However, carrying out the proof in Isabelle requires strong guidance by the
user who has to encode the arguments that underly a correctness proof in the logic of
the theorem prover. The tool checks the soundness of each step, ensuring that no cor-
ner case has been overlooked. It also provides limited automation for finding proofs
that would be considered “obvious” by a human reader. Like most proof assistants,
Isabelle relies on a small trusted kernel that is ultimately responsible for certifying
theorems, and this architecture makes Isabelle proofs highly trustworthy. The sec-
ond author had previous experience with the verification with a variant of the Paxos
algorithm in Isabelle/HOL[9], based on a traditional, fine-grained representation of
executions. Because the algorithms are quite similar, any significant gain in the effort
necessary to carry out the correctness proof in Isabelle can be attributed to the use
of coarse-grained runs in the HO model.

4.1 Isabelle/HOL

Isabelle[15] is a generic framework for mechanizing logics. The user must encode
the syntax of the target logic in the simply typed λ-calculus. The proof system should
be represented in natural deduction style as sequents

[[P1; . . . ; Pn]] =⇒ Q

where Pi and Q are propositions written in the syntax of the target logic. The
Isabelle kernel provides elementary functions for applying proof rules (i.e., combining
sequents), and theorems can only be created by the application of these functions.
The soundness of reasoning thus hinges on the correct implementation of the kernel
and the soundness of the presentation of the proof system; both are ensured by
standard software-engineering techniques such as tests and code reviews. Isabelle
also comes with many automated proof methods such as first-order reasoners, a rather
efficient rewriting engine, and a decision procedure for linear arithmetic, which can be
instantiated for target logics. The correctness of the results obtained by these proof
methods is certified through applications of the kernel functions.

For concrete applications, users do not encode a logic of their own but use one
of the predefined logics that come with a rich library of definitions and theorems
and that instantiate the generic proof machinery for immediate use. A verification
project consists of several theories that contain definitions (modeling given problems),
as well as statements and proofs of theorems. Traditionally, proofs were written as
applications of tactics that reduced the statement of a theorem to subproblems, until
these could be established by an already available theorem or some automatic proof
method. More recently, Isabelle has introduced a structured proof language called
Isar[19], in which a user writes a proof in a language resembling standard mathematical
prose. Although Isar proofs are more verbose – in particular, each subproblem is
stated explicitly whereas it is derived implicitly in tactic applications – they are easier
to read and to maintain, and we used them throughout our verification of LastVoting.

Isabelle/HOL is the encoding in Isabelle of higher-order logic, following Church’s
Simple Theory of Types. It is the most widely used object logic in Isabelle and has
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been used for numerous verification projects including the proof of mathematical the-
orems, encodings of programming language semantics, and the verification of security
protocols, to name just a few examples. We give a brief introduction to some of the
features of Isabelle/HOL that we use in the following; extensive documentation is
available from the Isabelle Web site6. In the following, we will no longer distinguish
between Isabelle and Isabelle/HOL.

Types in Isabelle. Type constructors include bool, the type ′a → ′b of total
functions7 with arguments of type ′a and results of type ′b, and the product type
′a ∗′b. The function arrow is right-associative: ′a → ′b → ′c is parsed as ′a → (′b → ′c).
Functional values are defined as λ-terms, and function application is written as jux-
taposition of the function and its argument(s). The function and product type con-
structors are polymorphic: type variables such as ′a and ′b can be instantiated by
arbitrary types. Type inference is usually implicit, but type constraints can be given
in the form v :: ty where v is a term and ty a type.

Sets are identified with their characteristic predicates: the type ′a set is synony-
mous in Isabelle with the type ′a → bool. Records are similar to products but have
named fields; for every field f of a record Isabelle defines a selector function, also
called f , to access the field. Other operations on records include record construction
and (functional) record update, written in the form

(|f = valf, g = valg|) and rec(|g := valg′|)

for a record with fields f and g, assuming that valf , valg, and valg′ are terms of
appropriate type and that rec denotes an already created object of record type.

Isabelle comes with a facility for defining inductive data types. For example,
datatype nat =

Zero (“0”)
| Suc nat

defines the Peano numbers as an inductive data type with a nullary constructor Zero

(written 0) and a unary constructor Suc. In order to ensure that an inductive data
type is well-formed, all occurrences of the type being defined (such as nat in the
example) as arguments of the constructors must be positive (so, one could not have
a constructor C (nat → nat) in the above definition).

Inductive type constructors can be polymorphic as well. For example, the type
′a option is defined as a data type with a nullary constructor None and a unary
constructor Some ′a. It can be understood as augmenting type ′a by an additional
“undefined” value. Isabelle also defines the function

the :: ′a option → ′a

such that the(Some x) = x, for any x of type ′a. The option type is used to represent
partial functions in a logic of total functions: type ′a ⇀ ′b is a synonym for the type
′a → (′b option); a function of such a type returns None for an argument outside the
domain of the partial function, and Some y (for an appropriate value y) otherwise.
6 http://isabelle.in.tum.de/
7 The actual syntax of Isabelle/HOL uses ⇒ for function types; we write → for coherence with the
standard mathematical notation used in the previous sections of this article.
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Locales. An Isabelle locale is a module whose interface consists of a signature (a
number of operators and their types) and certain assumptions (logical formulas). For
example, a locale of partial orders would introduce the signature containing the sole
operator

leq :: ′a → ′a → bool

and assumptions stating the reflexivity, anti-symmetry, and transitivity of leq. Locales
serve to structure logical theories: inside a locale, the operators indicated in the
signature are considered as constants, and the assumptions as axioms. A locale can
define further operators and prove certain properties. For example, one could define
a strict variant less of leq and prove transitivity properties about less and leq. These
generic properties are made available to interpretations, which instantiate the locale
by concrete operators. For example, the partial order locale could be interpreted by
instantiating leq by the standard ordering � on natural numbers. At this point, the
user must prove that the locale assumptions are indeed satisfied by the instance. All
derived operators and facts are then available to the interpretation.

4.2 A generic model of CHO machines in Isabelle

We make use of Isabelle’s locale mechanism to represent CHO algorithms8. El-
ementary theorems and proof rules are proved generically within the locale. Models
of concrete algorithms are obtained as instances of the locale, inheriting all of its
properties.

In the Isabelle model, we represent the set Π of processes by a type variable ′proc.
Similarly, the type variables ′pst and ′msg serve to represent the sets of local process
states and messages, which will be defined concretely for particular algorithms. We
formalize (coarse-grained) runs of algorithms as sequences of rounds: Proposition 2.3
justifies that it is enough to verify a problem Σ, such as Consensus, for coarse-grained
runs if Σ depends only on the causality of events. We therefore define the type

types (′proc,′pst) run = nat → ′proc → ′pst

to represent runs as infinite sequences of arrays of process states9. Types used for the
representation of heard-of and coordinator collections are defined as

types
′proc HO = ′proc → ′proc set

′proc coord = ′proc → ′proc.

8 Non-coordinated HO algorithms are a special case of CHO algorithms that place no constraints on

the coordinator collection.
9 Unlike the definitions of runs of (C)HO algorithms in Sections 2.1 and 2.6, we omit the vectors �μr

p

of received messages in the Isabelle representation of runs. We do not need to represent messages
explicitly in the following since we only verify properties of states that occur in runs.
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locale CHOAlgorithm =

fixes

initState :: ′proc → ′pst → bool and

sendMsg :: nat → ′proc → ′proc → ′pst → ′proc →’msg and

nextState :: nat → ′proc → ′pst → (′proc ⇀′ msg) → ′proc → ′pst → bool and

commPred :: (nat → ′proc HO) → (nat → ′proc coord) → bool

assumes

finiteProc : finite (UNIV :: ′proc set)

Figure 1. An Isabelle locale for representing CHO algorithms

The definition of an Isabelle locale representing CHO algorithms appears in Fig. 1.
It takes four parameters and states one assumption. The parameter initState repre-
sents a predicate (boolean function) characterizing the initial states for every process.
Similarly, the parameters sendMsg and nextState formally represent the message-
sending functions Sr

p and the state-transition relation T r
p , in their versions for CHO

algorithms as introduced in Section 2.6. The parameter commPred represents the
communication-coordinator predicate and is evaluated over heard-of and coordinator
collections.

The locale CHOAlgorithm assumes that the set of all processes is finite; it is
non-empty because any type in HOL must be inhabited.

Runs of a CHO algorithm start in a configuration where each process is in an
initial state:

definition initConfig where
initConfig cfg ≡ ∀p. initState p (cfg p).

Similarly, we introduce a predicate that relates two successive configurations cfg

and cfg′ at round r of a run: every process p updates its local states according to the
relation nextState, given assignments of heard-of sets and coordinators.

definition nextConfig where
nextConfig r cfg (HO :: ′proc HO) (coord :: ′proc coord) cfg′ ≡
∀p. nextState r p (cfg p) (rcvdMsgs p (HO p) coord cfg (sendMsg r))

(coord p) (cfg′ p)

where the utility function rcvdMsgs computes the vector of messages that process p

receives from the processes in its heard-of set, given their message-sending function:

definition rcvdMsgs where
rcvdMsgs p ho coord cfg send ≡
λq. if q ∈ ho then Some(send q p (cfg q) (coord q)) else None.

The definitions of nextConfig and rcvdMsgs make use of some features of higher-
order logic, in particular partial instantiation of function parameters, to obtain concise
specifications.

We can now define the runs of an CHO algorithm, relative to heard-of and co-
ordinator collections HOs and coords, as infinite sequences of configurations c0c1 . . .

such that the following conditions hold:

• c0 satisfies initConfig,
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• the predicate nextConfig holds for any pair (cr, cr+1) of successive configura-
tions, with respect to the heard-of and coordinator assignments at that round,
and

• the heard-of and communicator collections satisfy the communication-coordinator
predicate commPred.

definition CHORun where

CHORun rho HOs coords ≡
initConfig (rho 0)

∧ (∀r.nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r)))
∧ commPred HOs coords.

4.3 Elementary lemmas

A certain number of lemmas can be derived at the level of the Isabelle locale; these
are then available for all instantiations of the locale. For later use, we derive some
consequences of the finiteness assumption for the set of processes, and convenience
rules for inductive reasoning over runs.

Finiteness and cardinality lemmas. By assumption finiteProc (cf. Fig. 1), any
set of processes is finite. Moreover, the range of a partial function from processes to
an arbitrary type ′a is finite10.This is expressed by the two following lemmas whose
proof in Isabelle is straightforward. We make them available to the automatic proof
procedures of Isabelle so that they do not need to be invoked manually.

lemma finite procset: finite (S :: ′proc set)
lemma finite ran: finite (ran (f :: ′proc ⇀′a))

A frequent argument in the correctness proofs of many fault-tolerant distributed
algorithms is that any two majority sets must have a non-empty intersection. This
property is expressed by the two following lemmas.

lemma majorities intersect:
assumes card(UNIV :: ′proc set) < card(S :: ′proc set) + card(T :: ′proc set)
shows S ∩ T �= {}

lemma majoritiesE:
assumes card(S :: ′proc set) > card(UNIV :: ′proc set) div 2
and card(T :: ′proc set) > card(UNIV :: ′proc set) div 2
obtains p where p ∈ S and p ∈ T

The second lemma is a consequence of the first one; it asserts that given two
sets S and T each of which contains a strict majority of processes, there exists some
process p that is an element of both S and T (the obtains keyword ensures that p is
an eigenvariable that does not occur in the expressions S and T ).

Reasoning about runs. Many properties of runs are proved by case distinction
on the current action, or by induction. The two following proof rules, automati-
cally verified by Isabelle, provide the basis for such reasoning. For example, rule

10The standard library of Isabelle/HOL already contains an analogous lemma for total functions.
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CHORun induct states that, given a run of a CHO algorithm, a property P n is true
for an arbitrary n ∈ N if P 0 follows from the initialization predicate, and if P can
be shown to hold of any successor round Suc r whenever P holds of round r and the
configurations for rounds r and Suc r are related by the relation nextConfig.

lemma CHORun Suc:
assumes CHORun rho HOs coords

and
∧

r. nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r)) =⇒ P r

shows P n

lemma CHORun induct:
assumes CHORun rho HOs coords

and initConfig (rho 0) =⇒ P 0
and

∧
r. [[P r; nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r))]]

=⇒ P (Suc r)
shows P n

4.4 Modeling a concrete algorithm: LastVoting

We now instantiate the generic Isabelle locale CHOAlgorithm for the LastVoting
algorithm introduced in Section 3. We begin by declaring an anonymous type Proc

of processes that is assumed to be finite. The number of processes will be denoted by
N .

typedecl Proc

axioms procF inite: finite (UNIV :: Proc set)
abbreviation N ≡ card (UNIV :: Proc set)

The algorithm proceeds in phases that consist of 4 rounds, and we call steps the
rounds that constitute a phase. Accordingly, we define the following operators phase

and step to compute the phase and step numbers of a given round:

definition phase where phase (r :: nat) ≡ r div 4
definition step where step (r :: nat) ≡ r mod 4.

In close correspondence with the informal description (see Algorithm 1), the local
state of a process is declared as the following record; the type variable ′val represents
the type of values that processes decide on:

record ′val pstate =

x :: ′val - current value held by process

vote :: ′val option - last vote cast by process, if any

commt :: bool - Boolean ‘‘commit’’ flag

ready :: bool - Boolean ‘‘ready’’ flag

timestamp :: nat - time stamp of current value

decide :: ′val option - value the process decided, if any

Four kinds of messages are sent by processes, and these are represented by an
Isabelle data type as follows:

datatype ′val msg =
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V alStamp ′val nat - message carrying a value and a time stamp

| V ote ′val - vote for a certain value

| Ack - acknowledgement message

| Null - empty message

We define characteristic predicates isV alStamp, isV ote, and isAck that recognize
the type of a message and selector functions val and stamp that retrieve the value
and time stamp components of messages of appropriate types. We also define the
following utility functions that retrieve the set of processes q from a partial vector of
message such that q sent a V alStamp message, the highest time stamp carried by any
such message, and the set of processes from which an acknowledgement was received.

definition valStampsRcvd where
valStampsRcvd (msgs :: Proc ⇀ ′val msg) ≡
{q . ∃v ts. msgs q = Some (V alStamp v ts)}

definition highestStampRcvd where
highestStampRcvd (msgs :: Proc ⇀ ′val msg) ≡
Max {ts . ∃q v. msgs q = Some (V alStamp v ts)}

definition acksRcvd where
acksRcvd (msgs :: Proc ⇀ ′val msg) ≡
{q . msgs q = SomeAck}

With these preliminary definitions, the Isabelle specification of the LastVoting
algorithm appears in Fig. 2. It closely parallels the pseudo-code description that
appears as Algorithm 1 in Section 3, translating the description of each step into a
relation between two states st and st′, given the coordinating process and the partial
vector of messages received.

The overall message sending function and next-state relation are defined as com-
positions of the operators introduced in Fig. 2.

definition sendMsg where
sendMsg r ≡
if step r = 0 then send0 r

else if step r = 1 then send1 r

else if step r = 2 then send2 r

else send3 r

definition nextState where
nextState r ≡
if step r = 0 then next0 r

else if step r = 1 then next1 r

else if step r = 2 then next2 r

else next3 r

It remains to define the communication-coordinator predicate assumed for the
LastVoting algorithm. As mentioned in Section 3, it is assumed that coordinators
remain unchanged for an entire phase, i.e., they may change only between step 3 of
a phase and step 0 of the subsequent phase. Second, we formalize the predicate of
Theorem 3.1, which requires the existence of a phase φ such that:
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definition initState where initState p st ≡
vote st = None ∧ ¬(commt st) ∧ ¬(ready st)

∧ timestamp st = 0 ∧ decide st = None

definition send0 where send0 r p q st crd ≡
if q = crd then V alStamp (x st) (timestamp st) else Null

definition next0 where next0 r p st msgs crd st′ ≡
if p = crd ∧ card(valStampsRcvd msgs) > N div 2

then ∃p v. msgs p = Some(V alStamp v (highestStampRcvd msgs))

∧ st′ = st(|vote := Some v, commt := True|)
else st′ = st

definition send1 where send1 r p q st crd ≡
if p = crd ∧ commt st then V ote (the (vote st)) else Null

definition next1 where next1 r p st msgs crd st′ ≡
if msgs crd �= None ∧ isV ote (the (msgs crd))

then st′ = st(|x := val (the (msgs crd)), timestamp := Suc(phase r)|)
else st′ = st

definition send2 where send2 r p q st crd ≡
if timestamp st = Suc(phase r) ∧ q = crd then Ack else Null

definition next2 where next2 r p st msgs crd st′ ≡
if p = crd ∧ card (acksRcvd msgs) > N div 2

then st′ = st (|ready := True|)
else st′ = st

definition send3 where send3 r p q st crd ≡
if p = crd ∧ ready st then V ote (the (vote st)) else Null

definition next3 where next3 r p st msgs crd st′ ≡
if msgs crd �= None ∧ isV ote (the (msgs crd))

then decide st′ = Some (val (the (msgs crd)))

else decide st′ = decide st

∧ if p = crd

then ¬(ready st′) ∧ ¬(commt st′)
else ready st′ = ready st ∧ commt st′ = commt st

∧ x st′ = x st ∧ vote st′ = vote st ∧ timestamp st′ = timestamp st

Figure 2. Isabelle representation of the LastVoting algorithm

• all processes agree on the same coordinator c for phase φ,

• c hears from a strict majority of processes in steps 0 and 2 of phase φ, and

• every process hears from c in steps 1 and 3 of phase φ.

These requirements are expressed by the following predicate:
definition LV commPred where
LV commPred HOs coords ≡

(∀r. step r �= 3 ⇒ coords(Suc r) = coords r)
∧ (∃ph c. (∀p. coords (4 ∗ ph) p = c)

∧ card (HOs (4 ∗ ph) c) > N div 2
∧ card (HOs (Suc(Suc(4 ∗ ph))) c) > N div 2
∧ (∀p. c ∈ HOs (Suc(4 ∗ ph)) p ∩ HOs (Suc(Suc(Suc(4 ∗ ph)))) p))
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lemma LV induct:

assumes HORun rho HOs coords

and ∀p. initState p (pstates (rho 0) p) =⇒ P 0

and
∧

r.

[[P r; step r = 0; phase (Suc r) = phase r; step (Suc r) = 1;

∀p. next0 r p (rho r p)

(rcvdMsgs p (HOs r p) (coords r) (rho r) (send0 r))

(coords r p) (rho (Suc r) p)]]

=⇒ P (Suc r)

and . . . analogous assumptions for next1, next2, and next3

shows P n

Figure 3. Induction rule for LastVoting

We now have all elements for defining the LastVoting algorithm as an instance
of the generic locale for CHO algorithms described in Section 4.2. This is achieved
by the following Isabelle command; the proof of the locale assumption is discharged
by invoking the axiom asserting finiteness of type Proc.

interpretation CHOAlgorithm initState sendMsg nextState LV commPred

by (unfold locales, rule procF inite)
Using the definition of the next-state relation, we specialize the proof rules about

runs of HO algorithms presented in Sect. 4.3 for the concrete instance of LastVoting.
For example, Fig. 3 shows the derived induction rule for executions of the LastVoting
algorithm.

5 Formal Verification of LastVoting in Isabelle

We now give an overview of the formal proof in Isabelle of the correctness of the
LastVoting algorithm, asserted in Theorem 3.1. In Section 5.1, we begin by proving
some elementary facts about timestamps, then present in Section 5.2 a number of
“obvious” lemmas about runs of the algorithm. Based on these lemmas, we derive
Integrity (Section 5.3), Irrevocability and Agreement (Section 5.4), and Termination
(Section 5.5).

Throughout, we reason about (coarse-grained) runs of the LastVoting algorithm:
each lemma carries the hypothesis CHORun rho HOs coords, which we leave implicit
in the following. For each lemma, we give its statement in ordinary mathematical
language as well as its formal counterpart in Isabelle. We then outline its proof,
closely following the reasoning performed in the Isabelle proof script.

5.1 Facts about timestamps

We begin by proving some elementary facts about the timestamps held by the
processes executing the LastVoting algorithm. Our first lemma states, roughly, that
the timestamp of a process at any state during a run is bounded by the current phase.
The subsequent Lemma 5.2 asserts that timestamps never decrease.

Lemma 5.1 The timestamp of any process p at round r is bounded by the current
phase φ at steps 0 and 1, and by φ + 1 at steps 2 and 3.

timestamp (rho r p) � (if step r < 2 then phase r else Suc(phase r)).
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Proof : The lemma is proved by induction on the run ρ, using lemma LV induct of
Fig. 3. The assertion is obviously true initially. It is preserved by all transitions. In
particular, only next1 may modify the timestamp, and it updates it to Suc(phase r)
while passing to step 2 of the current phase. The Isabelle proof consists of a single
interaction directing Isabelle to apply the induction rule and expand the definitions
of initState and of the system transitions next0, . . . , next3. �

Lemma 5.2 The timestamp of a process never decreases.
1. timestamp (rho r p) � timestamp (rho(Suc r) p)

2. r � r′ =⇒ timestamp (rho r p) � timestamp (rho r′ p)

Proof :

1. The proof considers the possible actions; only action next1 is of interest because it
may modify the timestamp. By Lemma 5.1, the timestamp of process p is bounded
by the phase φ, whereas the new timestamp (if it is updated) equals φ + 1. This
suffices.

2. The second assertion follows from the first one by induction on natural numbers.

�

5.2 Auxiliary lemmas

Before we prove the main correctness properties of algorithm LastVoting, we state
a few facts about its runs. These facts would typically not appear in a published
correctness proof because they would be considered as “immediately obvious” from
the pseudo code presentation of the algorithm. Isabelle does not allow us to take such
shortcuts: formally, they are established by inductive reasoning over runs.

First, we verify that the function used to determine the vote of a process in
step 0 is actually well-defined. Because Isabelle/HOL is a logic of total functions,
the definition of highestStampRcvd (based on the maximum Max of a set) always
returns some natural number. However, we must prove that that value satisfies the
expected properties.

Lemma 5.3

1. The set of timestamps contained in a partial vector of messages is finite.

finite {ts . ∃q v. (msgs :: Proc ⇀ ′val msg) q = Some(V alStamp v ts)}
2. If at least one message of kind V alStamp has been received then some message

carries a maximal timestamp.

valStampsRcvd msgs �= {}
=⇒ ∃p v. msgs p = Some(V alStamp v (highestStampRcvd msgs))

msgs q = Some(V alStamp w ts)

=⇒ ts � highestStampRcvd msgs

Proof :

1. Follows easily from the instance of lemma finite ran (cf. Section 4.3) for the
LastVoting algorithm.
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2. These assertions are a consequence of the first one because the Max operator yields
the maximal element of a non-empty finite set of integers. �

The following facts state at which steps of the algorithm the coordinator and the
different fields of a process state may change. These facts are proved in a single inter-
action with Isabelle by considering the different possible transitions and expanding
the definitions of next0, . . . , next3.

Lemma 5.4

1. Coordinators change only at step 3.

step r �= 3 =⇒ coord (Suc r) p = coord r p

2. Votes change only at step 0.

step r �= 0 =⇒ vote (rho (Suc r) p) = vote (rho r p)

3. The commit field of a process changes only at steps 0 and 3.

step r /∈ {0, 3} =⇒ commt (rho(Suc r) p) = commt (rho r p)

4. Timestamps change only at step 1.

step r �= 1 =⇒ timestamp (rho (Suc r) p) = timestamp (rho r p)

5. The x field of a process changes only at step 1.

step r �= 1 =⇒ x (rho (Suc r) p) = x (rho r p)

The remaining “obvious” lemmas express certain invariants about process states and
transitions. They are again proved by induction on the runs of the algorithm, but
require some more guidance by the user. An alternative to proving these lemmas
separately would be to state and prove a global invariant about the algorithm, but
we find the present proof more readable.

Lemma 5.5 The “commit” flag of a process p is set only if the step number is at
least 1, the vote of process p is non-null, and if there is a strict majority of processes,
including p, that consider p to be the coordinator for the current round.

commt (rho r p) =⇒
1 � step r ∧ coords r p = p ∧ vote (rho r p) �= None

∧ card {q. coords r q = p} > N div 2
.

Proof : The assertion is true initially because the commit flag is not set. Steps 1
and 2 trivially preserve the assertion because they change neither the vote nor the
coordinator, step 3 also preserves it because it resets the commit flag of coordinators.
It remains to consider step 0. By induction hypothesis, the commit flag cannot be
set before the transition. By the definition of action next0, it will be set for process
p only if p considers itself to be the coordinator and if it has received a majority of
messages of kind V alStamp – implying, by the definition of send0, that a majority
of processes consider p to be their coordinator. Moreover, process p sets its vote to a
non-null value in the same transition. This establishes the assertion. �
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Lemma 5.6 Process p has a fresh timestamp only at step 2 or beyond and only if
its coordinator has its “commit” flag set and the current x value of p agrees with the
vote of its coordinator.

timestamp (rho r p) = Suc (phase r) =⇒
step(rho r) � 2 ∧ commt (rho r (coords r p))

∧ x (rho r p) = the (vote (rho r (coords r p)))

.

Proof : The assertion is true initially because the timestamp of all processes equals 0.
It is preserved by step 0 because Lemma 5.1 ensures that the timestamp cannot be
fresh. It is preserved by step 2 because none of the state components that occur in the
assertion change during that step, and by step 3 because Lemma 5.1 again asserts that
the timestamp cannot be fresh in the successor state. It remains to consider step 1.
Using Lemma 5.1, it follows that the timestamp cannot be fresh in the state before the
transition; it must therefore be set by the transition, and the definitions of next1 and
send1 ensure that in this case the coordinator of process p must have its “commit”
flag set, and that the new x value of p is set to the vote of the coordinator. Moreover,
neither the coordinator nor its vote or the status of its “commit” flag change during
this step, by Lemma 5.4. �

Lemma 5.7 The “ready” flag of a process p is set only at step 3. Also, p in this case
considers itself as the coordinator, and there exists a strict majority of processes that
consider p as their coordinator and that have a fresh timestamp.

ready (rho r p) =⇒
step r = 3 ∧ coords r p = p

∧ card{q. coords r q = p ∧ timestamp (rho r q) = Suc (phase r)} > N div 2.

Proof : The only interesting case is that of step 2 because it is the only one that sets
the “ready” flag. By the definition of next2, process p does this only if it considers
itself a coordinator and if it has received a strict majority of Ack messages. By
definition of send2, this implies that a majority of processes consider p to be their
coordinator and have a fresh timestamp. �

Lemma 5.8 A process p changes its decision value only if it is at step 3 and if the
“ready” and “commit” flags of its coordinator are set. Moreover, the new decision
value is the vote of its coordinator.

decide (rho (Suc r) p) �= decide (rho r p) =⇒
step r = 3 ∧ ready (rho r (coords r p)) ∧ commt (rho r (coords r p))

∧ decide (rho (Suc r) p) = Some (the (vote (rho r (coords r p))))

Proof : A change of decision can occur only at step 3, and the definitions of next3 and
send3 ensure that the new decision value is the vote of the coordinator, and that the
“ready” flag of the coordinator cp of p is set. By Lemma 5.7, this implies that there
exists a strict majority of processes that have cp as their coordinator and that have a
fresh timestamp. Letting q denote an arbitrary element of this (non-empty) majority
and using Lemma 5.6, it follows that the coordinator cq of q has its “commit” flag
set. Since cq = cp, this proves the assertion. �
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Lemma 5.9 If some process p updates its decision value at round r then at all
following rounds r + k there exists a strict majority of processes whose timestamp is
greater than the phase corresponding to round k.

decide (rho (Suc r) p) �= decide (rho r p) =⇒
card {q. timestamp (rho (r + k) q) > phase r} > N div 2.

Proof : Since process p decides at round r, Lemma 5.8 implies that the “ready” flag of
its coordinator is set at round r. By Lemma 5.7, there exists a majority of processes
whose timestamp at round r equals Suc (phase r). Moreover, timestamps never
decrease (Lemma 5.2), which implies the assertion. �

5.3 Integrity

The proof of the Integrity property relies on an invariant that asserts that all
values that appear in the x, vote or decide fields of any process during a run are
among the initial values of the x fields. In the Isabelle formulation of this invariant,
we make use of some notation about functions: ◦ denotes function composition, and
f ‘ S denotes the image of set S under the function f .

Lemma 5.10 All values appearing in the x, vote or decide field of any process, at
any round, are among the initial x values chosen by the processes or None (i.e., not
set) in the case of vote and decide.

range (x ◦ (rho r)) ⊆ range (x ◦ (rho 0))

∧ range (vote ◦ (rho r)) ⊆ {None} ∪ Some ‘ range (x ◦ (rho 0))
∧ range (decide ◦ (rho r)) ⊆ {None} ∪ Some ‘ range (x ◦ (rho 0))

Proof : The assertion clearly holds initially because the vote and decide fields are
initialized to None. It is easily seen to be preserved by all transitions because values
are only copied: no new value is introduced at any step of the algorithm. The
Isabelle proof is quite tedious because we have to show that certain expressions yield
the expected value. For example, when step 1 updates the x field of some process p,
Lemma 5.5 is used to infer that the coordinator of p has a vote different from None,
which must therefore be among the initial x values by the induction hypothesis. �

The Integrity property follows immediately from the third conjunct of Lemma 5.10.

Theorem 5.11 (Integrity) If process p decides some value v, then v is the initial x

value of some process q.

decide (rho n p) = Some v =⇒ ∃q. v = x (rho 0 q).

5.4 Irrevocability and agreement

We establish the Irrevocability and Agreement properties of the LastVoting algo-
rithm by proving a series of lemmas that build on the “obvious” facts of Sections 5.1
and 5.2. Again, we find this presentation of the proofs more readable than the alter-
native approach of stating a global system invariant that implies these properties.

Lemma 5.12 No two different processes have their “commit” flag set at any round.

commt (rho r p) ∧ commt (rho r p′) =⇒ p = p′.
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Proof : If processes p and p′ have their “commit” flag set, Lemma 5.5 tells us that
there is a majority of processes that consider p (resp., p′) as their coordinator. Ap-
plying lemma majoritiesE, we obtain some process q in the intersection of these two
majority sets. Since q considers both p and p′ as its coordinator, they must be equal.

�

lemma committedProcsEqual:

assumes run: CHORun rho HOs coords
and cmt: commt (rho r p) and cmt′: commt (rho r p′)
shows p = p′

proof –
from run cmt have card {q . coords r q = p} > N div 2

by (blast elim: commitE)
moreover

from run cmt′ have card {q . coords r q = p′} > N div 2

by (blast elim: commitE)
ultimately

obtain q where p = coords r q and coords r q = p′
by (auto elim: majoritiesE)

thus p = p′ by simp

qed

Figure 4. Lemma 5.12 and its proof in Isabelle/Isar

As a concrete example for a proof in Isabelle/Isar, we reproduce the Isabelle input
for the proof of Lemma 5.12 in Fig. 4. At each proof step, we state the assertion that
we wish to prove, and the assumptions necessary to prove it. The by clauses invoke
Isabelle’s proof methods (blast, auto, and simp in this example), indicating when
necessary auxiliary theorems to be used (commitE is Lemma 5.5 and majoritiesE
was mentioned in Section 4.3). This example is quite representative of the level of
detail that is necessary to actually carry out these proofs in Isabelle.

Lemma 5.13 No two different processes have their “ready” flag set at any round.

ready (rho r p) ∧ ready (rho r p′) =⇒ p = p′.

Proof : The proof is analogous to that of Lemma 5.12, using Lemma 5.7 instead of
Lemma 5.5. �

The following lemma restricts the values a coordinator may vote for: if there is
a majority of processes whose timestamp is beyond ts, then a coordinator may only
vote a value held by one of these processes. This is a consequence of the choice of a
timing criterion for determining the vote.

Lemma 5.14 Assume that a majority set M of processes hold timestamps beyond
ts, and that the “commit” flag of process p is set. Then the vote of process p agrees
with the x value of some process q ∈ M .

[[card{q. timestamp (rho r q) � ts} > N div 2; commt (rho r p)]] =⇒
∃q. timestamp (rho r q) � ts ∧ vote (rho r p) = Some (x (rho r q)).

Proof : The assertion holds initially because no process has its “commit” flag set.
If process p commits at step 0, it has received messages of kind V alStamp from a
majority M ′ of processes and updates its vote to some value v that comes with a
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highest timestamp. By Lemma 5.3 and the definition of send0, this value v indeed
agrees with the x field of some process q that has a maximal timestamp among the
processes in M ′. Moreover, M and M ′ have a non-empty intersection, hence there
exists some process q′ ∈ M ∩M ′. Since q has a maximal timestamp among processes
in M ′, we obtain

timestamp (rho r q) � timestamp (rho r q′)

and because of the definition of M we know

timestamp (rho r q′) � ts.

Taken together, the assertion follows.
We now prove that the assertion is preserved at step 1. Indeed, assume that

there is a majority M of processes holding timestamps beyond ts after the step 1
transition (during which some processes may update their timestamps). We consider
two cases: if no process in M updated its local state during the step 1 transition,
then all processes in M already held timestamps beyond ts before the transition, and
since the vote of p doesn’t change during step 1 (Lemma 5.4), the assertion follows
from the induction hypothesis. Otherwise, let q ∈ M be some process that updates
its local state during step 1. Then the definitions of next1 and send1 ensure that q

sets its x field to the vote of the coordinator, and the assertion again follows.
Step 2 preserves the assertion because neither timestamps nor votes nor commit

values change during this transition (Lemma 5.4), and step 3 preserves it because the
commit flag cannot be set in the post-state by Lemma 5.5. �

The following lemma gives the crucial argument for establishing Irrevocability and
Agreement: if some process p decides value v during phase φ then any process q

whose timestamp is greater than φ must hold v in its x field.

Lemma 5.15 Assume that process p decides at round r and that process q, at some
later round r + k, has a timestamp strictly greater than the phase at round r. Then
the value of the x field of process q at round r + k agrees with the decision value of p.

[[decide (rho (Suc r) p) �= decide (rho r p);
timestamp (rho (r + k) q) > phase r]]

=⇒ x (rho (r + k) q) = the (decide (rho (Suc r) p)).

Proof : We will write φ for phase r, i.e., the phase at which process p decides, and v

for decide (rho (Suc r) p), i.e., the decision value.
The assertion of the lemma is proved by induction on k ∈ N, simultaneously for

all processes q. For k = 0, by the assumption that process p decides at round r and
Lemma 5.8 it follows that v must be the vote of its coordinator, whose “commit” flag
is set. Moreover, the assumption on the timestamp of q and Lemma 5.1 implies that
the timestamp of q equals φ + 1, and by Lemma 5.6, the x value of q agrees with the
vote of its coordinator, whose “commit” flag is also set. Now, Lemma 5.12 implies
that the coordinators of p and q are the same, and the assertion follows.

For the inductive step, we need only consider step 1 because the other steps leave
the timestamps and x values unchanged. If process q does not update its local state
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during step 1, the assertion is trivially preserved. Otherwise, the definitions of next1
and send1 imply that process q updates its x field to the vote of its coordinator cq,
which has its “commit” flag set. Moreover, by Corollary 5.9 there is a majority M

of processes whose timestamps at round r + k are greater than φ, and Lemma 5.14
implies that the vote of cq at round r + k agrees with the x field of some process
q′ ∈ M . By the induction hypothesis (for process q′), the x field of process q′ must
hold value v, which proves the assertion. �

It follows that if two processes p and q decide at rounds r and r + k, then their
decision values agree.

Lemma 5.16 Assume that process p decides at round r, and that process q decides
at round r + k, for some k ∈ N. Then they decide the same values.

[[decide (rho (Suc r) p) �= decide (rho r p);

decide (rho (Suc (r + k)) q) �= decide (rho (r + k) q)]]

=⇒ decide (rho (Suc (r + k)) q) = decide (rho (Suc r) p).

Proof : By Lemma 5.8, process q decides on the vote of its coordinator cq, which has
its “commit” flag set. Also, since process p decided at round r (say, in phase φr), by
Lemma 5.9 a majority M of processes at round r + k hold timestamps beyond φr.
Lemma 5.14 ensures that cq voted for the value held in the x field of some process in
M , which by Lemma 5.15 must be the decision value of process p. �

Lemma 5.17 Any process that holds a non-null decision value must have decided
that value in the past.

decide (rho r p) = Some v

=⇒ ∃r′ < r. decide (rho (Suc r′)p) �= decide (rho r′ p)

∧ decide (rho (Suc r′)p) = Some v.

Proof : Assuming to the contrary that for all r′ < r, whenever the decision value of p

changed, it was not set to Some v, the lemma is proved by induction on r, observing
that decide (rho 0 p) = None. �

We now have established all arguments needed to prove the Irrevocability and
Agreement properties for the LastVoting algorithm.

Theorem 5.18 (Irrevocability) Once a process decides a value, it remains decided
on that value.

decide (rho r p) = Some v =⇒ decide (rho (r + k) p) = Some v.

Proof : Lemma 5.17 implies that there exists some round r′ < r at which process p

decided value v. It suffices to prove that decide (rho (Suc r′ + k) p) = Some v for
all k, which is shown by induction on k ∈ N. The induction basis is obvious. For the
induction step, assume to the contrary that

decide (rho (Suc r′ + Suc k) p) �= Some v.
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Hence, process p changes its decision value at round Suc r′ + k, and Lemma 5.16 (for
q = p) implies that

decide (rho (Suc r′ + Suc k) p) = decide (rho (Suc r′) p) = Some v,

and a contradiction is reached. �

Theorem 5.19 (Agreement) No two processes ever decide differently.

[[decide (rho r p) = Some v; decide (rho r′ q) = Some w]] =⇒ v = w.

Proof : By Lemma 5.17 there exist rounds rp and rq at which p and q decide v and
w, respectively. Without loss of generality, assume that rp � rq, then Lemma 5.16
implies that decide (rho (Suc rq) q) = decide (rho (Suc rp) p), hence v = w. �

5.5 Termination

The proof of Termination makes essential use of the communication-coordinator
predicate PLastV oting given in Theorem 3.1. This predicate assumes that there exists
some phase φ and some process c that is the coordinator of all processes during phase
φ and such that c receives messages from a majority of processes in steps 0 and 2 of
phase φ, while all processes receive messages from c in steps 1 and 3 of phase φ. This
assumption ensures that all processes will have decided at the end of phase φ.

Theorem 5.20 (Termination) There exists some round r at which all processes
have decided.

∃r. ∀p. decide (rho r p) �= None.

Proof : From the communication-coordinator predicate, there exist φ ∈ N and a
process c such that all of the following conditions hold:

1. ∀p. coords (4 ∗ φ) p = c

2. |HOs (4 ∗ φ) c| > N div 2

3. |HOs (4 ∗ φ + 2) c| > N div 2

4. ∀p. c ∈ HOs (4 ∗ φ + 1) p

5. ∀p. c ∈ HOs (4 ∗ φ + 3) p

Moreover, the communication-coordinator predicate implies that coordinators do not
change during phases, and therefore condition 1 implies

6. ∀p. coords (4 ∗ φ + s) p = c for all s ∈ {0, 1, 2, 3}.
Assumptions 1 and 2 imply that c receives V alStamp messages from a majority

of processes at step 0 of phase φ and, by definition of next0, has its “commit” flag set
at step 1. It therefore sends a vote to all processes at step 1, which by assumptions 6
and 4 is received by all processes. According to the definition of next1, every process
updates its timestamp to φ + 1 at that step.

All processes therefore send acknowledgments at round 4∗φ+2, and the assump-
tions 6 and 3 ensure that c receives a majority of acknowledgements at that step and
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therefore sets its “ready” flag, according to the definition of next2. It sends its vote in
step 3 of phase φ to all processes, and assumptions 6 and 5 ensure that this message is
received by all processes, which therefore set their decision field to the vote received,
according to the definition of next3. It follows that decide (4 ∗ φ + 4) p �= None for
all p, and this proves the theorem. �

6 Conclusion and Future Work

Distributed algorithms are reputedly difficult to design and to verify. Several
published algorithms have been found to be erroneous or have been applied in contexts
for which they were not designed because the underlying hypotheses were not correctly
specified. Formal techniques of development and verification offer notation to describe
algorithms and state their properties, as well as support for verification techniques
based on precise semantic analyses. So far, algorithm designers have been reluctant
to adopt these methods, especially in the context of distributed systems and fault-
tolerance, probably because they are often tedious to apply and do not scale well to
interesting algorithms.

We believe that the use of formal techniques is crucial in distributed computing,
but that the models used for reasoning about distributed algorithms must be adapted
in order to address the scalability issue. In this paper, we have studied the Heard-Of
model, a computational model of distributed algorithms suggested by Charron-Bost
and Schiper, with respect to its amenability to formal verification. The main ad-
vantage of this model from this point of view is the fact that many properties of
algorithms can be proved over a coarse abstraction of runs in which the round of the
overall system is the basic entity. Compared to a fine-grained representation of runs,
we do not need to represent the network state at all in a run – every channel can be
considered empty at the beginning of each round since rounds are communication-
closed layers –, and we have much fewer events to consider and reason about. As
already noted by Tsuchiya and Schiper[17,18], it therefore becomes possible to derive
finite-state models of instances of HO algorithms for a fixed finite number of pro-
cesses and to apply finite-state model checking techniques. Indeed, the local state of
a process in a fine-grained representation of an HO algorithm must necessarily con-
tain the round number in order to determine whether an incoming message was sent
for the current round of the process. Moreover, differences between round numbers
of different processes at a system configuration can become arbitrarily large in HO
algorithms, implying that no bounded representation of round numbers is possible. In
the coarse-grained abstraction, all processes execute the same round, and there is no
need to verify that a message is fresh. Besides, many algorithms, such as LastVoting,
do not require exact round numbers, and finite-state representations can be obtained.

In this paper, we have focused on theorem proving techniques that allow a de-
signer to formally prove the correctness of an algorithm. As a concrete case study, we
have verified the LastVoting algorithm, which is the HO version of Lamport’s Paxos.
Because the algorithms are quite similar, our proof can be compared to a previous
verification effort[9] of DiskPaxos, also in Isabelle/HOL. The Isabelle sources of the
LastVoting proof are at least five times shorter, while including much more explana-
tory text, containing the development of a generic Isabelle model of HO algorithms
that should be reusable in different contexts, and covering liveness as well as safety
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properties. Subjectively, we find the proof of LastVoting incomparably more readable
than the proof of DiskPaxos, which relies on an invariant structured in six conjuncts
that collectively take up about five typeset pages.

It is a remarkable property of Paxos and LastVoting that they are always safe,
that is to say, safety requires no particular assumption. This is simply captured in the
HO model by the fact that no communication predicate at all is needed for the proof of
Integrity, Agreement, and Irrevocability of LastVoting, which makes the proof of these
safety conditions easier. Theorem 3.1 states a sufficient communication predicate for
achieving liveness.

Our long-term goal is to develop a proof library for the verification of distributed
algorithms that will help formal methods in general and theorem proving in particular
become as accepted in distributed computing as it is becoming in the programming
language and semantics community.

In particular, the generic locale for CHO algorithms should be extended to pro-
vide a basic library of communication predicates, their relationships, and their conse-
quences. We are working towards a formalization of the reduction result of Section 2.5,
including a precise characterization of the properties that are guaranteed to be pre-
served. Further work could be directed towards proof support for malicious failures
in distributed algorithms.
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