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Abstract Tip decomposition has a pivotal role in mining cohesive subgraphs in bipartite
graphs. It is a popular research topic with wide applications in document clustering, spam group
detection, and analysis of affiliation networks. With the explosive growth of the bipartite graph
data scale in these scenarios, it is necessary to use distributed methods to realize its effective
storage. For this reason, this paper studies the problem of the tip decomposition on a bipartite
graph in the distributed environment for the first time. Firstly, a new relay-based communication
mode is proposed to realize effective message transmission when the given bipartite graph is
decomposed in a distributed environment. Secondly, the Distributed Butterfly Counting (DBC)
algorithm and the Distributed Tip Decomposition (DTD) algorithm are designed. In particular,
a controllable parallel vertex activation strategy is proposed to solve the problem of memory
overflow when DBC decomposes large-scale bipartite graphs. Finally, the message pruning
strategy based on vertex priority and message validity pruning strategy are introduced to further
improve the efficiency of the algorithm by reducing redundant communication and computing
overhead. The experiment is deployed on the high-performance distributed computing platform
of the National Supercomputing Center. The effectiveness and efficiency of the proposed
algorithms are verified by experiments on several real datasets.
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1 Introduction
Bipartite graphs are a special type of graph in which the vertex set can be divided into two

disjoint subsets U and V , and edges only exist between the vertices in different subsets, i.e.,
G = (U, V,E), satisfying {e = (u, v) ∈ E | u ∈ U ∧ v ∈ V }. In recent years, mining
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techniques for cohesive subgraphs in bipartite graphs have received much attention and have
been applied to practical applications such as document clustering[1], author–paper relationship
analysis, user–product relationship analysis[2], and spam group detection[3].

There exists a considerable amount of research on decomposition techniques for dense
subgraph structures such as k-core[4, 5] and k-truss[6] on unipartite graphs. These techniques can
be used to analyze simple graphs obtained from bipartite graph transformation[7], which however
results in the loss of the original structural information. In addition, the scale of the graphs
increases by 6 orders of magnitude when bipartite graphs are transformed into co-occurrence
(projection) graphs[8], which leads to significant additional space storage overhead. Therefore,
the existing decomposition techniques for unipartite graphs cannot be applied to large bipartite
graph. As a result, the algorithm for decomposing bipartite graphs needs to be investigated.

Butterfly subgraphs are the smallest dense subgraphs in bipartite graphs, which contain
a bipartite cluster of four vertices from two vertex sets (U/V ), and the number of butterflies
corresponding to each vertex is the butterfly degree of that vertex. Thus, when more butterflies
are shared by any two vertices on the same side, the connection between them is closer. This
structure can be used to measure the dense relationship between vertices on the same side in a
bipartite graph. k-tip is defined as a cohesive community H = (U ′, V ′, E′) satisfying that any
u ∈ U ′ exists in at least k butterflies. For a particular vertex u, the tip number of u is k if it can
only exist in k-tip but not in k+1-tip. The tip decomposition algorithm studied in this paper is
used to compute the tip numbers of all vertices in a given graph[9].

Sariyüce et al.[8] propose a hierarchical stripping-based algorithm for the decomposition of
a given bipartite graph. This algorithm iteratively removes the vertex with the smallest butterfly
degree, and the butterfly degree of the vertex when it is deleted is its tip number. As shown
in Figure 1(a), there are four vertices v1, v2, v3, and v4 in V and five vertices u1, u2, u3, u4,
and u5 in U . The vertices u1, u2, v1, and v2 form a butterfly, i.e., a (2, 2)-bipartite cluster. If
each vertex u ∈ U in G exists in at least one butterfly, G is a 1-tip community. Similarly, the
subgraphs in Figure 1(c) and (d) are 2-tip and 3-tip communities, respectively. The tip number
of each vertex in set U is shown in Figure 1(e).
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Figure 1 Distributed tip decomposition of a bipartite graph

The existing butterfly subgraph counting (hereinafter referred to as butterfly counting)
algorithm and tip decomposition algorithm[10–12] are built on the basis that the memory of a
single machine can satisfy the storage requirements of the original graph data and intermediate
computation results. As the scale of bipartite graphs grows, it is difficult to satisfy the storage
requirements for a large bipartite graph with the memory of a single machine. For this purpose,
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the distributed storage of the large graph is required, and the corresponding distributed bipartite
graph processing technique should be studied. Secondly, there are a large number of vertices
with the same id in two vertex sets due to the special characteristics of the bipartite graph
structure, and the existing distributed graph computation system mainly targets simple graphs,
where its communication mode depends on the vertex id, so there is a message send/receive
mismatch when bipartite graphs are processed, which results in incorrect computation results.
Finally, there is no direct edge connection between vertices on the same side of bipartite graphs,
while tip decomposition aims to explore the dense relationship between vertices on the same
side, which requires a 2-hop message transmission to achieve the butterfly counting algorithm
and the tip decomposition algorithm, resulting in a large amount of communication overhead
and thus affecting the efficiency of the decomposition.

To address the above challenges, this paper explores the butterfly subgraph counting and
tip decomposition algorithms for large bipartite graphs in a distributed environment, in which
the distributed storage environment can effectively solve the original data storage of large
bipartite graphs and the storage of intermediate computation results. For distributed computing
environments, this paper designs a relay-based communication mode, which forwards messages
through relay vertices to ensure the effectiveness of message delivery, so as to break the limitation
that existing distributed graph computing systems rely on the vertex id for message delivery.
Specifically, for a given bipartite graph G = (U, V,E), the tip numbers of all vertices in U

are computed. The vertices in V are used as relay vertices, which do not need to perform
computation and are only responsible for forwarding the received messages, while the vertices
in U perform different computation functions as needed. Since the relay vertex (V -side vertex)
can directly obtain the information of the vertex to be decomposed (U -side vertex), such as
vertex degree and tip number, the message pruning strategy can be designed depending on these
attributes to reduce the additional communication overhead and thus the computation in the next
round of iterations. Accordingly, this paper proposes a Distributed Butterfly Counting (DBC)
algorithm relying on the relay-based communication mode and introduces a message pruning
strategy based on vertex priority to reduce the redundant communication overhead. Then, with
the results of butterfly counting, the paper designs a Distributed Tip Decomposition (DTD)
algorithm to calculate the tip values of all vertices. In the tip decomposition process, the vertex
is stored hierarchically by the butterfly degree through maintaining a butterfly tree BFTree.
Finally, according to the minimum key of the BFTree, the vertex in the corresponding leaf is
peeled, and when the BFTree is empty, the tip numbers of all vertices can be obtained.

The main contributions of this paper are as follows:
• a relay-based communication mode is designed and a distributed graph computation

system for the analysis of cohesive subgraphs in bipartite graphs is constructed;
• an efficient DBC is proposed. In particular, to address the memory overflow when DBC

decomposes large bipartite graph data, this paper introduces a controllable parallel vertex
activation strategy for efficient computation of butterfly counting while improving the
algorithm parallelism;

• DTD based on the BFTree is proposed, and a vertex priority-based message pruning
strategy is introduced to reduce redundant communication and computation overhead so
that the efficiency of the algorithm can be further improved; and

• experiments are deployed on the high-performance distributed computing platform of the
National Supercomputing Center to verify the algorithm effectiveness and efficiency on
several real datasets.

The paper is organized as follows: Section 2 summarizes the related work and introduces the
algorithms for distributed graph computing systems, butterfly counting, and tip decomposition
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problems; Section 3 gives the related definitions and problem definitions used in this paper;
Section 4 presents the proposed relay-based communication mode and DBC; Section 5 describes
the DTD; Section 6 introduces the experimental results and analysis; finally, Section 7 concludes
this paper with an outlook.

2 Related Work
This section introduces the related work on distributed graph computing systems and

butterfly counting algorithm and tip decomposition algorithm for bipartite graphs.

2.1 Distributed graph computing systems
Distributed graph computing systems are mostly designed on the basis of the BSP model,

which is a computational model suitable for graph computing. As shown in Figure 2, the
superstep is the basic iterative unit, which consists of three steps: receive messages, computing,
and send messages. At the end of each superstep, there is a global barrier for synchronizing
messages.

Processors

Local
Computation

Communication

Global Barrier Synchronization

Figure 2 BSP model

On the basis of the BSP model, vertex-centric graph computing systems such as Pregel[13],
Giraph[14], GraphX[15], and Pregel+[16] have been proposed one after the other. For large
graph data, Yu et al.[17] reviewed the key issues in the computational model, communication
mechanism, segmentation strategy, index structure, and fault-tolerance management in large
graph processing from the two aspects of graph data management and processing mechanism. Lu
et al.[18] proposed two feature parameters, variation coefficient of degree and slice accessibility,
for optimizing the performance of graph computing system research platform and online
segmentation algorithms loading feature sensing in a CPU+GPU heterogeneous environment.
Zhang et al.[19] proposed a framework for evaluating fault-tolerance techniques based on three
dimensions of cost, efficiency, and quality according to the uncertainty factors and robustness
problems in distributed graph computing frameworks.

Compared with graph computing systems[20–22] and graph algorithms[23–25] for simple
graphs, systems and graph algorithms designed to handle bipartite graphs are few. Chen
et al.[26] proposed a vertex-centered system BiGraph implemented on PowerGraph to efficiently
partition bipartite graphs for machine learning algorithms. Liu et al.[27] designed an efficient
index construction and maintenance algorithm for computing (α-β)-core on bipartite graphs that
can be used for the analysis on dynamic bipartite graphs. However, these systems and algorithms
do not introduce a special optimization strategy for the butterfly counting problem.

In summary, existing graph computing systems and graph algorithms cannot be used
effectively to deal with the butterfly counting and tip decomposition problems.
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2.2 Butterfly counting and tip decomposition of bipartite graphs
Butterfly is an important graph structure in bipartite graphs, which has been widely used

in bipartite graph structure mining such as k-tip community detection. In this paper, we focus
on butterfly counting and tip decomposition problems on bipartite graphs.

To optimize the butterfly counting algorithm, Chiba and Nishizeki[28] designed a vertex
priority-based counting algorithm to optimize the edge search process in graphs. Wang et al.[9]

further introduced a cache-aware strategy into a vertex priority-based algorithm to reduce the
time complexity. Sanei-Mehri et al.[11] proposed an approximation algorithm for butterfly
counting and gave a proof for its accuracy.

To speed up tip decomposition, Shi and Sun[9] proposed the ParButterfly framework to
design parallel algorithms for butterfly counting and tip decomposition based on OpenMP.
Lakhotia et al.[12] proposed a parallel tip decomposition algorithm with shared memory which
consists of coarse-grained decomposition and fine-grained decomposition to obtain higher
parallelism and improve the resource utilization of multi-core systems.

The above-mentioned algorithms are based on the assumption that the memory of a single
machine is large enough to store a given bipartite graph and the intermediate computation results.
However, with the explosive growth of graph scale, the memory bottleneck of a single machine
can no longer be ignored. Multiple machines not only provide scalable distributed storage
space but also have high-performance computational resources for improving the parallelism of
algorithms.

In addition, although the existing algorithms can efficiently handle butterfly counting and
tip decomposition problems, vertex relabeling and reordering operations introduce significant
communication overhead when the algorithms are applied to distributed systems. For example,
in Figure 1(a), vertices are stored in clusters in a distributed manner according to the hash value of
their id (cf. Figure 1(b)). Existing algorithms need to relabel the vertices inU in descending order
of degree. In node 0, the label of u4 is smaller than that of u2 because they have the same degree
and the id of u4 is larger than that of u2. Similarly, label label(u3) < label(u5) < label(u1)

in node 1. These are the local labels of vertices in each machine. If we want to get the global
labels of all vertices, the local labels need to be compared and reordered from the largest to the
smallest for different machines. This operation has a high time complexity and will incur plenty
of communication overhead.

Table 1 Summary of notations
Name Description

G = (U, V,E) A bipartite graph consisting of vertex sets U , V , and an edge set E
Nu Neighbors of vertex u

dG(u) Number of neighbors of vertex u
H = (U ′, V ′, E′) A subgraph of graph G, abbreviated as H

▷◁u A butterfly (subgraph) containing vertex u
d▷◁ Number of butterflies in which a vertex is involved
du▷◁ Number of butterflies involving vertex u, i.e., the butterfly degree
▷◁u2

u1 A butterfly containing u1 and u2 vertices
Tu Tip number of vertex u
Hu

k k-tip that contains vertex u and has the largest k value

3 Problems and Definitions
This section introduces the theory related to bipartite graph and tip decomposition. Table 1

lists the names of the used symbols and their descriptions.
An undirected bipartite graph G = (U, V,E) is given, in which U and V refer to two

disjoint vertex sets and E refers to the edge set in the graph, which satisfies {e = (u, v) ∈ E |
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u ∈ U ∧ v ∈ V }. The adjacent points of any vertex u ∈ U exist only in V , which are denoted
as Nu, where dg(u) = |Nu| refers to the degree of u. Since there is no direct edge connection
between vertices on the same side, the close relationship between vertices in the same set can be
measured by the butterfly subgraph. d▷◁ corresponds to the concept of degree in simple graphs;
the number of butterflies containing vertex u is expressed as du▷◁; for two vertices u1 and u2 in
the same butterfly, ▷◁u2

u1
is used to indicate that they can be connected by a butterfly; |▷◁u2

u1
| can

be used to measure the closeness between two vertices u1 and u2.
Definition 1 (butterfly subgraph, or butterfly). For a given bipartite graphG = (U, V,E),

there exists a subgraph H = (U ′, V ′, E′), where U ′ = {u1, u2} ⊆ U, V ′ = {v1, v2} ⊆ V .
H = (U ′, V ′, E′) is a butterfly if and only if u1 and u2 are common neighbors of v1 and v2,
i.e., H is a (2, 2)-bipartite cluster.

In general, a community consists of a set of closely related homogeneous entities. k-core
is a cohesive subgraph structure in simple graphs, where any vertex has at least k neighbors in
the same community. In a bipartite graph, vertices on the same side belong to the same class of
entities, while each vertex only maintains its neighbors located on the opposite side. Thus, the
connectivity between the vertices on the same side cannot be obtained according to the degrees
of the vertices. If two vertices are in at least one same butterfly, u1 can be mapped as a neighbor
of u2. In this paper, we focus on the cohesive structure of vertices on the U -side. On this basis,
the k-tip community is defined as follows:

Definition 2 (k-tip). For a given bipartite graph G = (U, V,E), the subgraph H =

(U ′, V ′, E′) is a k-tip when and only when the following three conditions are satisfied:
(1) Connectivity: Each pair of vertices belonging to U ′ in the k-tip can be connected directly

or indirectly by one or more butterflies.
(2) Tightness: Every vertex u ∈ U ′ exists in at least k butterflies.
(3) Maximality: There exists no other k-tip involving H .
Definition 3 (tip number). For a given bipartite graph G = (U, V,E), if vertex u ∈ U

can only exist in a k-tip but not in any (k+ 1)-tip, the tip number of u is k, which is denoted as
Tu, and the corresponding k-tip is denoted as Hu

k .
According to the above analysis on bipartite graphs and related definitions, this paper

focuses on the following two problems:
Problem 1 (butterfly counting). In a given bipartite graph G = (U, V,E), for each vertex

u ∈ U , count the number of butterflies involving u, i.e., Hu
k .

Problem 2 (tip decomposition). For each vertex u ∈ U in a given bipartite graph G =

(U, V,E), the tip number of u is computed.
As shown in Figure 1, vertices u1, u2, v1, and v2 form a butterfly. For vertex u2, there

are 5 butterflies involving it, including 1 butterfly ▷◁u2
u1

, 3 butterflies ▷◁u3
u2

, and 1 butterfly
▷◁u4

u2
. Depending on the results of butterfly counting of all the vertices, the vertex with the

smallest butterfly degree is peeled iteratively until the graph becomes null. In this way, the tip
value of each vertex is obtained, and the 1-tip, 2-tip, and 3-tip communities can be constructed
accordingly.

4 DBC
Although tip decomposition is similar to core decomposition in simple graphs, the

core decomposition algorithm cannot be directly applied as the former due to the special
characteristics of bipartite graph structures. For the construction of the relationship between
each pair of vertices on the same side, it is necessary to enumerate all butterflies in a bipartite
graph (i.e., to find ▷◁u2

u1
for all u1 ∈ U and u2 ∈ U ). In this section, DBC based on the vertex-
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centric computing model is proposed. In addition, since the original bipartite graph is stored in a
cluster in a distributed manner, the existing single-machine butterfly counting algorithm cannot
be directly applied to distributed systems. To cope with the limitation that existing distributed
graph computing systems cannot be applied to bipartite graphs, this paper introduces a flexible
relay-based communication mode.

4.1 Relay-based communication mode
Due to the special characteristics of the bipartite graph structure, it is necessary to design

a message transmission mode suitable for communication between 2-hop neighbors. For vertex
u ∈ U in a given bipartite graph G = (U, V,E), it only obtains its neighbors belonging to V .
For counting the butterflies containing u (i.e., |{ ▷◁u

′
u | u′ ∈ U }|), it is necessary to obtain the

number of shared neighbors of different 2-hop neighbors.
In a vertex-centered system, vertices can be activated by receiving messages from adjacent

points. In light of this idea, a more flexible communication mode for analyzing bipartite graphs
on distributed systems is proposed in the following:

Strategy 1 (Relay-based communication mode). Firstly, vertices in U are manually
activated to send messages to their neighbors in V . These neighbors will be activated in
the next superstep. Then, the activated vertices in V will send messages to activate the 2-hop
neighbors of the manually activated vertices in U . Finally, the activated vertices in U are 2-hop
neighbors with each other and can send messages to each other directly.

As shown in Figure 3, for the given bipartite graph G = (U, V,E), where U contains
3 vertices u1, u2, and u3, and V contains 2 vertices v1 and v2, these vertices are stored in
clusters in a distributed manner according to the hash values of their id. For vertex u1 ∈ U ,
it is necessary to obtain the shared neighbors between its 2-hop neighbors in U and those in
V . u1 is first activated and sends messages to its neighbors v1 and v2. Then, v1 and v2 send
the id1 of u1 to u2 and u3 (except for vertex u1). u2 and u3 will receive message 1 (the id of
u1) from v1 and v2 in the next superstep. This means that they have two shared neighbors with
u1 respectively. After that, u2 and u3 identify u1 as their 2-hop neighbors and send their id (2
and 3) and the information of shared neighbors to u1. The above analysis indicates that four
supersteps are required to access and return the information of 2-hop neighbors.

v1

u1 u2 u3

v2

U

V

(a) Bipartite graph

u1

u3

v1u2 v2
MPI

node 0 node 1

(b) Distributed storage

Figure 3 Example of relay-based communication mode

4.2 Butterfly counting algorithm
A butterfly containing vertices u1 and u2 can be considered as an abstract edge between

vertices, and the number of butterflies is used as the weight of the edge. The weight is directly
related to the number of shared neighbors of u1 and u2.
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Theorem 1. For a given bipartite graph G = (U, V,E), if two vertices u1 ∈ U and
u2 ∈ U have n shared neighbors in V , the number of butterflies containing both u1 and u2 is
n× (n− 1)/2.

Proof: According to Definition 1, a butterfly is a (2, 2)-bipartite cluster containing two
vertices on each side and all four possible edges in it. For two vertices u1 and u2, if there exist
two vertices v1 ∈ V and v2 ∈ V both adjacent to u1 and u2, these four vertices can form a
butterfly ▷◁u1,u2,v1,v2 . Therefore, any two shared neighbors can form a butterfly with u1 and
u2. The total number of butterflies containing each pair of vertices is calculated as follows:

ButterflyCnt = C2
n =

n!

(n− 2)!× 2!
=

n× (n− 1)

2

where n refers to the number of shared neighbors.

As shown in Figure 1, four supersteps are required to obtain the number of shared adjacent
points of each vertex with its 2-hop neighbors according to the relay-based communication
mode. Vertices u1 and u2 have shared adjacent points v1 and v2, and there exists a butterfly
▷◁u1,u2,v1,v2 containing them. For vertices u2 and u3, vertices v1, v2, and v3 are their shared
neighbors. Therefore, u1 and u2 participate in three butterflies simultaneously.

It is too expensive to apply existing butterfly counting algorithms on a single machine to
distributed systems. This is because they mostly need to reorder and renumber all the vertices,
which introduces not only a rather large extra communication overhead but also a lot of vertex
migration overhead. To improve the efficiency of DBC, we design a vertex priority-based
message pruning strategy to reduce redundant communication.

Strategy 2 (vertex priority-based message pruning strategy). For a given G = (U, V,E),
each vertex u ∈ U only needs to count the number of butterflies with 2-hop neighbors whose id
values are larger than its own id. Therefore, the activated vertices in V only need to send the id
of the manually activated vertex u to its neighbors whose id value is larger.

As shown in Figure 3, when activating u2, v1 and v2 will receive messages and be activated
in the next superstep. According to Strategy 2, v1 and v2 only need to send the id (2) of u2 to
u3, which thus avoids the double computation of butterfly between u1 and u2.

Depending on Strategy 1, Strategy 2, and Theorem 1, the main idea of DBC is to find the
shared neighbors of each pair of vertices in U . To improve the resource utilization, this paper
introduces the idea of parallelism to improve the algorithm efficiency.

As shown in Algorithm 1, the bipartite graph to be decomposed has been stored in the
distributed machines according to the hash value of each vertex id, and U ′ ⊂ U refers to those
vertices stored in the current machine. In the initialization phase, ActiveVector (Line 2) is used to
store the activated vertices. In the butterfly counting phase, each iteration takes four supersteps.
Firstly, m vertices are selected from U ′ and placed in ActiveVector, where m limits the number
of initialized vertices to be processed in parallel on each machine. It should be noted that m is
used here to implement a controllable parallel vertex activation strategy. Obviously, the larger
m indicates the higher parallelism of the algorithm but increases the communication traffic,
and thus may lead to memory overflow. Those manually activated vertices send messages to
their neighbors (Superstep 1, Lines 5–10). Secondly, according to Strategy 2 (Superstep 2,
Lines 12–16), the vertices in V that receive messages from U are activated and the ids of the
manually activated vertices are forwarded to their neighbors. Next, the number of butterflies is
calculated according to Theorem 1, and the result is sent to the corresponding manually activated
vertices (Superstep 3, Lines 18–22). Finally, those vertices activated in the first superstep receive
messages from their 2-hop neighbors and obtain the butterfly counting result (Superstep 4, Lines
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24–27). After these four supersteps, some of the vertices in U can determine the number of
butterflies in which they are located. The butterfly counting algorithm ends when all the vertices
in U have gone through the same operation.

Algorithm 1. DBC
Input: Bipartite graph G = (U, V,E).
Output: Butterfly counting results for each vertex u ∈ U .
1. /* Initialization phase on all machines */
2. ActiveVector← 0
3. /* Butterfly counting phase on all machines */
4. repeat
5. Superstep 1: Manually activate vertex
6. Select m vertices from U ′ for parallel processing and put them into ActiveVector
7. U ′ = U ′\ActiveVector
8. for u ∈ ActiveVector do
9. for v ∈ Nu do
10. Send a message to v and activate it in the next superstep
11. end for
12. Communication synchronization barrier
13. end for
14. Superstep 2: Forward relay messages
15. Vertices in V receive messages from U which are then put into ActiveVector
16. for v ∈ ActiveVector do
17. for u′ ∈ Nv do
18. If u′.id is greater than the id of the manually activated vertex, send their ids to u′

19. end for
20. end for
21. Synchronization by global barrier
22. Superstep 3: Do butterfly counting on two-hop neighbors
23. Vertices in U receive messages from V which are then put into ActiveVector
24. for u′ ∈ ActiveVector do
25. According to Theorem 1, count the number of butterflies with the received id of the

manually activated vertex and add the result to du
′

▷◁

26. Send the result to the corresponding manually activated vertex
27. end for
28. Synchronization by global barrier
29. Superstep 4: Calculate butterfly counting result
30. Vertices in U receive messages from U which are then put into ActiveVector
31. for u ∈ ActiveVector do
32. Add the butterfly counting result to du▷◁
33. end for
34. until U ′ on each machine is not null
35. return the value of du▷◁ for each vertex u ∈ U

For each iteration, four supersteps are needed to obtain the number of butterflies containing
manually activated vertices. The m vertices in this batch are activated in the first superstep,
and the butterfly counting result can be obtained in four supersteps. Therefore, the DBC
can converge in the superstep 4 × U ′/m. The communication cost can be analyzed by the
number of messages passed in the whole process. In the first superstep, the manually activated
vertices need to send messages to all their neighbors. Then, the vertices in V send messages
according to Strategy 2. Therefore, the total number of messages in the first two supersteps is∑

u∈U

(
Nu +

∑
v∈Nu

(∑
u′∈Nv

sgn(u′.id > u.id)
))

, in which u is the manually activated

vertex in the first superstep and u′ is the 2-hop neighbor of u. In addition, the 2-hop neighbors
send the result of butterfly counting to the corresponding manually activated vertices in the third
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superstep, which is the number of u′ whose id is larger than u.id.

5 DTD
After the execution of the DBC algorithm proposed in Section 4, each vertex u ∈ U has its

butterfly degree known. Similar to the degree of vertices in simple graphs, du▷◁ can only be used
to roughly analyze the structure of bipartite graphs. Thus the tip number of each vertex needs
to be obtained to explore the finer-grained structural features of bipartite graphs. In this section,
DTD based on hierarchical stripping is proposed to obtain the tip numbers of the vertices in U .

Strategy 1 can solve the problem that messages cannot be sent directly between vertices
on the same side, on the basis of which the DTD can be studied. For purpose of introducing
parallelism to the DTD, the vertex with the lowest number of butterflies is peeled in each
iteration, and the tip numbers of the remaining vertices are updated.

Theorem 2. Given a bipartite graph G = (U, V,E) and the minimum d▷◁ value d▷◁min

in U , the tip number of each vertex in U is not smaller than d▷◁min.

Proof: There is a bipartite graph G = (U, V,E), and the minimum value of d▷◁ in U is
d▷◁min. According to Definition 2, G is a d▷◁min-tip, and every vertex u ∈ U exists in at least
d▷◁min-tip. In combination with Definition 3, it can be deduced that the tip value of each vertex
is at least d▷◁min.

The vertex is peeled to determine its tip value, but in the original graph data, the vertex still
exists in the adjacent point lists of its neighbors. In addition, in the vertex-centric mode, the
vertices in V cannot know the stripped vertices in U . If the vertices of V continue to forward
messages to all their neighbors in subsequent iterations, a large number of redundant messages
will be generated.

Strategy 3 (message validity pruning strategy). For a given bipartite graphG = (U, V,E),
vertices in V have neighbors only in U . For a vertex v ∈ V , after it receives a message from a
censored neighbor u ∈ U , u is set to the inactive state, i.e., 0. When v forwards a message, it is
not necessary to consider the adjacent point with state 0.

The main idea of DTD is to peel vertices according to the value of d▷◁min. To solve the
problem that vertices cannot be sorted under distributed storage, this paper constructs a butterfly
tree BFTree to store the id of the vertices hierarchically. BFTree is composed of multiple key-
value pairs, where “key” represents the d▷◁ of a vertex, and “value” is a container to store the id
of a vertex. The pseudo-code is shown in Algorithm 2.

As shown in Algorithm 2, the BFTree is first generated depending on the butterfly degree of
each vertex (Lines 5–11). In the first superstep, the global minimum d▷◁ value, GlobalMinKey,
is obtained from the keys of the BFTree (Line 15). The vertex id with the minimum d▷◁ value
is stored in BFTree[GlobalMinKey], which will be censored and send messages to its neighbors
(Lines 16–21). In addition, the state of these manually activated vertices is set to be peeled
(Line 22). In the second superstep, the vertices in V receive messages and forward the source
ids of these messages to the neighbors that have not yet been stripped (Lines 26–34). In the
third superstep, the 2-hop neighbors of these manually activated vertices from the first superstep
update their d▷◁ according to Theorem 1 (Lines 37–40). According to Theorem 2, the tip values
of the still unstripped vertices are at least GlobalMinKey. Therefore, if the tip number of a vertex
after line 40 of Algorithm 2 is smaller than GlobalMinKey, it is set to GlobalMinKey (Lines
41–43). It should be noted that updating the d▷◁ values of vertices will affect the structure of
the BFTree.

The BFTreeUpdate function is designed to update the BFTree when the d▷◁ of a vertex
changes (Line 40). The specific update method is similar to the BFTree construction process.
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After the first three supersteps, the manually activated vertices in the first superstep have
confirmed their tip numbers. The DTD starts another iteration until the BFTree is null (Lines
13–46).

Algorithm 2. DTD
Input: Bipartite graph G = (U, V,E), du▷◁ value of each vertex u ∈ U .
Output: Tip decomposition result of each vertex u ∈ U .
1. /* Initialization phase on all machines */
2. ActiveVector← 0
3. GlobalMinKey← 0
4. Construct a butterfly tree BFTree according to d▷◁ for each u ∈ U .
5. for each u in U do
6. if BFTree.find(du▷◁) = BFTree.end() then
7. BFTree[du▷◁]← {u.id}
8. else
9. BFTree[du▷◁].push_back(u.id)
10. end if
11. end for
12. /* Tip decomposition phase on all machines */
13. repeat
14. Superstep 1: Manually activate vertices
15. GlobalMinKey← Get the minimal key in BFTree
16. ActiveVector← BFTree[GlobalMinKey]
17. BFTree\BFTree[GlobalMinKey]
18. for u ∈ ActiveVector do
19. for v ∈ Nu do
20. Send a message to v, and activate it in the next superstep
21. end for
22. u.peeled← 1
23. end for
24. Synchronization by global barrier
25. Superstep 2: Forward relay messages
26. The vertices in V receive messages from U which are then put into the ActiveVector
27. for v ∈ ActiveVector do
28. for u′ ∈ Nv do
29. if u′.peeled = 0 then
30. Send the ids of manually activated vertices tou′

31. end if
32. end for
33. end for
34. Synchronization by global barrier
35. Superstep 3: Update the number of butterflies on 2-hop neighbors
36. The vertices in U receive messages from V which are then put into the ActiveVector
37. for u′ ∈ ActiveVector do
38. preBFcnt←du

′
▷◁

39. Calculate the butterfly according to the result of the received id of manually activated
vertex minus du

′
▷◁ according to Theorem 1.

40. if du′
▷◁ <GlobalMinKey then

41. du
′

▷◁ ←GlobalMinKey
42. end if
43. BFTreeUpdate(preBFcnt, du

′
▷◁ )

44. end for
45. until BFTree on each machine is not null
46. return du▷◁ value of each vertex u ∈ U
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Algorithm 3. BFTreeUpdate(preBFcnt, curBFcnt)
Input: vertex u, BFTree, preBFcnt, curBFcnt
Output: updated BFTree
1. Strip u.id from BFTree[preBFcnt]
2. if BFTree[preBFcnt] is null, then
3. Strip BFTree[preBFcnt] from BFTree
4. end if
5. if BFTree[curBFcnt]!=BFTree.end() then
6. BFTree[curBFcnt].push_back(u.id)
7. else
8. BFTree[curBFcnt]← {u.id}
9. end if
10. return BFTree

Figure 4 illustrates the tip decomposition process of the bipartite graph in Figure 1(a).
As shown in Figure 4(a), the d▷◁ of vertices u1−5 are 2, 5, 5, 3, and 1 respectively. The
corresponding BFTree is generated from these vertices and their d▷◁; its structure is shown in
Figure 4(b). In the first iteration, u5 has the minimum d▷◁ and is peeled from the original graph.
Since u4 and u5 jointly participate in a butterfly, this reduces du4

▷◁ from 3 to 2, and the structure
of the BFTree is also updated accordingly. In the second iteration, u1 and u4 are placed in the
ActiveVector, because they both have the current minimum d▷◁ value of 2. When u1 and u4 are
peeled from U , the remaining vertices in U are u2 and u3, which will be peeled in the third
iteration. In these iterations, the d▷◁ of the vertex at the time of being peeled is the tip number.
The decomposition result is shown in Figure 1(e).

Vertex Initialization

u1 2
u2 5
u3 5
u4 3
u5 1

Iteration-1 Iteration-2

2 -
5 3
5 3
2 -
- -

Iteration-3

-
-
-
-
-

(a) d▷◁ value of vertex in iteration process

u2 u3

key=3

u2 u3

key=5

key=3

u4

key=2

u1

key=1

u5

u2 u3

key=5
Initialization Iteration 3

u1 u4

key=2-1
-1 -1 -1 -3

-3

-1

(b) BFTree in iteration process

Figure 4 Tip decomposition on a toy bipartite graph

For a given bipartite graph G = (U, V,E), Algorithm 2 requires at most 3×|U | supersteps
to obtain the tip numbers of all vertices in U . Assuming that only one vertex has the minimum
d▷◁ in each iteration, three supersteps are consumed to peel the vertex u and update the d▷◁ of
the 2-hop neighbors of u according to Algorithm 2. In the first superstep, the activated vertex u
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sends a message to its neighbors Nu. The v ∈ Nu that receives the message forwards the source
id (i.e., u.id) to u′ ∈ U (i.e., the 2-hop neighbors of u) in the next superstep. After that, those
2-hop neighbors update their respective tip numbers according to Theorem 1. In summary, each
vertex needs three supersteps to obtain its tip number and update the d▷◁ of its 2-hop neighbors.
Thus, the total superstep cost is 3× |U |.

6 Experimental Results and Analysis
6.1 Experimental setup

(1) Experimental environment: The experimental code in this paper is written in C++;
the message communication between different computing nodes is based on Message Passing
Interface (MPI), which is then compiled by mpicxx into an executable file. The relay-based
communication mode designed in this paper is embedded in a distributed graph computing
system which is deployed on the National Supercomputing Center (TH-I) in Changsha. TH-I
is equipped with a 160 Gb/s high-speed interconnection system with two Intel® Xeon® CPUs
and 48 GB main memory in each single computing node. The underlying MPI of TH-I is
implemented in-house and compiled by the Intel compiler, and the experimental code of the
algorithm in this paper fits into this environment. This paper uses 10 computing nodes to build
a distributed environment.

(2) Experimental setup: This paper is the first study on butterfly counting and tip
decomposition in a distributed environment. For the DBC algorithm described in Section 4,
the baseline is set to parallelism of 1, namely that m in Line 6 of Algorithm 1 is set to 1. The
comparison experiment is m = {10, 30, 50, 100, 200, 500}, and the evaluation indexes are
the total execution time (T ) and the total number of supersteps (S). For the DTD algorithm
described in Section 5, the baseline is the case without the message validity pruning strategy
(Strategy 3), and the comparison algorithm adopts Strategy 3, with total tip decomposition time
(T ) and the communication traffic (C) being the evaluation indexes.

(3) Dataset: The basic information of the real bipartite graph datasets used in the
experiments is shown in Table 2, which can be downloaded from the Konect website1. All
the datasets are stored in a distributed way using hash, i.e., the machine number where the
vertex is located is determined by the hash value of the vertex number. The hash-based graph
partitioning technique is a commonly used method in distributed graph computing systems[29],
which has the advantages of high partitioning efficiency, guaranteeing a balanced number of
vertices stored on each computing node, and quickly determining the computing node where the
destination vertex is located during the message transmission process.

Table 2 Real datasets
Dataset |U | |V | |E|
Baidu 901,758 916,634 8,609,972
DBLP 172,072 53,400 293,673

DBLPau 1,953,085 5,624,219 12,282,059
Frwiki 757,621 8,829,774 52,950,008
Twitter 175,214 530,418 1,890,644

6.2 Analysis of experimental results
According to the experimental setup described in Section 6.1, this section analyzes the

experimental results of two algorithms, DBC and DTD, in terms of execution time, the number
of supersteps, and communication traffic.

1The dataset is downloaded from http://konect.cc/.

http://konect.cc/
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6.2.1 Performance evaluation on DBC

DBC (Algorithm 1) is designed to count the number of butterflies where all vertices (only
U -side vertices are considered in this experiment) are located, and the communication between
vertices of a bipartite graph can be achieved in a distributed environment according to Strategy
1 (relay-based communication mode). However, if all vertices are activated simultaneously in
the first superstep, the communication traffic is too large and will lead to memory overflow.
Thus, we need to adjust the algorithm parallelism manually during the experiment (Line 6 of
Algorithm 1). The main purpose of this set of experiments is to verify the performance trend of
DBC at different parallelism levels.

(1) Execution time: The execution time of an algorithm is the most direct and effective
index for evaluating the performance of the algorithm itself. According to the execution flow
of the two algorithms given in Section 4 and Section 5, the execution time of DBC on different
datasets is calculated for each of 10 computing nodes with different numbers of vertices activated
manually (1, 10, 30, 50, 100, 200, and 500, respectively). At this time, DBC has used Strategy
1 and Strategy 2 by default, and the statistical results are shown in Table 3. The results show
that the time consumed by DBC decreases significantly when the number of vertices increases
from 1 to 50, and then the performance of DBC stabilizes as the number of vertices activated
by each computing node increases. It is found that although the parallelism of the algorithm is
increased, the single-superstep communication traffic and computation load are also increased
so that the overall efficiency improvement is not increased.

Table 3 Time cost of DBC on different datasets

Dataset Parallelism m
1 10 30 50 100 200 500

Baidu 1,130 684 535 412 411 365 384
DBLP 67 28 21 17 16 16 16

DBLPau 206 28 14 10 8 8 7
Frwiki 1,128 994 911 724 787 791 719
Twitter 638 299 226 179 166 154 160

(2) Number of supersteps: In distributed systems, the communication overhead is an
important part of the total overhead. The system deployed in this paper uses the BSP
computational model, so the communication overhead can be measured by the number of
supersteps. The parallelism level of Algorithm 1 is controlled by the parameter m in Line 6,
and the number of execution supersteps for each dataset at different parallelism levels is shown
in Table 4. The superstep cost is effectively reduced for all datasets as the parallelism level
increases. Since the experiments in this paper are deployed on a high-performance computing
platform in the National Supercomputing Center with a high-speed communication network on
the bottom, the time reduction brought by the optimization of the number of supersteps is not
obvious. It is foreseeable that the significant reduction in the number of supersteps can lead to
higher performance improvement on a normal distributed cluster.

Table 4 Superstep cost with different parallelism

Dataset Parallelism m
1 10 30 50 100 200 500

Baidu 361,116 40,148 13,384 7,224 3,612 1,808 724
DBLP 68,836 7,652 2,552 1,380 692 348 140

DBLPau 781,236 86,804 28,936 15,628 7,816 3,908 1,564
Frwiki 303,052 33,676 11,228 6,064 3,032 1,516 608
Twitter 70,420 7,900 2,636 1,412 708 356 144
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6.2.2 Performance evaluation on DTD
DTD is used to calculate the tip values of all vertices, which indicate the k-tip community

with the largest k-value that the vertex can exist in, and this index can be applied to mine the
tight communities in bipartite graphs. This group of experiments mainly calculates the tip
numbers of vertices on the U -side. However, since the vertices on the same side cannot directly
access their 2-hop neighbors and cannot obtain the state (whether it is peeled or not) of their
2-hop neighbors, it is necessary to forward messages through the vertices (V -side vertices) on
the opposite side. Meanwhile, the message validity pruning strategy is also executed by the
relay vertex. This group of experiments permits to verify the effectiveness of the designed
message pruning strategy and to quantify the reasons for the performance improvement from
the perspective of communication traffic.

(1) Execution time: After DBC enables each vertex u ∈ U in the dataset to obtain the
butterfly degree, the experiments focus on comparing the execution time of DTD without
Strategy 3 and that with Strategy 3 (expressed as DTD+) on different datasets. As indicated
by the experimental results in Table 5, the message pruning strategy (Strategy 3) effectively
reduces the total time cost, with the highest improvement being 51.9%. The reason for this
is that the reduction in message volume reduces the communication traffic on the one hand
and diminishes the number of vertices activated in the next superstep on the other hand, thus
significantly decreasing the amount of redundant computation. In this algorithm, the vertices
that have already determined the tip values do not need to receive messages to update their tip
values. If Strategy 3 is not used, the vertices that have already determined the tip numbers may
be activated several times, which introduces plenty of redundant computation.

Table 5 Time cost of tip decomposition (s)

Dataset Algorithm
DTD DTD+ Rate (%)

Baidu 960 462 51.9
DBLPau 89 77 13.5
Frwiki 3,299 2,980 9.7
Twitter 2,439 2,190 10.2

(2) Communication traffic: The above experiments reveal that the effectiveness of Strategy
3 comes from reducing redundant communication and thus redundant computation. This group
of experiments quantifies the effectiveness of Strategy 3 by specific communication traffic. As
shown in Table 6, the communication traffic of DTD+ is significantly less than that of DTD,
and the maximum reduction rate of communication traffic is about 57.8%. According to the
analysis of the BSP computation model, the communication traffic determines the number of
vertices activated in the next round, which then further determines the computation load of each
computing node. The decrease in communication traffic can effectively improve the performance
of distributed algorithms.

Table 6 Communication cost of tip decomposition

Dataset Algorithm
DTD DTD+ Rate (%)

Baidu 285,815,206 126,092,382 55.9
DBLPau 4,903,833 2,069,477 57.8
Frwiki 653,528,468 534,658,219 18.2
Twitter 1,297,868,458 1,151,330,554 11.3

7 Conclusion and Outlook
To address the problems that existing butterfly counting algorithms and tip decomposition

algorithms have storage bottlenecks on a single machine and a large communication overhead
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in a distributed environment, this paper proposes a new relay-based communication mode and a
more efficient DBC on this basis. In addition, redundant communication and extra overhead are
significantly reduced by the introduction of a message pruning strategy based on vertex priority.
Subsequently, DTD is proposed to improve the algorithm efficiency through the message validity
pruning strategy. The experimental results show that the proposed algorithms can effectively
solve the tip decomposition problem on large bipartite graphs. Dynamic changes have become an
important characteristic of large bipartite graph data. For this reason, the distributed incremental
maintenance algorithm of tip numbers on large dynamic bipartite graphs will be further studied
in future work.
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