
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2022, 12(3): 285–307, doi: 10.21655/ijsi.1673-7288.00287
©2022 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

Memory Optimization System for SGXv2 Trusted
Execution Environment

Mingyu Li (李明煜), Yubin Xia (夏虞斌), Haibo Chen (陈海波)

(Institute of Parallel and Distributed Systems, School of Software, Shanghai Jiao Tong University, Shanghai
200240, China)
Corresponding author: Haibo Chen, haibochen@sjtu.edu.cn

Abstract Trusted Execution Environment (TEE) is an architectural solution for secure
computing that requires confidentiality and integrity for private data and code. In recent
years, TEE has become the research hotspot for machine learning privacy protection, encrypted
database, blockchain security, etc. This paper addresses the performance problem of the system
under this new trusted hardware. We analyze the performance of the new trusted hardware,
i.e., Intel SGXv2. We find that the paging overhead in SGXv1 is no longer the main issue
in SGXv2 under the premise of configuring large secure memory. However, the setup of
large secure memory leads to two new problems. First, the available range of normal memory is
narrowed down, which increases the memory pressure of normal applications, especially big data
applications. Second, secure memory is usually underutilized, resulting in low overall physical
memory utilization. To solve the above problems, this paper proposes a new lightweight code
migration approach, which dynamically migrates the code of normal applications into secure
memory, while leaving the data in place. The migrated code can use secure memory and avoid
the drastic performance degradation caused by disk swapping. Experimental results show that
the proposed approach can reduce the runtime overhead of normal applications by 73.2% to
98.7% without affecting the isolation and the use of secure applications.

Keywords confidential computing; trusted execution environment; system security; perfor-
mance optimization

Citation Li MY, Xia YB, Chen HB. Memory optimization system for SGXv2 trusted execution
environment, International Journal of Software and Informatics, 2022, 12(3): 285–307. http://www.
ijsi.org/1673-7288/287.htm

1 Introduction
Under the information civilization society, countries, enterprises, and even individuals are

paying more and more attention to the protection and secure computing of data. The Opinions
of the CPC Central Committee and the State Council on Improving the Systems and Mechanisms
for Market-based Allocation of Factors of Production issued in April 2020 points out that data
is also a production factor as important as land, labor, capital, technology, and other traditional

This is the English version of Chinese article “面向 SGX2 代新型可信执行环境的内存优化系统. 软件学报,
2022, 33(6): 2012–2029. doi: 10.13328/j.cnki.jos.006566”
Funding items: National Science Fund for Distinguished Young Scholars of China (61925206); Shanghai Science
and Technology Innovation Action Plan (21511101502)
Received 2021-09-05; Revised 2021-10-15; Accepted 2022-01-10; IJSI published online 2022-09-23

http://www.ijsi.org/1673-7288/287.htm
http://www.ijsi.org/1673-7288/287.htm


286 International Journal of Software and Informatics, 2022, 12(3)

factors. With the construction of “Digital China”, China has successively introduced a number
of laws to ensure privacy security. The Civil Code of the People’s Republic of China, which
came into effect in January 2021, specially discusses specific regulations on “privacy rights and
personal information protection”. The Data Security Law of the People’s Republic of China,
which took effect in September 2021, also clarifies regulations on data processing activities for
data security. When computing private data, cloud computing platforms are obliged to ensure
that the private data is not leaked and precipitated. Otherwise, they will be held responsible for
violations.

For compliant computing and privacy protection of data, the current mainstream research
approach is called privacy computing[1]. Privacy computing is mainly divided into confidential
computing, multi-party computing, differential privacy, and federated learning. Confidential
computing is supported by the Trusted Execution Environment (TEE) provided by hardware.
TEE provides “available but invisible” privacy computing services for sensitive data. It has
no special requirements for the computing tasks and allows the loading of existing applications
into the TEE for protection and execution, thus having good generality and compatibility. The
subject of confidential computing is trusted chips, including Intel SGX[2, 3], AMD SEV[4], Intel
TDX[5], and ARM Realm[6]. In terms of RISC-V, there is “Penglai” in China[7]. In general, TEE
presents a trend of “a hundred schools of thought contending with each other.”

This paper focuses on Intel SGX, a relatively mature product in the industry, which provides
a series of security features including physical isolation, memory encryption, Remote Attestation
(RA), and sealed storage (Section 2 of this paper). At present, Intel SGX has been widely
deployed on various mainstream public cloud infrastructures, including Alibaba Cloud, Amazon
Cloud, Google Cloud, Microsoft Azure, and IBM Cloud[8], and used in some hotspot scenarios
such as machine learning privacy protection, encrypted databases, and blockchain security. The
currently deployed SGX is mainly an SGXv1 system. However, since the secure memory of
an SGXv1 server is extremely limited (only 128 MB or 256 MB), there are non-negligible
performance problems, and the performance overhead can even reach 6 to 11 times[9, 10].

The research object of this paper is an SGXv2 cloud server, a new generation of TEE, which
was released in April 2021. This paper is the first to conduct complete quantitative research on
the performance of SGXv2. We conduct a complete performance evaluation of the SGXv2 cloud
server (Section 3). The evaluation finds that the main issue in SGXv1 has been changed, and the
new hardware features bring both opportunities and challenges. SGXv2 allows the configuration
of encrypted memory with an ultra-large capacity, which eliminates the performance problem
caused by the limited secure memory of SGXv1, but results in a drastic decrease in the normal
memory available for the Operating System (OS) and normal applications. The compression of
normal memory leads to an increase in the memory pressure of normal applications and OS,
which greatly increases the probability and frequency of swapping. Once the OS encounters a
long dead time due to swapping, the performance of the secure application will also be degraded,
because the secure application is dispatched by the OS. After all, a large secure memory leads
to a decrease in the utilization of physical memory.

To solve this problem, this paper proposes a new lightweight code migration approach
(Section 4): for normal applications that require a large number of memory resources, the
proposed system will quickly migrate the code of normal applications into secure memory
before the system triggers swapping. The migrated application can access normal memory and
secure memory simultaneously, thus improving the resource utilization of physical memory and
effectively avoiding system performance impact caused by swapping. We evaluate this system
with memory-intensive workloads (Section 5). Experiments show that the lightweight solution
proposed in this paper can improve the resource utilization of physical memory by 33.2%–58.6%



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 287

with the migration time less than 10 ms and reduce the performance overhead of applications
by 73.2%–98.7%.

This paper targets the Intel SGXv2 server, a new generation of TEE security system, and
makes the following main contributions.

(1) It quantitatively analyzes the performance indicators of the new generation of TEE, the
Intel SGXv2 server, for the first time and finds that the generally concerned problem of
secure memory limitation on SGXv1 is no longer the main issue.

(2) It points out the new performance bottleneck of the SGXv2 server: the configuration of
large-capacity secure memory would lead to a decrease in the overall physical memory
utilization of the system and a significant increase in the swapping probability of the OS
and normal applications.

(3) It proposes a lightweight code migration approach, which can effectively avoid the
memory paging overhead and memory under utilization of the system and makes the
migration overhead unrelated to the data size of the application.

(4) It develops a prototype system, and the experimental evaluation shows that the proposed
new approach can reduce the performance overhead by 73.2%–98.7%, which confirms
the effectiveness and practicability of the approach.

This paper is organized as follows: Section 2 introduces the background knowledge
of SGX and summarizes the existing performance optimization approaches in related work.
Section 3 evaluates the performance of the Intel SGXv2 server, analyzes the originally concerned
performance issues, and finds that the performance problems of secure memory have been well
solved by the new hardware. In addition, this part also identifies new performance problems (i.e.,
memory utilization and normal memory paging). Section 4 proposes a new lightweight code
migration approach and describes the observations, system architecture, and workflow adopted
in this paper. Section 5 conducts an experimental evaluation of the proposed approach through
real-world applications and illustrates the efficiency and practicality of the approach. Section 6
introduces the work related to this paper. Section 7 summarizes the work of this paper.

2 Background Knowledge
2.1 Security features of Intel SGX

As a mature TEE solution, Intel SGX allows a process to create an enclave in the user
mode. Enclaves running in the process address space provide powerful protection and support
for the critical private data and key processing logic of the applications. Specifically, Intel SGX
provides four major security features:

(1) Physical isolation: Intel SGX servers require the explicit partitioning of physical
memory at the beginning of the system startup. The partitioned registers are called the Processor
Reserved Memory Range Register (PRMRR, Fig. 1). Once static partitioning is finalized, no

PRM range register

DRAM-Normal memory EPC-Secure memory

Memory Encyption Engine (MEE)

Memory Controller (MC)

CPU Core 0 Core 1 Core 2 Core 3

Figure 1 Physical memory partition architecture on the SGX server



288 International Journal of Software and Informatics, 2022, 12(3)

further adjustment is allowed during the system runtime. The lack of dynamic adjustment can
effectively prevent the risk of being attacked during runtime. The Processor Reserved Memory
(PRM) stores the Enclave Page Cache (EPC). These EPCs store the code and data of the enclave.
The main feature of PRM is that any non-enclave software, including the privileged OS kernel,
virtual machine monitor (hypervisor), and underlying firmware (UEFI/BIOS), running on the
processor has no right to peek at the information inside the PRM, which ensures mandatory
isolation at the hardware level. For the process that owns the enclave, its non-enclave part (i.e.,
the normal memory part) cannot access the enclave either. This can ensure that the bugs of
the program will not affect the confidentiality and integrity of the enclave, which is suitable for
protecting encryption and decryption processing logics of SSL and preventing the Heartbleed
bug[11].

(2) Memory encryption: Physical isolation only is not enough. The information stored
in the PRM may also be obtained through physical attacks. Because the original purpose of
the SGX security feature is to protect user data on the cloud, the owner of the cloud server can
access the memory data of the PRM. For example, by replacing the memory bank with Non-
Volatile Memory (NVM) having persistent capability and by halting the server, the owner can
easily access the memory snapshot of PRM. The OS can also access arbitrary physical memory
information by controlling the Direct Memory Access (DMA) of the devices, and thus it can
violate the user privacy in the PRM. Therefore, the Intel SGX processor specially introduces
the Memory Encryption Engine (MEE), as shown in Fig. 1. MEE is responsible for automatic
data encryption and decryption in the PRM. The data is plaintext only when it enters the cache
on the CPU cores; otherwise, it will exist always in the form of ciphertext in the memory. With
the memory encryption of MEE, the enclave can effectively prevent attacks against physical
memory.

(3) Remote attestation (RA): To provide the users with a guarantee that data and
computations are indeed protected in the enclave, Intel SGX processors are capable of RA.
For any started enclave instance, the processors will calculate the hash of its loaded content
during the loading phase, including the states of all code segments and global data segments,
and then generate a credential signed by the processor key. The user should first check whether
the RA credential is signed by the SGX processor and then judge the credibility of the enclave
instance state according to the hash in the credential. Owing to RA, the administrator will be
unable to forge a malicious or illegal enclave to steal user information.

(4) Sealed storage: Since the enclave can only work in the user mode, once the process
where the enclave is located is killed, all states are lost. Therefore, the SGX processor provides
a secure persistence service for the enclave, called sealing, which uses the root key inside the
processor to encrypt the enclave data. The encrypted data can be stored in a file system managed
by an untrusted OS, and if the same enclave instance is subsequently started again, the persistence
data in the sealed storage can be successfully decrypted and read. For the sake of the security
of sealed storage, the root key of the processor cannot be accessed by any software. In addition,
different enclave instances have different sealing keys, and the sealing keys corresponding to
the same enclave binary system on different processors are also different, so as to ensure the
absolute security of enclave persistence data.

2.2 Performance bottleneck of SGXv1 servers
Security often comes with performance compromises, and SGX is no exception. To endow

the above four security features at the architecture level, the Intel processor provides a series of
security instructions and strictly checks the security status of the enclave. Formal verification is
also conducted for the whole model.



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 289

Due to the late release time of the SGXv2 server (officially released on April 7, 2021), all
publications on the performance optimization of SGX are made for SGXv1 servers. The main
concerning performance issues are as follows (as depicted in Fig. 2).

ecall

App Enclave

ocall

Enclave App

SGX driver Kernel

DRAM EPCSGX mode switch SGX EPC swapping

Figure 2 Diagram of the SGX enclave mode switch and EPC swapping

(1) Mode switch: We call an application with an enclave a secure application. The non-
enclave part of the secure application cannot directly access its enclave part, and its isolation
is similar to the existing kernel mode/user mode partitioning, so an explicit mode switch is
required for executing the enclave code and accessing the enclave data. When switching from
non-enclave to enclave (ecall), the processor will check whether the entry point is legal and
disable its debugging capability to prevent any possible information probing. When switching
from the enclave to the non-enclave (ocall), the processor needs to remove all the Translation
Lookaside Buffers (TLBs) to ensure that the EPC secure memory cannot be accessed by external
untrusted parts. These security measures all result in large performance overhead.

(2) EPC swapping: On the SGXv1 server, the size of the EPC secure memory is very
limited (only 128 MB), and a few servers are equipped with secure memory of 256 MB. For
modern programs, if large heap memory is applied for use in the EPC, it will cause expensive
paging overhead. The earliest work on SGX is about how to run an unmodified binary program
directly in the SGX enclave, for which the user-mode library OS (LibOS) is used to fully load
the binary system into the EPC[12]. In this way, the entire program runs in the enclave, and
its memory consumption is much larger than the available physical secure memory (128 MB).
There is a need for assistance from the kernel once page swapping occurs, which includes a
mode switch (it must be switched from enclave to user mode and then to the kernel-mode paging
subsystem) and the re-encryption of EPC data. Since secure applications often experience page
faults during runtime, paging events of secure memory occur almost all the time, resulting in
very high overhead.

For the above two problems, we briefly review the existing optimization work.
(3)Mode switch: Because an SGX secure application cannot perform system calls, it must

request kernel services by mode switch. Haven[12] utilized the design of LibOS to put dispatching,
memory management, and other system services into the enclave, which reduced the request for
services from the external kernel. Ryoan[13] implemented an In-Memory FileSystem (IMFS) in
the enclave, which further completed frequent file operations directly in the enclave. Introducing
the concept of asynchronous call, SCONE[14] and HotCalls[15] established a shared buffer queue
in the enclave and the underlying kernel. They utilized the multi-core characteristics to allow
Core A to make requests in the enclave and Core B to respond to requests in the kernel mode,
thus avoiding frequent mode switches in single-core cases.

(4)EPC swapping: The limited EPC secure memory of SGXv1 has always been criticized.
Eleos[10] first discovered the memory access asymmetry of SGX (Fig. 3). Taking advantage of
this feature, Eleos implemented a software-based user-mode paging mechanism. With normal
memory as the backend, the secure applications were responsible for their own data encryption



290 International Journal of Software and Informatics, 2022, 12(3)

Process address space

DRAM EPC

Figure 3 Memory access asymmetry model of SGX memory protection mechanism

and decryption and automatic swap-in and swap-out, and mode switch and kernel paging
operations did not occur in the whole process. In this way, Eleos realized the performance
improvement by 2 to 3 times. CoSMIX[16] implemented this software paging process as an
automatic compiler instrumentation approach, without modifying the applications.

Regarding the classification and comparison of a series of optimizations on SGXv1 servers,
we recommend the review of Dong et al.[17].

2.3 New features of SGXv2 servers
The specification of SGXv2 was released in 2016[3], but the cloud server supporting SGXv2

was not formally released until 2021[18]. In this part, we will briefly introduce the new features
of SGXv2 for a better understanding of some observations and technical points used later in this
paper.

(1) Dynamic update: SGXv1 servers do not allow an enclave secure application to
dynamically modify its memory permissions, extend its memory range, or even increase
the maximum number of secure threads it supports during runtime. These limitations are
reasonably solved in SGXv2. SGXv2 allows secure applications to use new instructions
to add secure memory as required within specific intervals. This feature is called Enclave
Dynamic Memory Management (EDMM). The EDMM feature has the following benefits:

• Dynamic loading: It is not necessary to load the whole codes once at startup,
which conforms to the dynamic loading technology widely used in modern software
engineering.

• Memory extension: Secure applications are often unable to know the size of
memory pages they need at runtime, so allowing SGXv2 secure applications to
dynamically extend their memory pages can make them well adapted to modern
heap allocator.

• Just-In-Time (JIT) compilation: Since SGXv2 allows dynamic modification
of page permissions, it can support the JIT compilation technology of high-level
languages to turn data pages into code pages.

(2) Large-capacity secure memory: Another major change of SGXv2 is that it abandons
the original hash tree design of hardware and no longer performs integrity protection for
EPC secure memory, but introduces an Error Checking and Correcting Memory (ECC
Memory) based verification mechanism and cache-based access control permission[18].
The security guarantees of SGXv2 are shown in Table 1. SGXv2 does not relax the
protection at the software level, while its compromise at the hardware level allows the
range extension of encrypted memory to a maximum of 1 TB. This effectively solves the
original performance bottleneck of frequent paging on SGXv1.

The next section of this paper will focus on evaluating the actual performance of the SGXv2
server, a new generation of TEE, and checking whether the performance bottlenecks on SGXv1
still exist.



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 291

Table 1 Security guarantees of SGXv2

Protection measures Attacker SGXv1 cloud
machine

SGXv2 cloud
machine

Confidentiality: Prevent content from being eavesdropped Software Yes Yes
Integrity: Prevent content from being tampered with Software Yes Yes

Anti-replay: Prevent state from being rolled back Software Yes Yes
Confidentiality: Prevent content from being eavesdropped Hardware Yes Yes

Integrity: Prevent content from being tampered with Hardware Yes No
Anti-replay: Prevent state from being rolled back Hardware Yes No

3 Performance Analysis of SGXv2 Servers
3.1 Environment configuration

According to our research, at present (before July 2021), only Alibaba Cloud provides public
cloud services with Xeon3 servers. Xeon3 servers support the security features of SGXv2 and
allow the configuration of large-capacity secure memory. We obtain an “enhanced-security
general-purpose instance” virtual machine with EPC secure memory from Alibaba Cloud for
testing. The specific parameters of the SGXv2 server are as follows:

• Processor: Intel Xeon Platium 8369B CPU @ 2.7 GHz;
• Cache size: 48 K L1d, 32 K L1i, 1280 K L2, 48 MB L3;
• Memory size: 21 GB normal memory, 23 GB secure memory;
• Network bandwidth base: 2 Gb/s;
• Cloud disk bandwidth base: 1.5 Gb/s.
The testing environment is virtualized. The virtual machine monitor is KVM, and a total of

24 logical thread vCPUs are allocated. The client OS is CentOS 7 and the Linux kernel version
is 4.19. The driver versions of Linux SGX SDK and SGX used for evaluation are both 2.1.

For comparison, this evaluation also includes an SGXv1 server, whose parameters are
shown below:

• Processor: Intel Core i7-7567U CPU @ 3.5 GHz;
• Cache size: 32 K L1d, 32 K L1i, 256 K L2, 4 MB L3;
• Memory size: 16 GB normal memory, 128 MB secure memory.
Since we do not conduct network and storage evaluations on the SGXv1 server, the network

and storage configurations are omitted.
As far as we know, we are the first to conduct a complete performance evaluation on SGXv2

servers and give specific quantitative values in the literature. To avoid measurement errors, we
take the averages of 5,000 measurements for the micro-evaluation (Sections 3.2, 3.3, and 3.4)
and 10 measurements for the macro-evaluation (Sections 3.5 and 3.6). The micro-evaluation is
not influenced by the virtualization environment, while the memory access delay and application
performance in the macro-evaluation will be influenced by the fluctuation of virtualization. Even
so, macro-evaluation can reflect the real situation, because the original design intention of SGX
is to protect privacy data on public clouds.

3.2 Instruction evaluation
In this section, we first evaluate the instruction micro-overhead of the SGXv2 server. The

ReaD Time-Stamp Counter (RDTSC) instruction provided directly by the processor is used to
measure the micro-overhead of each instruction, that is, the specifically consumed clock cycles.
For comparison, we also list the instruction overhead of SGXv1 in Table 2.

According to Table 2, the performance of the SGXv2 server at the micro-level is generally
better than that of the SGXv1 server, and the SGXv2 server also supports more instructions and
features.



292 International Journal of Software and Informatics, 2022, 12(3)

Table 2 Instruction overhead on SGXv1 and SGXv2 machines (in clock cycles)
Instruction Function SGXv1 server (K) SGXv2 server (K)

ecreate Create an enclave instance 29 30
eadd Add an EPC page to the enclave instance 10 5.3

eremove Remove an EPC page from the enclave instance 3.2 1.4
eextend Calculate the hash on the EPC of the 256 B 7.0 2.6

einit Complete the initialization of the enclave instance 80 58
eenter Enter the enclave security mode 26.8 9.2
eexit Exit the enclave security mode 12.5 8.3

emodpr Dynamically modify the EPC page permission None 3.5
emodt Dynamically modify the EPC page type None 3.5
eaug Dynamically add an EPC page during runtime None 8.3

3.3 Mode switch evaluation
As indicated in Section 2.2, the mode switch (context switch) is a major overhead source

for SGX. Since an enclave running in SGX cannot directly perform system calls or I/O, it must
switch back to normal user mode (non-SGX). This section tests the mode switches of the SGXv2
server and also gives the data of SGXv1 for comparison.

According to Table 3, the SGXv2 server is also improved regarding mode switches, with
the ecall overhead decreased by 62.5%.

Table 3 Context switch overhead of SGXv1 and SGXv2 machines (µs)
Mode switch Function SGXv1 server SGXv2 server

ecall Switch from non-enclave to enclave 8 3
ocall Switch from enclave to non-enclave 3 3

3.4 Memory access overhead evaluation
SGX statically partitions physical memory into secure memory and normal memory. These

two kinds of memories have different memory access delays because secure memory needs
encryption. This section tests the access delay of secure memory, and the results are shown in
Table 4.

Table 4 Memory access overhead on SGXv2 servers

Data size
accessed

Normal memory
access overhead

Secure memory
access overhead

Percentage of
secure/normal memory

access overhead (%)
256 K 3 µs 3 µs 0.0
1 MB 15 µs 16 µs 6.6
16 MB 533 µs 564 µs 5.8
64 MB 3.9 ms 4.2 ms 7.7
256 MB 20.1 ms 21.5 ms 7.0

According to the evaluation results, the access of secure memory has a certain memory
access overhead, which is less than 10% of the access overhead of normal memory.

3.5 Evaluation of run-time dynamic memory extension time
Since SGXv2 allows dynamic memory extension (which is not available in SGXv1)

during runtime, this paper evaluates the time overhead for SGXv2 to extend memory. The
SGXv2 employs an eaug-then-eaccept instruction pair for run-time memory extension, and the
permissions are readable and writable by default. According to Fig. 4, the dynamic memory
extension time of SGXv2 is positively correlated with the size of memory requested. For the
convenience of comparison, Fig. 4 also shows the run-time dynamic memory extension time of



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 293

3.5

3

2.5

2

1.5

1

0.50.5

0
1 MB

DRAM EPC

16 MB 64 MB 256 MB 512 MB 1 GB

Ti
m
e (
s)

Figure 4 Run-time memory allocation time between EPC and DRAM on SGXv2 server

normal memory (using the malloc() interface of the C standard library), including the overall
interrupted time due to page faults for the target memory size.

The run-time dynamic memory allocation time measured in Fig. 4 applies to the dynamic
extension of both heap memory and stack memory. The main reason that usually affects the
run-time memory performance of an application is the use of heap memory. The dynamic
extension speed of stack memory is much lower than that of heap memory.

In consideration of the integrity of the dynamic memory test, SGXv2 also provides a
dynamic extension of number of secure threads. In essence, the application will first create a
Thread-Local Storage (TLS) of a normal thread with the help of the OS and then convert a regular
page in the EPC into an SGX Thread Control Structure (TCS). After the normal thread is switched
to the SGX mode, the newly converted SGX TCS can be used to complete the dynamic extension
of the secure thread. Through micro-evaluation measurement, the dynamically increased delay
of normal threads and dynamic threads on the SGXv2 server is about 120 µs. The reason
why the dynamic creation of secure threads has no obvious overhead is that most of the thread
creation work is done at the OS kernel level, and the SGX part is only responsible for the page
type conversion of one EPC page (i.e., the emodt instruction).

3.6 Evaluation of large-memory applications
SGXv1 has poor performance because it only supports 128 MB or 256 MB of secure

memory. In this paper, we run several large-memory applications to evaluate whether the large
secure memory of SGXv2 can effectively improve the performance of secure applications.

First, we run the TensorFlow machine learning training programs in the secure memory of
SGXv1 and SGXv2, which include Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), and Generative Adversarial Network (GAN). The test results are shown in
Fig. 5.

The corresponding memory usage is listed in Table 5.

Table 5 Memory usage of tested machine learning programs
Machine learning program Memory usage (GB) Data segment (GB) Code segment (MB)

CNN 1.49 1.36 131
RNN 1.14 1.01 131
GAN 1.12 0.99 131

The results show that on the SGXv1 server, the execution time overhead of machine learning
programs based on secure memory is 1 to 16 times longer than that based on normal memory;
while on the SGXv2 server, the execution time overhead is between 1% and 27%. Therefore,



294 International Journal of Software and Informatics, 2022, 12(3)

120

90

60

30

0
CNN RNN GAN

DRAM EPC

6.44

104.17

20.33

45.78

15.13

56.3

Ti
m
e (
s)

(a) Execution time of machine learning programs on SGXv1 server (s)

20

15

10

5

0 CNN RNN GAN

DRAM EPC

8.08 8.05

17.9819.41

14.0814.92

Ti
m
e (
s)

(b) Execution time of machine learning programs on SGXv2 server (s)

Figure 5 Execution time comparison of machine learning programs on SGXv1 and SGXv2 servers

the large secure memory of SGXv2 indeed effectively mitigates the performance problems of
large-memory applications and greatly improves the practicability of the TEE. The main reason
is that the large secure memory of SGXv2 effectively avoids frequent EPC swapping of SGXv1.
Since paging requires the cooperation of the kernel, there are many processor behaviors, such
as mode switches and re-encryption and copying of data. The TLB misses caused by mode
switches further deteriorate the execution time of large-memory applications.

3.7 Evaluation summary
The above evaluations indicate that the SGXv2 server has solved half of the main motivation

of the two performance problems, that is, the frequent paging of secure memory, which is mainly
avoided by abandoning the hash tree at the hardware level to allow the configuration of large-
capacity secure memory. However, the problem of costly mode switches still exists, which can
be solved by asynchronous call at the software level[14, 15].

To avoid performance overhead caused by insufficient secure memory allocation, operation
and maintenance personnel tend to configure a large secure memory. According to the
specifications of the “enhanced-security general-purpose instance” on the official website of
Alibaba Cloud, the proportion of secure memory in physical memory is 50% by default[19]. This
introduces new problems while solving the performance problems of secure applications. On
the SGXv2 server, the main issue of performance has changed.

3.8 Problem description
First, we trigger EPC swapping on the SGXv2 server to check whether the paging overhead

is as expensive as SGXv1, so as to explain the necessity of configuring large secure memory.
The evaluation results are shown in Fig. 6.



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 295

6

4

2

0
128 MB

Sufficient EPC at startup Insufficient EPC at startup (swap)

256 MB 512 MB 1 GB

Figure 6 EPC swapping overhead measurement on SGXv2 (s)

The evaluation results show that the paging overhead of SGXv2 is still very large, and the
paging of secure memory influences the delay of secure applications by 3 to 7 times. Therefore,
it is necessary for the administrator to configure large-capacity secure memory.

It is worth noting that once the physical memory is explicitly partitioned into normal
memory and secure memory, secure memory can no longer be used by the OS and normal
applications (we call non-secure applications as normal applications). The main decrease of
performance on SGXv2 servers has changed. To explain this situation, we record the utilization
of secure memory and normal memory on SGXv2 cloud machines in one day (for the sake of
protecting customer data, we do not disclose this data set). The following conclusions can be
drawn from the statistics of memory utilization:

(1) DRAM normal memory: the configuration of large-capacity EPC secure memory
severely narrows down the usable range of DRAM normal memory, resulting in a higher
probability of normal applications triggering swapping due to Out-Of-Memory (OOM),
or even being killed by the OS.

(2) EPC secure memory: because the system configures and reserves a large amount of
EPC secure memory, plenty of EPC resources are idle most of the time. Thus, the
utilization of EPC secure memory is low.

In practical use, big data analysis (e.g., Spark), machine learning (e.g., TensorFlow), and
memory key-value storage (e.g., Redis) may consume a large amount of physical memory. In
fact, normal memory is used by all normal applications and the OS kernel, so normal memory
insufficiency is very likely to occur.

To sum up, we believe that it is necessary to configure large-capacity secure memory in
consideration of secure memory performance; at the same time, the performance degradation
of normal applications due to OOM caused by large-capacity secure memory should also be
resolved. This paper concludes that the primary task to be solved is how to improve the overall
physical memory utilization of the system and avoid the triggering of memory swapping events
as far as possible.

4 System Design—Lightweight Code Migration Approach
To address the small usable range of normal memory and the low utilization of secure

memory, this section specifically describes the system design solution—a lightweight code
migration approach.

4.1 Observations
Before discussing the design approach proposed in this paper, we will first introduce two

specific observations. These two observations provide favorable opportunities for our approach.
(1) The code segment in secure memory can access the data segment of normal

memory: The memory protection mechanism provided by SGX has the feature of memory
access asymmetry (Fig. 3), namely that the secure memory code can access data in external



296 International Journal of Software and Informatics, 2022, 12(3)

non-secure memory, while code in non-secure memory is unable to access data in secure
memory. This asymmetry feature provides a unique optimization opportunity. To extend the
secure memory boundary in pure software, previous studies, such as Eleos[10] and CoSMIX[16],
utilize this asymmetry and the software-level encryption engine inside the enclave to encrypt
private data and write it in non-secure memory, thus avoiding the performance overhead caused
by limited secure memory of SGXv1 (128 MB or 256 MB). Unlike Eleos and CoSMIX,
which migrate data from secure memory to non-secure memory (outward migration), this paper
migrates the code from non-secure memory to secure memory (inward migration), and the
original data in non-secure memory can still be accessed. The reason why the data in non-secure
memory can be accessed by both internal and external codes is that the SGX enclave works in a
user-mode process, and the non-secure memory and the secure memory share the same virtual
address space.

(2) The code segment sizes of applications are much smaller than their data
segment sizes: Through calculation, we find that the actual size of code segments of the
three applications tested in Section 3.6 is much smaller than the size of corresponding data
segments. The measurement results are presented in Table 5. In fact, for modern software,
after the optimization by tool chains, such as eliminating dead code and Link-Time Optimization
(LTO), the size of binary executable files and shared library files is considerably reduced. With
Linux as an example, whose source code is at the level of tens of millions of lines, the size
of its kernel core file (vmlinuz) is less than 10 MB. As the modern memory size increases
continuously, program developers are not as constrained as before in memory use (especially
heap memory) and are more inclined to use as much heap memory as possible. In addition,
modern software optimization is mainly based on the optimization idea of caching (buffering),
and hot data is cached in memory to avoid the impact caused by frequent I/O, which further
enlarges data segment sizes. For the application scenarios discussed in this paper, applications
have a large data memory requirement due to the use of big data or the requirement of low
latency.

4.2 Architecture description
This section describes the overall architecture of the system introduced in this paper (Fig. 7).

The system is divided into two components:

Memory-intensive
normal applications

Migration daemon

Other

Code migrated
into EPC

LibOS

Other
secure applications

DRAM-Normal memory EPC-Secure memory

normal applications

Figure 7 Overall architecture of the system. The orange part is the system component

(1) Migration daemon: the migration daemon is a normal user-mode process and does
not use secure memory. It is responsible for obtaining the usage information of normal
memory and secure memory from the OS kernel and regularly ranks normal applications
with large memory usage. When the usage of normal memory reaches a threshold (e.g.,



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 297

95%), the OS will execute code migration. The migration daemon is a privileged process
(root process) on the OS, so it can directly detect the process of any normal application
and enter its address space to execute code migration operations. Although the migration
daemon is a privileged process, it cannot control secure applications, and thus there is no
security issue.

(2) LibOS: residing in secure memory, LibOS is used to manage the enclave in the secure
memory area. Since the migration daemon cannot take charge of the program codes
migrated into EPC secure memory, LibOS needs to take charge. LibOS and other secure
applications are in different enclave instances, and thus migrated normal application
codes have no chance to access the data of other secure applications. In this way, security
isolation can be ensured between different applications. LibOS is mainly responsible
for “taking care of” the code migrated into EPC, including providing the forwarding of
system calls and distributing memory allocation. The so-called distribution of memory
allocation refers to the fact that LibOS will reasonably select an available memory block
for the application according to the usage of normal/secure memory (see Section 4.5 for
details). Normal application code migrated into EPC can access normal memory and
secure memory simultaneously and thus can effectively solve the problem of physical
memory utilization.

4.3 Workflow
This paper proposes a lightweight code migration approach, which will automatically trigger

the application’s code migration and utilize free secure memory resources when the application
is running out of normal memory, that is, when the system is about to trigger the use of the OS
swap. The specific workflow of this approach is as follows.

(1) The OS observes the remaining available normal memory and secure memory in real
time. When the normal memory is about to exceed the usage threshold, it judges whether
there is available space in the secure memory. If there is, code migration will be triggered;
if not, the disk-based swap must be used.

(2) The OS scans the memory working set size of each normal application and finds out the
major consumer of the normal memory. We call such a normal application as NApp and
prepare code migration for NApp.

(3) The OS dispatches this system to provide a user-mode migration daemon. After the
daemon is wakened up, a ctrl-z signal is sent to the NApp to be migrated to completely
suspend the entire process.

(4) The migration daemon attaches to the address space of the NApp process in debugging
mode and scans the memory layout of its address space. The memory layout can be
quickly obtained from the /proc/pid/maps of the memory file system. The code
segment can be easily judged through r-xp, which is the main migration object. The
remaining r–p and rw-p are the read-only data segment and the readable and writable
data segment, respectively, which are migrated by the system. In addition, to protect the
heap and stack information, the system also transfers the data on the stack and adjusts the
position of the stack pointer to ensure that the return address on the stack is not destroyed.

(5) After the code segment object to be migrated and its specific range are found, the daemon
that attaches to the NApp address space first copies the code segment to the spare area for
caching, then frees the original code segments one by one, and uses the secure memory
EPC for coverage, namely covering the original normal memory with secure memory.
It should be noted that the cover herein does not refer to physical coverage but the
modification of the page table corresponding to the code segment area, during which the
Virtual Address (VA) remains unchanged, while the Physical Address (PA) is changed



298 International Journal of Software and Informatics, 2022, 12(3)

from normal memory to the secure memory. Finally, the code is copied from the spare
area into the secure memory EPC. The overall code migration process is shown in Fig. 8.
For the initialization of secure memory, both the instruction eadd of the SGXv1 and the
instruction pair eaug+ eaccept of the SGXv2 can be used, because the SGXv2 machine is
compatible with the two generations of SGX instructions. Compared with the traditional
secure application loading process, this stage has the following differences:

• Regarding software, there is no need to parse ELF (Executable and Linkable
Format) file format and symbol address redirection, and only the copy of the code
is needed, which makes the delay lower.

• Regarding software, there is no need to generate RA credentials, and thus the
time-consuming and cumbersome eextend instruction can be skipped.

Figure 8 Basic process of code migration of the system

(6) After the code segment based on normal memory is replaced with that based on secure
memory, the daemon needs to load an additional piece of code before entering EPC, that
is, the LibOS provided by our proposed system, which is responsible for the forwarding of
I/O related system calls and memory management. Then the daemon immediately jumps
into the entry point address of LibOS, which configures the TLS of each thread of the
normal application after migration, including the stack registers and other information.
Subsequently, the daemon directly jumps to the instruction location after the ctrl-z signal
is sent in the first step through the jmp instruction to resume execution.

At this point, the code migration has been completed. The migrated code can use EPC
secure memory pages to request heap memory.

In addition to the ability of code to migrate in, that of code to migrate out also needs to be
provided, so that the normal applications can return to the original usage model when normal
memory recovers to the plenty state. It can be realized by reversing the above steps, and the
details are omitted. Here, only the main differences will be discussed.

(1) For Step (3), LibOS needs to track and obtain the context information of the interrupted
enclave thread, which is used to restore the stack address and program counter information
of the application after outward migration. For this purpose, LibOS needs to enable an
additional in-enclave tracking thread, which is responsible for obtaining the context
information of all enclave threads. If an existing enclave thread is reused as the tracking
thread, its original context cannot be recovered.

(2) For Step (5), LibOS needs to actively copy the EPC code to the spare area and then
request the OS to free this area, unmap the EPC, and execute the eremove instruction
to ask the hardware to free the resources occupied by this enclave. Otherwise, an EPC
memory leak will be caused.

4.4 Design discussion
(1) How to select a suitable migration point?
This paper proposes a design that allows a program to be interrupted and migrated at any

time with the basic idea similar to Popcorn Linux[20]. For multi-threaded programs with mutex,
a feasible migration point should be carefully selected. The program developers need to provide
certain program semantic information and use code annotations to mark potentially reliable
migration points. This is because the “blind” migration at any time in the form of a black box



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 299

may cause deadlock among threads, and if the migrated thread cannot free the lock resources,
the migration will fail inevitably.

(2) How to migrate multi-threaded applications?
For multi-threaded programs, a global quiescence point can be set. Code migration can

be executed only when all threads have reached this quiescence point and are in a suspended
state; otherwise, security problems may occur (e.g., TOCTTOU attack). The migration time
overhead of multi-threaded programs is usually higher than that of single-threaded programs
because migration can start only after all threads reach the quiescence point.

Since the solution using a quiescence point is a white-box solution, this paper does not
explore how to add a reliable quiescence point to the source code without affecting the original
application logic and how to select a suitable quiescence point among multiple ones, which will
be studied in the future.

(3) How to migrate multi-process applications?
For a multi-process program, code copies of multiple processes of the same normal

application can also be migrated into the secure memory by this approach in theory. SGX LibOS
has already supported fork() and SSL-based Inter-Process Communication (IPC). However, due
to the strict isolation of the SGX architecture, each page of EPC only belongs to one process, and
sharing between parent and child processes cannot be realized. Therefore, for a multi-process
program based on the fork() system call, the code migration of its parent and child processes must
use multiple SGX enclave instances and does not support Copy on Write (COW). The migrated
application will consume an enclave instance for each new process fork(), which results in
more EPC consumption with the increase in the number of processes. Such consumption is
undoubtedly a serious waste of EPC secure memory.

In consideration of the above drawbacks, our system does not recommend migrating multi-
process applications that require fork() at runtime but prefers to migrate multi-threaded or
multi-process (without fork) big data applications. In fact, most big data applications use a
multi-threaded model with shared memory, which avoids the overhead of frequent IPC and
repetitive data movement.

(4) Why not migrate the application code into EPC secure memory at the very
beginning?

A radical approach is to put the code segment of the application in secure memory at the
beginning of the program startup. In such a case, the data segment uses normal memory first and
then secure memory after normal memory is exhausted. We think this is overkill. The reasons
are as follows.

• In a real cloud scenario, the OS cannot prejudge which application is a major memory
consumer. The “on-demand” migration approach chosen in this paper is more sensible:
only normal applications that consume a large amount of memory are migrated to avoid
the secure memory being occupied excessively.

• According to the tests in Sections 3.3 and 3.4, the normal applications migrated into
secure memory have performance overhead, such as mode switches during system calls
and memory access latency. Thus, it is not zero-cost though the cost is not obvious. If
the application is put into secure memory in advance, the latency of all previous requests
will be affected before normal memory is fully utilized.

(5) How to realize the outward migration of normal application code and data
when the secure memory is insufficient?

The mechanism provided by the proposed system allows the quick migration of normal
application code into the enclave. Similarly, it can also realize the rapid outward migration of
code. However, in the case where the secure memory is insufficient, the normal application data



300 International Journal of Software and Informatics, 2022, 12(3)

residing in the secure memory also needs to be migrated out, and the outward migration of huge
data will take a long time. There are the following two situations.

• In case both normal memory and secure memory are insufficient, the physical memory of
the OS faces high pressure, and the OS can follow the existing OOM killer mechanism to
selectively kill some normal application that occupies a large amount of secure memory so
that the secure memory can be freed quickly. Without the memory optimization support
provided by the system proposed in this paper, this part of the normal applications may
have been killed by the OS earlier. Our system postpones the action time of the OOM
killer and prolongs the service time of normal big data applications.

• In the case of insufficient secure memory and sufficient normal memory, normal
applications migrated into EPC do not need to migrate out all the data occupying secure
memory at the same time. Instead, data can be migrated in an “on-demand” manner
to ensure the smooth operation of the applications. The on-demand swap-out based on
memory copy proposed in this paper has less impact on application performance than
disk-based on-demand swap-out (see Section 5.4 and Fig. 11 for details).

(6) How to ensure the isolation and security of the overall system?
Since normal applications and secure applications run in different processes, normal

applications still maintain the original address space isolation after migration. In addition,
the enclave instances used by the normal applications migrated into the enclave are different
from those used by secure applications, so migrated normal application codes cannot access any
data of secure applications.

4.5 Allocation strategy
For applications that have been successfully migrated into secure memory, the LibOS

provided by this system must support a suitable secure memory allocation strategy to obtain
a good memory performance optimization capability. The reason why this capability belongs
to LibOS is that the support of the allocation strategy can avoid modifying the heap allocator
of applications, and the system can directly provide the low-level resource-aware allocation
strategy.

Before describing the allocation strategy, this paper needs to address how LibOS judges
whether an application is executing memory allocation. For programs using the C standard
library, the application will call the malloc() interface, which is provided by the heap allocator.
Common heap allocators include dlmalloc, tcmalloc, and jemalloc. These allocators will call
the system call interface of sbrk() or mmap() when memory resources are insufficient. These
two system call interfaces use the privileged instruction sysenter, which can be captured by
LibOS. LibOS will intervene after determining that this is a virtual address space extension
request through the system call number and allocate available memory resources according to
the current usage of secure memory and normal memory. The specific process is shown in
Fig. 9.

Figure 9 Memory allocation workflow of our LibOS

Next, we will discuss some feasible allocation strategies:



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 301

• Priority: in case free normal memory and free secure memory both exist, the allocator
of LibOS always allocates normal memory first to guarantee the highest usage of normal
memory. After the normal memory reaches a certain threshold, secure memory will be
allocated.

• Ahead-of-time allocation: since allocating a new EPC requires the participation of the
kernel and the help of the eaug kernel mode instruction, LibOS allocates a larger block
of EPC in advance to reduce the number of page faults due to frequent EPC allocation
requests.

• Coalesced free: since the OS kernel needs to be notified for freeing EPC, which will
cause a large overhead, this paper adopts the batch method to coalesce multiple EPC free
requests into one, in order to avoid frequent mode switches.

• Resource recycling: for applications that frequently allocate EPC memory after
releasing resources, LibOS can keep EPC resources for a period of time, so that the
allocation operation can reuse the resources released last time. This operation does not
require the participation of the kernel, and thus it reduce the overhead.

5 Experimental Evaluation
This section illustrates the performance optimization effect of the memory system proposed

in this paper by answering the following questions:
(1) What is the overhead of code migration for our system? The application dead time due

to migration should be as short as possible.
(2) With our system, to what extent can the resource utilization of the physical memory of

SGXv2 machines be improved?
(3) Compared with the existing OS swap approaches (e.g., disk-based swap approach), to

what extent can our lightweight code migration approach improve the performance of
applications?

5.1 Environment configuration
The experiments in this section continue to be conducted on the “enhanced-security general-

purpose instance” virtual machine of Alibaba Cloud. The specific environment configuration
has been described in Section 3.1 and will not be repeated here.

5.2 Test load
We select the following two memory-intensive applications as workloads, whose memory

usage gradually increases over time:
• Redis (I/O-intensive +memory-intensive): Redis is a memory-based high-perfor-

mance Key-Value Store (KVS) that supports a variety of common data structures. Redis
consumes a large amount of memory for caching data during runtime, in order to ensure
a low latency of put()() and get() requests. In this test, we continuously write 100 pieces
of key-value data with a length of 100 MB to the Redis storage, and Redis consumes a
total of 16.06 GB of memory.

• Darknet YOLO (compute-intensive + memory-intensive): Darknet is an open-
source deep learning framework written in C++ and YOLO (You Only Look Once) is
specially used for object detection. Loading pre-trained model weight parameters would
consume plenty of memory. In this test, we use the YOLOv3.weights model to identify
images, which consumes a total of 6.67 GB of memory.

5.3 Test method
In this section, the following three approaches are selected as mutual controls:



302 International Journal of Software and Informatics, 2022, 12(3)

(1) Disk-based swap approach: This is the default swap method of the Linux
kernel. Once the physical memory space is insufficient and the system configuration threshold
(/proc/sys/vm/swappiness) is reached, the kernel will selectively swap out the non-active memory
working set to a disk. Since this test is done on a virtual machine on the public cloud, the backend
used by the disk is cloud storage, i.e., distributed SSD cloud disk. At present, distributed SSD
is the standard storage configuration for public clouds.

(2) Compressed memory-based swap approach: Linux Zswap[21] is an enhanced
version of the disk-based swap approach, which effectively reduces the number of I/O and
the occupation of disk bandwidth of the traditional disk-based swap approach. In the case of
insufficient physical memory space, Zswap compresses some non-active memory pages to free
up more physical memory space to accommodate more working sets. The essence of the swap
system using Zswap is to replace I/O-intensive with CPU-intensive, thus improving the overall
performance of the system.

(3) Lightweight code migration approach: In the case of insufficient physical space
in normal memory, this approach quickly migrates the code of normal applications into secure
memory, thus avoiding the triggering of system swapping and minimizing the impact of paging
on systems and applications.

In this paper, the size of both disk-based and compressed memory-based partitions is
configured as 8 GB. To test the impact of swap on the OS and applications, we need to trigger
system swapping during the running of applications. To this end, this paper creates some simple
applications that consume memory and adjusts the remaining available normal memory of the
system as follows in Table 6 (the ratio of the remaining normal memory resources to the actual
memory requirements of applications is controlled at about 1:4).

Table 6 Application memory consumption versus available memory (GB)

Application Memory consumed
by application

Remaining available
normal memory

Remaining available
secure memory

Redis 16.06 4 16
Darknet YOLO 6.67 2 16

5.4 Experimental results
The experimental results in this part answer the three specific questions posed at the

beginning of the section.
(1) Migration time: we use the lightweight code migration approach proposed in this paper

to migrate the code segments of normal applications when normal applications find that
normal memory is about to be fully consumed. The migration time is shown in Table 7.
Experimental results show that the migration time is positively correlated with the code
segment size. Since the code segment size (usually at MB level) of normal applications
is much smaller than their data segment size, the migration time does not exceed 10 ms,
which is acceptable.

(1) Memory resource utilization: as shown in Fig. 10, the experiment shows that the
lightweight code migration approach can well improve the utilization of physical memory
resources. For Redis, the memory resource utilization increases from 47.70% to 76.14%;
the memory utilization of Darknet YOLO increases from 47.27% to 62.95%. The increase
in memory utilization is because normal applications use secure memory, which avoids
the occurrence of system swaps.

(2) Performance impact on normal applications: we test the performance impact
of different approaches on applications, with specific performance values shown in
Fig. 11. The vertical axis is the unit time (in s), and “pure normal memory” means



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 303

Table 7 Code migration time of normal applications
Application Migration time (ms) Code segment size (MB) Data segment size (MB)

Redis 6.31 2.06 16,450.13
Darknet YOLO 4.93 1.36 6,926.90

U
til
iz
at
io
n 
(%
)

Redis Darknet YOLO
Swap based on Disk or Zram Lightweight code migration (this system)

80

60

40

20

0

Figure 10 Physical memory resource utilization

that the remaining normal memory can fully accommodate the working sets of the entire
application without triggering swapping. The calculation method of the optimization
ratio is

Delay optimized ÷ Delay overhead before optimization × 100%

= (Total delay of solution after optimization − Delay of pure normal memory)

÷ (Total delay of solution after optimization − Total delay of solution before optimization)

× 100%

For example, if the delay overhead of the disk-based swap approach is 56.13− 12.28 =

43.85 s, the overhead is reduced by 56.13−24.03×100% = 32.10 s after the lightweight
code migration approach is adopted, and the optimization ratio is 32.10 ÷ 43.85 =

73.20%.
• Regarding Redis, the proposed approach realizes the optimization of 73.20% compared

with the disk-based swap approach and the optimization of 14.98% compared with the
compressed memory-based one (Fig. 11).

• As for Darknet YOLO, the proposed approach realizes the optimization of 98.71%
compared with the disk-based swap approach and the optimization of 98.85% compared
with the compressed memory-based one (Fig. 11).

5.5 Result analysis
The experimental results in Parts (1) & (2) of Section 5.4 can fully demonstrate that the

proposed approach has little effect on the suspension time (i.e., migration time) of normal
applications and can improve the utilization of physical memory resources to avoid swapping
operations. This section will mainly analyze the experimental data of Part (3).

(1) For I/O-intensive + memory-intensive applications, such as memory KVS, we
find that both the compressed memory-based approach and our approach achieve outstanding
outcomes with performance optimization effects above 50%. This is because the CPU utilization
in I/O-intensive applications is usually not high, and the full utilization of CPU clock cycles
can well avoid the triggering of disk I/O events. We further observe that if Redis is migrated
to secure memory at the beginning, its overall performance delay would reach 35.78 s, much



304 International Journal of Software and Informatics, 2022, 12(3)

DRAM 
(baseline)

Disk swap Zram This system

60

50

40

30

20

10

00

12.28

56.13

26.10 24.03

(a) Performance impact of different approaches on Redis

25

20

15

10

5

0 DRAM 
(baseline)

Disk swap

13.61

19.04 19.72

13.68

Zram This system

(b) Performance impact of different approaches on Darknet YOLO

Figure 11 Performance impacts on normal applications (s)

longer than 24.03 s obtained by the proposed approach and 26.10 s by the compressed memory
approach. The reason is that the code of the SGX enclave cannot execute I/O operations and
must switch out from secure mode, so frequent I/O operations will lead to obvious performance
degradation of the application.

(2) For compute-intensive+memory-intensive applications, such as machine learning
applications, we find that the impact of disk I/O on compute-intensive applications is not as
significant as on I/O-intensive applications: 39.90% for Darknet YOLO and 357.08% for Redis,
with the overhead of the latter close to 4 times. The swap approach based on compressed
memory is even worse than that based on disk. This is because the application itself has already
consumed processor clock cycles, and compressing the memory also occupies the processor
considerably. These two compete for processor resources. Our approach only consumes a few
processor cycles (less than 10 ms) for the migration of code segments and causes almost no
performance impact.

(3) For different application types, our approach has different performance impacts relative
to the benchmark (running entirely on normal memory). Regarding I/O-intensive applications,
the overhead mainly comes from the necessary mode switch when I/O occurs. The overhead
of the proposed approach on Redis is close to 100% (the actual value is 95.68%). In regard to
compute-intensive applications, our approach has almost zero overhead (0.5%), which is mainly
the memory access overhead of secure memory.

6 Related Work
In addition to the related work mentioned above, the main related work of this study also

includes the migration of SGX applications and the improvement of overall system memory



Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 305

utilization.

6.1 Migration of SGX applications
Gu et al.[22] found that EPC secure memory belonging to the virtual machines cannot be

seen by the hypervisor, and the traditional virtual machine migration approach based on the
hypervisor was no longer applicable to EPC. To tackle this problem, they embedded a specific
migration worker thread inside the enclave, which was responsible for encrypting and copying
the EPC data and then sending it to the target enclave to resume execution. The main contribution
of Ref. [22] is about how to ensure that the migration of enclaves cannot be attacked by fork,
namely that there can only be one legal target enclave.

Alder et al.[23] further found that Gu’s work only solved the migration problem of the enclave
only in secure memory. For persistent data states, such as encrypted data in unidirectional
counters and disks, direct migration would make encrypted data unusable because such
information is bound to the CPU where the enclave is located. To address this problem,
Alder et al. also included persistent data in the migration object and proposed a pure software
solution to achieve a more complete migration.

By contrast, the problem solved in this paper is how to migrate a normal application into
secure memory. By migrating the code only, we ensure the minimum migration time overhead,
improve the utilization of physical memory, and avoid the disk swapping overhead of normal
applications.

6.2 Optimization of system memory utilization
This paper mainly addresses the low utilization of physical memory of SGXv2 machines

due to the configuration of large secure memory. This problem is very similar to the imbalanced
memory utilization of clustered machines in a data center. The related work takes into account
the different distributions of memory utilization of different machines in the cluster and make
machines with high utilization able to “borrow” from those with low utilization, thus avoiding
the swap costs caused by insufficient physical memory resources.

InfiniSwap[24] pooled the physical memories of different machines through the Remote
Direct Memory Access (RDMA) technology, allowing memory-intensive applications to directly
access the free physical memory resources of remote machines.

Leap[25] analyzed the memory access pattern of large-memory applications and then added
various prefetch algorithms to the swap system of the RDMA network to avoid long-tail latency
caused by the use of remote memory.

Compared with the above work, this paper solves the low utilization problem caused by the
physical memory resource partitioning of a single machine: the utilization of secure memory
is relatively low, so normal applications are allowed to utilize secure memory. The migration
approach in this paper requires the participation of the CPU, while RDMA can directly transmit
data by the network card to save the CPU clock cycles greatly. However, the code migration
approach proposed in this paper only needs to migrate very small code segments, with the
migration time not exceeding 10 ms, as a result of which it consumes very few CPU clock
cycles.

6.3 Optimization of system swap
For the optimization of the swap, Linux provides the Zswap[21] mechanism, in which data

is not directly written to the disk, and some inactive memory is compressed to reduce the I/O
overhead caused by the disk swap. Both Zswap and the approach presented in this paper can be
used to alleviate the OOM problem of normal memory.



306 International Journal of Software and Informatics, 2022, 12(3)

7 Conclusion and Outlook
TEEs play an important role in privacy computing scenarios. This paper analyzes in detail

the performance bottleneck of Intel SGXv2 servers, a new generation of TEE, and points out
that the main obstacle at the performance level has changed with the advent of new hardware
features: to avoid secure applications suffering serious performance overhead due to out of
secure memory, server maintainers tend to adjust the secure memory to a large value, which
seriously narrows down the usable range of normal memory. This practice leads to low memory
utilization by secure applications and high memory pressure by normal applications, which
become the new main problems. This paper uses big-data applications to conduct detailed
evaluation and proves the severity of the problems.

To cope with the new performance challenges encountered by SGXv2 servers, this paper
proposes a lightweight code migration approach. For an application requiring large memory, our
system can quickly migrate its code into secure memory when OS swap is about to occur. The
migrated normal applications can use secure memory as a new memory resource and can still
access the original data in normal memory. This paper conducts experimental evaluations on real
memory-intensive applications. The experiments show that the migration time of the proposed
approach does not exceed 10 ms, and it can reduce the application performance overhead by
73.2%–98.7% and even achieve almost zero overhead (0.5%) in compute-intensive applications.

The approach proposed in this paper is generally enough to support other TEEs, such
as TrustZone on ARM processors and PMP on RISC-V, both of which use static isolation
approaches to partition normal memory and secure memory and are faced with low utilization
of secure memory and normal memory jitter. In future work, we plan to port our approach
to different platforms to provide a platform-independent memory optimization system across
various TEEs.

Acknowledgments
We express our sincere gratitude to Alibaba Cloud for the SGXv2 server supports and the

technical support from the Java team of basic software of Alibaba Cloud.

References
[1] China Information Communications Institute. China Privacy Computing Industry Development

Report, 2021 (in Chinese). http://www.caict.ac.cn/kxyj/qwfb/ztbg/202011/t20201110_361696.htm

[2] Hoekstra M, Lal R, Pappachan P, et al. Using innovative instructions to create trustworthy software
solutions. HASP ISCA, 2013, 11(10.1145): 2487726–2488370.

[3] McKeen F, Alexandrovich I, Anati I, et al. Intel® software guard extensions (Intel®sgx) support for
dynamic memory management inside an enclave. Proc. of the Hardware and Architectural Support for
Security and Privacy 2016. 2016. 1–9.

[4] Kaplan D, Powell J, Woller T. AMD Memory Encryption. White Paper, 2021.

[5] https://www.intel.cn/content/www/cn/zh/developer/articles/technical/intel-trust-domain-extensions.
html

[6] https://developer.arm.com/architectures/architecture-security-features/confidential-computing

[7] Feng E, Lu X, Du D, et al. Scalable memory protection in the PENGLAI enclave. Proc. of the 15th
USENIX Symp. on Operating Systems Design and Implementation (OSDI 2021). 2021. 275–294.

[8] https://github.com/ayeks/SGX-hardware

[9] Taassori M, Shafiee A, Balasubramonian R. VAULT: Reducing paging overheads in SGX with efficient
integrity verification structures. Proc. of the 23rd Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems. 2018. 665–678.

http://www.caict.ac.cn/kxyj/qwfb/ztbg/202011/t20201110_361696.htm
https://www.intel.cn/content/www/cn/zh/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.cn/content/www/cn/zh/developer/articles/technical/intel-trust-domain-extensions.html
https://developer.arm.com/architectures/architecture-security-features/confidential-computing
https://github.com/ayeks/SGX-hardware


Li MY, et al. Memory optimization system for SGXv2 trusted execution environment 307

[10] Orenbach M, Lifshits P, Minkin M, et al. Eleos: ExitLess OS services for SGX enclaves Proc. of the
12th European Conf. on Computer Systems. 2017. 238–253.

[11] Durumeric Z, Li F, Kasten J, et al. The matter of heartbleed. Proc. of the 2014 Conf. on Internet
Measurement Conf. 2014. 475–488.

[12] Baumann A, Peinado M, Hunt G. Shielding applications from an untrusted cloud with haven. ACM
Trans. on Computer Systems (TOCS), 2015, 33(3): 1–26.

[13] Hunt T, Zhu Z, Xu Y, et al. Ryoan: A distributed sandbox for untrusted computation on secret data.
ACM Trans. on Computer Systems (TOCS), 2018, 35(4): 1–32.

[14] Arnautov S, Trach B, Gregor F, et al. SCONE: Secure Linux containers with Intel SGX. Proc. of the
12th USENIX Symp. on Operating Systems Design and Implementation (OSDI 2016). 2016. 689–703.

[15] Weisse O, Bertacco V, Austin T. Regaining lost cycles with HotCalls: A fast interface for SGX secure
enclaves. ACM SIGARCH Computer Architecture News, 2017, 45(2): 81–93.

[16] Orenbach M, Michalevsky Y, Fetzer C, et al. CoSMIX: A compiler-based system for secure memory
instrumentation and execution in enclaves. Proc. of the 2019 USENIX Annual Technical Conf.
(USENIX ATC 2019). 2019. 555–570.

[17] Dong CT, Shen QN, Luo W, Wu PF, Wu ZH. Research progress of SGX application supporting
techniques. Ruan Jian Xue Bao/Journal of Software, 2021, 32(1): 137–166 (in Chinese with English
abstract). http://www.jos.org.cn/1000-9825/6095.htm [doi:10.13328/j.cnki.jos.006095]

[18] https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting- intel-
sgx-on-mulit-socket-platforms.pdf

[19] https://www.alibabacloud.com/help/zh/doc-detail/25378.htm

[20] Barbalace A, Sadini M, Ansary S, et al. Popcorn: Bridging the programmability gap in heterogeneous-
ISA platforms. Proc. of the 10th European Conf. on Computer Systems. 2015. 1–16.

[21] Jennings S. Transparent memory compression in Linux. 2013. https://events.static.linuxfound.org/
sites/events/files/slides/tmc_sjennings_linuxcon2013.pdf

[22] Gu J, Hua Z, Xia Y, et al. Secure live migration of SGX enclaves on untrusted cloud. Proc. of the 47th
Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks (DSN). IEEE, 2017. 225–236.

[23] Alder F, Kurnikov A, Paverd A, et al. Migrating SGX enclaves with persistent state. Proc. of the 48th
Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks (DSN). IEEE, 2018. 195–206.

[24] Gu J, Lee Y, Zhang Y, et al. Efficient memory disaggregation with infiniswap. Proc. of the 14th
USENIX Symp. on Networked Systems Design and Implementation (NSDI 2017). 2017. 649–667.

[25] Al Maruf H, Chowdhury M. Effectively prefetching remote memory with leap. Proc. of the 2020
USENIX Annual Technical Conf. (USENIX ATC 2020). 2020. 843–857.

Mingyu Li, doctoral candidate.
His research interests include
system security and privacy
computing.

Haibo Chen, Ph.D., associate
professor, doctoral supervisor,
senior member of CCF. His
research interests include oper-
ating systems, system virtualiza-
tion, and system architecture.

Yubin Xia, Ph.D., profes-
sor, doctoral supervisor, distin-
guished member of CCF. His
research interests include operat-
ing systems, system security, and
system architecture.

http://www.jos.org.cn/1000-9825/6095.htm
doi: 10. 13328/j.cnki.jos.006095
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.alibabacloud.com/help/zh/doc-detail/25378.htm
https://events.static.linuxfound.org/sites/events/files/slides/tmc_ sjennings_linuxcon2013.pdf
https://events.static.linuxfound.org/sites/events/files/slides/tmc_ sjennings_linuxcon2013.pdf

	1 Introduction
	2 Background Knowledge
	2.1 Security features of Intel SGX
	2.2 Performance bottleneck of SGXv1 servers
	2.3 New features of SGXv2 servers

	3 Performance Analysis of SGXv2 Servers
	3.1 Environment configuration
	3.2 Instruction evaluation
	3.3 Mode switch evaluation
	3.4 Memory access overhead evaluation
	3.5 Evaluation of run-time dynamic memory extension time
	3.6 Evaluation of large-memory applications
	3.7 Evaluation summary
	3.8 Problem description

	4 System Design—Lightweight Code Migration Approach
	4.1 Observations
	4.2 Architecture description
	4.3 Workflow
	4.4 Design discussion
	4.5 Allocation strategy

	5 Experimental Evaluation
	5.1 Environment configuration
	5.2 Test load
	5.3 Test method
	5.4 Experimental results
	5.5 Result analysis

	6 Related Work
	6.1 Migration of SGX applications
	6.2 Optimization of system memory utilization
	6.3 Optimization of system swap

	7 Conclusion and Outlook
	Mingyu Li
	Haibo Chen
	Yubin Xia


