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Abstract. We prove that the two-variable fragment of first-order intuitionistic
logic is undecidable, even without constants and equality. We also show that the two-
variable fragment of a quantified modal logic L with expanding first-order domains
is undecidable whenever there is a Kripke frame for L with a point having infinitely
many successors (such are, in particular, the first-order extensions of practically all
standard modal logics like K, K4, GL, S4, S5, K4.1, S4.2, GL.3, etc.). For many
quantified modal logics, including those in the standard nomenclature above, even
the monadic two-variable fragments turn out to be undecidable.

81. Introduction. Ever since the undecidability of first-order classical
logic became known [5], there has been a continuing interest in estab-
lishing the ‘borderline’ between its decidable and undecidable fragments;
see [2] for a detailed exposition. One approach to this classification prob-
lem is to consider fragments with finitely many individual variables. The
borderline here goes between two and three: the two-variable fragment
of classical first-order logic is decidable [23], while with three variables it
becomes undecidable [26], even without constants and equality. (Decid-
able and undecidable extensions of the two-variable fragment with some
natural ‘built-in’ predicates were considered in [10].)

As classical first-order logic can be reduced to intuitionistic first-order
logic by Godel’s double negation translation (see, e.g., [27]), the three-
variable fragment of the latter is also undecidable. On the other hand,
according to results of Bull [3], Mints [22] and Ono [24], the one-variable
fragment (which is equivalent to propositional intuitionistic modal logic
MIPC in the same way as the one-variable fragment of classical logic
is equivalent to propositional modal logic S5) is decidable. Gabbay and
Shehtman [9] proved undecidability of the two-variable fragment of first-
order intuitionistic logic extended with the axiom

Va (P(z)V q) — Yz P(z) Vq,

known as the constant domain principle. However, the question whether
the two-variable fragment of first-order intuitionistic logic itself is decid-
able has remained open.
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Here we show that the two-variable fragment of first-order intuitionistic
logic is undecidable, even without constants and equality.

Our proof uses a simple reduction of an infinite tiling problem. As
is well-known, such a tiling problem can be easily encoded in the three-
variable fragment of classical first-order logic (see, e.g., [8]). Our reduction
is based on the observation that the third variable can be used in a very
restricted way, only as a kind of ‘stack’ for substitutions. This view on
substitutions originates in the algebraic approach to first-order logics [12].

Intuitionistic first-order logic can be embedded into quantified modal
logic S4 with expanding first-order domains using the Gddel translation
which prefixes the necessity operator to every subformula of a first-order
intuitionistic formula. This shows that the two-variable fragment of quan-
tified S4 with expanding domains is undecidable as well. We generalise
this result and prove the undecidability of the two-variable fragment of
any quantified modal logic L with expanding domains whenever there is
a Kripke frame for L with a point having infinitely many successors. This
answers an open question from [9], where the same result for first-order
modal logics with constant domains was obtained. We then show how
Kripke’s idea from [18] can be used to prove that actually the monadic
two-variable fragments of many quantified modal logics with expanding
domains are undecidable.

§2. Two-variable first-order intuitionistic logic. The alphabet of
first-order intuitionistic logic QInt (without function symbols, constants
and equality) consists of predicate symbols P, @, ... of arbitrary finite
arity, countably many individual variables z,y,..., propositional con-
nectives A, V, — and L (‘falsehood’), and quantifiers V and 3. Formulas
are defined in the usual way.

First-order intuitionistic logic QInt can be given syntactically by re-
moving the double negation principle (or other equivalent principles) from
a (suitable) axiomatic system for classical logic; see, e.g., [27]. Here we
only need the definition of QInt via its Kripke semantics. A first-order
intuitionistic Kripke model® is a tuple

M= (&,A,(S,I),

where
e § = (W,<) is an intuitionistic Kripke frame—i.e., < is a partial
order on W # (),
e ¢ is a function associating with every w € W a set 6(w) C A, called
the domain of w, in such a way that d(u) C §(v) whenever u < v,
for u,v € W,

'For other equivalent definitions see, e.g., [19, 6, 28].
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e [ is a function associating with every w € W a classical first-order
structure

I(w) = (A, PY,QY,...),

e the truth of predicates is preserved along the accessibility relation
<, that is, for every predicate symbol P and all u,v € W, if u < v
then P“ C Pv.

An assignment in A is a function a from the set of individual variables
to A. The truth-relation (9, w) =* ¢ (or simply w =* ¢, if understood)
is defined as follows:

w = P2y, ..., 2y) iff PY(a(z1),...,0a(z,)),

wE*Y Ay iff w E* Y and w E* x,

wEYVx it w Y orw =T X,

w =Y — x iff v E* 9 implies v E* x for all v > w,

wES L,

w = Vo iff v =P ¢ for every v > w and every assignment b in A
such that b(z) € §(v) and a(y) = b(y) for all variables y # =,

w = Jx1p iff w [=° 9 for an assignment b in A such that b(x) € 6(w)
and a(y) = b(y) for all variables y # x.

We say that a formula ¢ is true in 0 if (9, w) =* ¢ holds for every
world w € W and every assignment a in A such that a(z) € d(w) for all
individual variables x.

First-order intuitionistic logic QInt is the set of all formulas that are
true in all first-order intuitionistic Kripke models. We denote by QInt(2)
the two-variable fragment of QInt, that is, the collection of those formulas
from QInt that contain only two (bound or free) individual variables.

Our main result is the following:

THEOREM 1. QInt(2) is undecidable.

ProOOF. The following N x N tiling problem is known to be undecid-
able [1]: given a finite set T of tile types that are four-tuples of colours

t = (left(t), right(t), up(t), down(t)),

decide whether T tiles the grid N x N in the sense that there exists a
function (called a tiling) T from N x N to 7" such that, for all 7,j € N,

up(7(i, 7)) = down((i,j + 1)) and right(7(i,7)) = left(r(i + 1, 7)).

We reduce this tiling problem to the complement of QInt(2), that is,
to the set of two-variable formulas that are refutable in some first-order
intuitionistic Kripke models.
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To this end, given a finite set T" of tile types, define a formula 17 to be
the conjunction the following sentences (1)—(6):

va \/ (P(@) & N\ (Pulz) = 1)), (1)
teT £t

/\ VaVy (succr(z,y) A Pi(z) A Py(y) — L), (2)
right(t)#left(t')

N\ Vavy (sucey (x,y) A P(x) A Pu(y) — L), (3)
up(t)#down(t’)
Vady succy(x,y) A VaIy sucey (z,y), (4)
VaVy (succv(x, y) V (sucey (z,y) — J_)), (5)

VaVy [sucey (z,y) Az (D(x) A suceg (y, x)) —
Vy (sucen (z,y) — Va (D(z) — sucey (y,2)))].  (6)
Now, let
or =tr — Jz(D(x) — L).
We claim that
or ¢ QInt(2) iff T tiles N x N.

Suppose first that o ¢ QInt(2), that is, there exist a first-order intu-
itionistic Kripke model M = ((W, <), A, §,I) and some w € W such that
(M, w) = r and

(O, w) |~ Jx (D(z) — L). (7)
We prove that I(w) satisfies the following property:
Va,b,c € 6(w)

(succlr(a, b) A succiy(a, ¢) — 3d € §(w) (succ(c,d) A succi (b, d)). (8)
Indeed, let a,b, c € §(w) be such that succy;(a,b) and succys(a,c). By (4),
there is d € §(w) such that succy(c, d). We show that succj} (b, d) holds as
well. To this end, observe that, by (7), there is u > w with D"(d). As the
truth of predicates is preserved along the accessibility relation, we have
succyy(a,b), succ; (a,c) and succy;(c,d). So, by (6), we obtain succi, (b, d).
Finally, succy;(b,d) follows by (5).

Now, by (4) and (8), there exist a;; € d(w) (i,j € N) such that
succyy(a; j, ait1,j) and succy(aij,aij+1) hold for all i,j € N. So, by
(1)—(3), the function 7 defined by taking

T(Z,j) =1 iff th(aivj)
is a tiling of N x N.
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Conversely, suppose that there is a tiling 7 : N x N — 7. We define a
first-order intuitionistic Kripke model 9 = (W, <), A, 4, I) refuting o7
as follows:

o W = {wy}U(NxN) and < is the reflexive closure of {wp} x (NxN),

e A=NxN,

o for every w € W, §(w) = A, I(w) = (A, succly, sucey, DY, P )ier,

where
- Succqﬁ = { (<Z7])7 (Z + 1).7)) ‘ (%]) € A}:
= suecy = {((i,7), (5,5 +1)) | (5,5) € A},
— D" = () and D" = {w} whenever w # wy and
— PP ={(i,j) e A|7(i,j) =t} for every t € T
It is straightforward to check that (90, wo) & 7. =

It may be worth noting that in fact we have proved a statement some-
what more general than Theorem 1. Call a first-order intuitionistic Kripke
model ((VV, <), A0, I) an infinite fan if

o W = {wp} UV is countably infinite and < is the reflexive closure of

{’wo} X V,

e A is countably infinite and §(w) = A, for all w € W.

Now let ¥ be a set of two-variable formulas such that QInt(2) C ¥ and
all formulas in ¥ are true in all infinite fans. Then ¥ is undecidable.

83. Two-variable first-order modal logics with expanding do-
mains. The alphabet of (constant and equality free) first-order modal lo-
gics consists of predicate symbols P, @, ... of arbitrary finite arity, count-
ably many individual variables x,y, ..., (classical) propositional connect-
ives A and -, quantifier V, and the necessity operator O (with VvV, —, 3
and the possibility operator & defined as standard abbreviations, e.g.,
<& := —0=). First-order modal formulas are defined in the usual way, in
particular, if ¢ is a formula then so is Oe.

A first-order Kripke model with expanding domains is a tuple

m = (SaAa(SaI)a
where
e §=(W,R) is a modal frame—i.e., R is a binary relation on W # (),
e §(u) C d(v) C A whenever uRwv, for u,v € W,

e [ is a function associating with every w € W a classical first-order
structure

I(w) = (A, PY,QY,...).
An assignment in A is a function a from the set of individual variables

to A. The truth-relation (M, w) =* ¢ (or simply w =% ¢) is defined as
follows:

o w }:a P(xl,...,xn) iff Pw(a(xl),.--,a(xn)),
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wE*Y Ay iff w E* Y and w E* x,

w =" iff w T o,

w =* 09 iff v =% 9 for every v € W with wRwv,

w =% Vi iff w =P 1 for all assignments b in A such that b(x) € 6(w)
and a(y) = b(y) for all variables y # x.

We say that a formula ¢ is true in 2 if (9, w) =* ¢ holds for every
world w € W and every assignment a in A such that a(z) € é(w) for all
individual variables z.

Given a propositional modal logic L, denote by Q€L the set of all for-
mulas that are true in every first-order Kripke model MM = (§, A, 4, 1)
with expanding domains such that § is a frame for L (i.e., validates all
formulas in L). Standard examples are Q°K with arbitrary frames, Q°K4
with transitive frames, Q¢S4 with quasi-ordered frames, and Q¢GL with
quasi-ordered Noetherian frames.

We say that a formula ¢ is Q€ L-satisfiable if —p ¢ Q°L.

As is well-known (see, e.g., [25]), intuitionistic first-order logic can be
embedded into Q®S4 by using the Gddel translation T which prefixes
O to every subformula of an intuitionistic formula. Namely, for every
intuitionistic formula ¢,

peQInt iff T(p) € Q°S4.

So, by Theorem 1, the two-variable fragment of Q®S4 is undecidable as
well.

Our next result is a generalisation of both this statement and the results
from [9] on first-order modal logics with constant domains.

Say that a Kripke frame (W, R) contains a point with infinitely many
successors if there exist a point w € W and an infinite subset V. C W
such that wRwv holds for every v € V.

THEOREM 2. Let L be any propositional modal logic having a Kripke
frame that contains a point with infinitely many successors. Then the
two-variable fragment of Q€L is undecidable.

PrOOF. We reduce the NxN tiling problem to the satisfiability problem
for the two-variable fragment of QL. Given a finite set T of tile types,
define x7 to be the conjunction of the following sentences:

v \/ (Pt(x) AN ~Py (x)),

teT /£t

vavy (sucen(z,y) =\ =(P@) A Pow) ),
right(t)#left(t")

vavy (sucev(w,y) = N\ ~(Pd2) A Po(y)),
up(t)F#down(t’)
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Va3y sucer (x,y) A Vedy sucey (z,y),
VaVy (sucer (x,y) — Osuccy(,y)),
VaVy (succv(az,y) — Dsuccv(:c,y)),
Vavy (Csucey (z,y) — sucey (z,y)),

Vo & D(z),

OVaVy [sucey (z,y) A 3z (D(x) A sucey (y, x)) —

Yy (succr (z,y) — Va (D(z) — sucey (y, x)))].
An argument analogous to the one proving Theorem 1 shows that
x1 is Q€ L-satisfiable iff T tiles N x N.

Here we only show that xr is Q¢ L-satisfiable whenever T tiles N x N, and
leave the other direction to the reader.

Suppose 7 : N x N — T is a tiling. Take any frame § = (W, R) for L
that contains a point wy € W such that the set V = {w € W | woRw}
is infinite. Let f be a surjection from V onto N x N. Define a first-order
Kripke model M = (F, A, d, I) by taking

e A=NxN|

o for every w € W, 6(w) = A, I(w) = (A, succly, suceyy, D, P )er,

where
((.9), (E+1,5)) | (i) € A},
((i,4), (i § +1)) | (3,4) € A},
— if w € V then D" = {f(w)}, otherwise D* = (), and
— PY={(i,j) € A|7(i,j) = t}, for every t € T.
It is straightforward to check that (90, wo) = x7. -

|
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It follows that almost all standard first-order modal logics (such as,
e.g., K, K4, GL, S4, S5, K4.1, S4.2, GL.3, Grz) with two variables
and expanding domains are undecidable. Note that the proof above also
goes through for modal logics with constant domains which were shown
to be undecidable in [9] with the help of a more involved reduction. (In
fact, satisfiability in models with expanding domains is always reducible
to satisfiability in models with constant domains; see, e.g., [8].)

For many modal logics we can draw an even finer borderline between
decidable and undecidable. Recall that Kripke [18] showed in fact that
the monadic fragment of a first-order modal logic Q°¢L is undecidable
whenever L C S5. He used a reduction of the undecidable first-order
classical theory of one dyadic predicate R by replacing every atom R(x,y)
with the modal monadic formula O(P(z) A Q(y)). As was pointed out in
[17, pp. 271-272], the same proof actually works for the monadic fragment
of any first-order modal logic Q¢L whenever L has a frame containing a
point with infinitely many successors. In [15] Kripke’s idea was used to
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prove that certain monadic two-variable temporal logics with constant
domains are not recursively enumerable.

Here we show that a similar trick can be used to prove undecidability
of the monadic two-variable fragments of many modal logics, both with
expanding and constant domains.

THEOREM 3. Let L be any propositional modal logic with a Kripke
frame (W, R) satisfying the following condition:
(x) there are wg € W and two disjoint infinite subsets Vi,Vo C W such
that woRv for allv € Vi, and viRvy for all vi € V1, vy € V3.

Then the monadic two-variable fragment of Q°L is undecidable.

PRrROOF. First, take a fresh monadic predicate symbol ) and replace
each subformula O of ypr above with O(VxQ(x) — ), and each sub-
formula & of 7 with O(VzQ(z) A v). Denote the resulting formula by
X?- Next, take two fresh monadic predicate symbols Q g, Qv and replace
each occurrence of succy(z',y’) and sucey (¢',y') (for 2',y" € {x,y}) in
XCT? with O(D(2") AQp(y')) and O(D(2') AQy (y')), respectively. Denote
the resulting formula by &7. We claim that

&r is Q° L-satisfiable iff T tiles N x N.

The argument proving the implication (=) is again similar to the one used
in Theorem 1 (we simply regard O(D(x) A Qp(y)) and S(D(x) A Qv (y))
as binary predicates defining the N x N grid).

Now suppose that 7 : Nx N — T'is a tiling. Take any frame § = (W, R)
for L satisfying (*), and let fi and fy be surjections from Vj and V5 onto
N x N, respectively. Define a first-order Kripke model 9t = (§, A, d,I) by
taking

e A=NxN;|
o foreachw € W, 6(w) = A and I(w) = (A, D", QY, QY. QY, P )er,
where
— if w € V] then Q% = A, otherwise Q% = 0,
—ifw e Vg, for k = 1,2, and fr(w) = (i,7), then DY = {(4,7)},
W= {(+ L)} QY = {6, + )},
— if w ¢ V1 UV, then DV = Q% = QY =0,
— PP ={(i,j) €e A|7(3,j) =t} for every t € T.
It is not hard to see that for all w € {wo} UV, all (i,7), (i, j') € A, and
all assignments a with a(x) = (4, ), a(y) = (¢, 5'),

(M, w) E* O(D(x) A Qu(y)) iff i'=i4+1and j' = j,
(M, w) = O (D(x) AQv(y)) iff i'=iand j =j+ 1.

It follows that (9, wp) = &7, as required. o
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Standard propositional modal logics such as K, K4, GL, S4, S5, K4.1,
S4.2, GL.3, Grz all have frames satisfying condition (%) of Theorem 3.
It follows that the monadic two-variable fragments of these logics with
expanding (and so with constant) domains are undecidable.

84. Discussion. The results obtained above can possibly be general-
ised in different ways.

It was shown in [21, 20] that the monadic fragment of first-order intu-
itionistic logic is undecidable, even with a single monadic predicate sym-
bol [7]. One might conjecture that, similarly to the modal case above,
the monadic fragment of QInt(2) is undecidable. However, it seems
that neither the intuitionistic analogue of Kripke’s trick (i.e., substituting
—=(P(x) A Q(x)) for R(z,y)) nor the more refined technique of [7] are
applicable to our proof in a straightforward manner. To define the min-
imal number of individual variables which makes the monadic fragment
of QInt undecidable still remains an open problem.

Those who are interested in ‘abstract’ first-order superintuitionistic and
modal logics may find it interesting to consider quantified extensions of
tabular and pretabular logics: each of the former is characterised by a
single finite frame, while the latter are not tabular themselves, but all
their proper extensions are (for details see, e.g., [4]). We conjecture that
the two-variable fragment of the quantified extension of a propositional
superintuitionistic or modal logic L is decidable iff L is tabular. For some
more details and discussion see [9].

It could also be of interest to generalise the ideas above in order to prove
undecidability of the so-called ‘restricted’ fragment of two-variable Q¢L.
This fragment is equality- and (first-order) substitution-free, that is, all
atomic formulas are of the form P(z,y) (so that formulas with atoms
like succy(y,z) do not belong to this fragment); see [12, 8]. To obtain
such a generalisation, one may try to express substitutions with the help
of ‘abstract’ equality predicates, and then postulate some properties of
these predicates in the usual algebraic logic way; see [11, 12]. It is worth
noting that the restricted fragment of a two-variable first-order extension
of a propositional modal logic L with expanding domains is equivalent to
the modal product logic of the form (L x (S5 x S5))¢*; for definitions and
more details see [8, Section 9.1].

Products of propositional modal logics can possibly be used to draw
a finer borderline between decidable and undecidable fragments. With
the help of a very subtle reduction of the infinite tiling problem, Hirsch
and Hodkinson [13] proved that representability is not decidable for finite
relation algebras. This result is used in [14] to show that every modal
logic between K x K x K and S5 x S5 x S5 is undecidable. A simplified
version of the reduction from [13] is used in [16] to prove undecidability of



10 ROMAN KONTCHAKOV, AGI KURUCZ, AND MICHAEL ZAKHARYASCHEV

the one-variable fragment of first-order computational tree logic CTL*.
We conjecture that a similar reduction can prove the undecidability of
all logics of the form (L; x (Lo x L3))®, where Ly, Ly and L3 are any
Kripke complete propositional modal logics between K and S5. (On
the other hand, the strongest decidable fragments of standard first-order
modal logics known so far are the monodic fragments from [29] which
allow applications of modal operators to formulas with at most one free
variable only.)
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