CATEGORICITY AND U-RANK IN EXCELLENT CLASSES

OLIVIER LESSMANN

ABSTRACT. Let K be the class of atomic models of a countable first order the-
ory. We prove that ifC is excellent and categorical in some uncountable cardinal,
then each model is prime and minimal over the basis of a definable pregeometry
given by a quasiminimal set. This implies ttais categorical in all uncountable
cardinals. We also introduce a U-rank to measure the complexity of complete
types over models. We prove that the U-rank has the usual additivity proper-
ties, that quasiminimal types have U-rank 1, and that the U-rank of any type is
finite in the uncountably categorical, excellent case. However, in contrast to the
first order case, the supremum of the U-rank over all types may (a&d is not
achieved). We illustrate the theory with the example of free groups, and Zilber’s
pseudo analytic structures.

0. INTRODUCTION

A class of mathematical structur&sis categoricalin some cardinal if
all the structures iriC of size A are isomorphic. The problem of categoricity can
be roughly phrased as follows: SuppdS§es categorical in some cardinal(s), is
K also categorical in other (all) cardinals? The classical problem, vihenthe
class of models of a first order theory, has been a driving force in first order model
theory, and it is difficult to overestimate the impact of Morley’s theorem [Mo],
Baldwin-Lachlan’s Theorem [BaLa], and Shelah’s generalisation to uncountable
languages [Sh70] on its development.

The present paper is concerned with the categoricity of classes of models
which may not be axiomatisable in first order logic. There are several natural
extensions of first order logic, many of which are equivalent for this problem. We
will focus on classes of models of a first order the®rgmitting a prescribed set of
typesl'. There are two extreme cases: Wheis empty; this is the first order case.
WhenT' is the set of nonisolated types; this is #itemic casethe class of models
omitting all nonisolated types is the class of atomic model$ .ofor simplicity,
and without real loss of generality, we consider the atomic case; in Remark 1.4 we
explain how to develop excellence for some more geriéral

In the early 1970s, Keisler [Ke] and Shelah [Sh3] independently proved
that if a classC of atomic models is categorical in some uncountable cardinal,
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then it is categorical in all uncountable cardingispvidedthere are arbitrarily
large homogeneous models i Keisler asked at that time [Ke] whether cate-
goricity (say in all uncountable cardinals) implies the proviso. Shelah answered
negatively [Sh48] using an example of Marcus [Ma], and developed the theory of
excellencgSh48], [Sh87a], and [Sh87b]. He showed:

Theorem 0.1(Shelah) Let K be the class of atomic models of a first order count-
able theory.

(1) Assume GCH. IK is categorical in all uncountable cardinals, thénis
excellent.

(2) If K is excellent and categorical in some uncountable cardinal, fhigs
categorical in all uncountable cardinals.

It follows from the work of Shelah [Sh3], that, in this case, the presence of
uncountable homogeneous models implies that of arbitrarily large homogeneous
models and that both imply excellence. Excellence is a form of strong amalgama-
tion property (see Remark 2.23 for the precise definition). In this paper, we extract
two main consequences of excellence and work only with these consequences (we
also present an alternative proof directly from Shelah’s definition of excellence for
illustrative purposes in Remark 2.23). These consequences are:

(1) The amalgamation property over models.

(2) If pis a complete type over a modkl € K with the property thap | C
is realised in an extension @ff for any finite subseC' C M, thenp is
realised in an extensioN € K of M. Moreover,N can be chosen prime
over M and a realisation gj.

Grossberg and Hart continued the classification for excellent classes in [GrHa].
They develop orthogonality calculus and prove the Main Gap, showing that DOP
is a dividing line. All the results attributed to Grossberg-Hart in this paper are from

[GrHa].

Section 1 of the paper is devoted to the basics of excellence. We present
a very accessible description of those properties of excellence that are needed for
our theorems. We also compare excellence with homogeneous model theory and
Shelah’s abstract elementary classes. The results on excellence in this section can
be found in [Sh87a] and [Sh87b].

In Section 2 of the paper, we give a Baldwin-Lachlan proof of the cate-
goricity theorem in the excellent case. We also remind the reader of some basic
facts that can be found in [Sh87a], [Sh87b], and [GrHa]. We show:

Theorem 0.2. Let K be excellent and categorical in some uncountable cardinal.
Then each model is prime and minimal over the basis of a type-definable pregeom-
etry given by a quasiminimal set. Moreover, the size of the basis determines the
isomorphism-type of the model, Kads categorical in all uncountable cardinals.
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Quasiminimal sets are the natural extension of strongly minimal sets. They
were first introduced by Shelah in a different context in [Sh48]. The name was
coined by Zilber in the mid-1990s, where he used an equivalent notion in his
work around the model theory of the field of complex numbers with exponenti-
ation [Zi2].

In Section 3 of the paper, we introduce a natural U-rank to measure the
complexity of complete types over models — excellence provides a good under-
standing of those types. The U-rank does not agree with Shelah’s rank [Sh48]
(Remark 3.7). Quasiminimal types over models are exactly those of U-rank 1

The main result of Section 3 is:
Theorem 0.3. Let K be excellent and uncountably categorical. Then
U(tp(a/M)) < w,
foreachM < N anda € N € K.

We also show that the U-rank has good additivity properties in the un-
countably categorical, excellent case:

Ul(tp(ab/M)) = U(tp(a/M(b))) + U(tp(b/M)),
whereM (b) is the primary model oveb! U b.

Finally, we examine the examples of free groups and one of Zilber’s pseudo-
analytic structures to illustrate the theory. Neither example is first order axiomatis-
able. The example of free groups shows that the supremum of the U-rank of types
of elements may be, in contrast to the first order uncountably categorical case,
where the supremum is always finite. This example also shows various limitations
on possible generalisations of the theory of stable groups to nonelementary classes
(free groups have no generics, and all their abelian subgroups are countable).

The author would like to thank Boris Zilber and Misha Gavrilovich for
many helpful conversations.

1. EXCELLENCE

We consider the clags of atomic models of a complete first order theory
T in a countable languagg, i.e. K is the class of models ¢f which omit all
the nonisolated types &f over the empty set. The atomicity implies that each
type over finitely many parameters realised in a modeKof equivalent to a
formula over the same parameters. It follows that eack K is Xg-homogeneous
and that/C is Ny-categorical. Recall that a mod&! is A-homogeneous for any
elementary mag : M — M with |f| < Aanda € M, there is an elementary map
g : M — M extendingf such that: € dom(g). Finally, notice that the downward
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Lowenheim Skolem theorem holds 6t i.e. if M € K andA C M, there exists
M’ < M (henceM’ € K) containingA such that|M'|| = | A| + Ro.

In general, there may not be uncountable atomic models — for example
the natural number® in the languagg+,0, 1} is the only atomic model of its
first order theory. Since we are interested in uncountable categoricity, we always
assume that there exists arbitrarily large models (this also follows from excellence).

We now turn toexcellence In fact, rather than defining excellence, we
isolate some basic consequences which are the only properties that we use in this
paper. The first is the amalgamation property over models (recall that homogeneity
is essentially the amalgamation property over sets).

(1) Amalgamation property: Let /C be excellent. Let\l, € K for £ =
0,1,2andf, : My — M, elementary maps faf = 1, 2. Then there exist a model
N € K and elementary magg : M, — N, suchthayso fo [ My = gi10f1 | Mp.

Since the countable model is unique, we can use amalgamation and the
fact that there are arbitrarily large models to show that each mbfdel K has
arbitrarily large elementary extensionskin

The next consequence has to do with our understanding of types. Given a
complete typg over a model\f € K, when do we know whetheris realised in an
elementary extensiolW € K of M? In the first order case, compactness provides
an easy answer. Here the situation is a bit more involved. We certainly have the
following necessargondition: Ifa € NV € K realisep, then, sinceMa C N, we
have thatp(a/C) is isolated by a formula oveT', for each finiteC' C M. Hence,

p | Cis realised inM for each finite subset’ C M. Excellence implies that this
is enough:

(2) Type realisability: Let K be excellent. Lep be a complete type over
a modelM € K such thaty | C is realised inM for each finiteC C M. Then
there existsV € K, with M < N, such thap is realised inV.

Notice that (2) is a form of weak compactness for complete types over
models; knowing whether a complete type over a model is realised is a property
which has finite character in the parameters. This criterion applies only to complete
types over models. It is convenient to use the following definition.

Definition 1.1. Let M € K. We letS,:(M) be the set of typeg € S(M) such
thatp | C is realised inM for each finiteC' C M.

A consequence of (1) and (2) is thaflif < N € K andp € S,;(M), then
there existg € S, (V) extending (this property fails for atomic, nonexcellefit
in general). We can now introduce the substitute@-aturated models.

Definition 1.2. A model N € K is A-full if NV realises each complete typec
Sat (M), whereM < N has size less thak
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This is not Shelah’s original definition, but it is equivalent for uncountable
A, which are the ones we care about.

Using (1) and (2), we can construgtfull models inC of size at leasi
for arbitrarily largeX: Construct(M; : i < A1) increasing and continuous such
that eachl/;  realises all types i, (M;). ThenlJ,_,+ M; is A-full sincet is
regular and complete types over models can be extended.

Any A-full model IV functions as ainiversal domairior the class of mod-
els of IC of size at mosh: Any such model model embeds elementarihinand,
by definition of A\-fullness, any typ@ € S, (M), whereM < N of size less than
Ais realised inV.

Remark 1.3. Letus compare this context with Shelah’s abstract elementary classes.
Let (K, <x) be an abstract elementary class with amalgamation over models. (The
class/C of atomic models of a first order theory is an example of abstract ele-
mentary class.) Shelah defines a natural semantic notion of complete types over
models, namealois typedy some: He considers triples of the fofm M, N),
wherea € N, M,N € K andM <y N and defines the relatiorn, where

(al, Ml,Nl) ~ (GQ,MQ,NQ) if M, = M, and there igV € K andfg : Ng — N

such thatf;(a1) = fa2(a2). The relations~ is easily seen to be an equivalence
relation using the amalgamation property. A typéa/M, N) is simply the equiv-
alence clasga, M, N)/ ~. If K is atomic and excellent, type realisability ensures
that the semantic notion of typé¢s, M, N)/ ~, for M < N € K, anda € N,
coincides with the syntactic notion of types3g. (M), for M € K. The notion of

A-full that we use is what Shelah callssaturation (for Galois types) in abstract
elementary classes, which he showed equivalent-toodel homogeneity. See
Shelah’s [Sh576] and [Sh600]. For an exposition of Abstract Elementary Classes,
see [Grl] or [Gr2], where a proof of the equivalence betwgesaturation and
A-model homogeneity is also presented.

The final consequence of excellence that we are going to use is an improve-
ment of (2), which deals with the existence of prime models. Recall that a model
M is primaryover asetd, if M = AU {a; : i < A} andtp(a;/AU {a; : j < i})
is isolated, for each < . If M € K is primary overA, then it isprimeover A in
the class(, i.e. each elementary map: A — N extends to an elementary map
from M into N. We can now state the improvement:

(3) Existence of primary models: Let K be excellent. Then the modal
in (2) can be chosen primary ovéfa, wherea is any realisation op.

Remark 1.4. Any uncountably categorical class of models, axiomatised by a com-
plete sentence id,,, ., can be axiomatised as the class of atomic models of a
countable first order theory by expanding the language if necessary (see [Sh48]).
However, in applications, we may not want to expand the language. Also, we may
have a direct axiomatisation in terms of classes of models omitting a prescribed set
of types, but realising some nonisolated types (Zilber's example of pseudo-analytic



6 OLIVIER LESSMANN

structure we present is initially of this nature). We describe here how to deal di-
rectly with this more general case. Lt be a model realising, over the empty set,
only types inside a prescribed sBt The key point is that whe® is the set of
isolated types, thef/ is Ryp-homogeneous and realises all types indidd-ollow-

ing Shelah, we say that a modeli®, Xy)-homogeneous, if it i8-homogeneous
and realises exactly the typesih We must replac&,. (M) by Sp(M), which

is the collection of complete types € S(M), such that for any: = p, the set

M U c realises only types i. We can definexcellencdor any class of mod-

els realising only types iD, whereD is countable and all uncountable models
are (D, Xp)-homogeneous (this holds in Zilber's example below). In this case,
there is also a countablé, Xy)-homogeneous model, and this model is unique
up to isomorphism. Simply change the assumptions (1) and (2) WithXy)-
homogeneous’ model, instead of ‘model’. For (3), we use the notidDoRy)-
primary model;M is (D, Xg)-primary overA if it is (D, ¥y)-homogeneous and

M = AU{a; : i < A}, andtp(a;/A U {a; : j < i}) is implied by its restriction

to finitely many parameters (so the notion of isolation is with respect to the num-
ber of parameters, rather than the number of formulag)DAR, )-primary model
over A is prime in the class dfD, Xy)-homogeneous models. We could, of course,
consider other variations of what can be understood as excellence; the advantage
of the one we just presented is that it follows from the existence of uncountably
homogeneous models (see subsection below).

The simplest example of excellent atomic class is the class of models of
anw-categoricalw-stable, countable, first order theory: All the models are atomic,
amalgamation over models and type realisability are obvious, and the existence
of primary models follows fromu-stability. We finish this section with another
example of excellent classes which is not necessarily first order.

1.1. Homogeneous model theoryA natural hypothesis to assume on the class

K is that it has arbitrarily large homogeneous models (obviously saturated models
will not be in the class in general). This was done independently by Keisler [Ke]
and Shelah [Sh3], and they both proved the categoricity theorem under this assump-
tion (in two different but equivalent contexts). A Baldwin-Lachlan style proof of
categoricity was given in [Lel]. (See also [Le2] for a simpler proof without us-
ing a rank.) A similar geometric proof (with a different statement) was also found
independently by Hyttinen in [Hy].

Studying classes of models omitting a prescribed set of types under the as-
sumption that there are large homogeneous models is now knomonmasgyeneous
model theoryin contrast to saturated€. first order) model theory.

If €is a(large) homogeneous modekinany atomic model, or indeed any
atomic set, embeds elementarilydnprovided it has size at mo§€||. Moreover,
any complete type over an atomic set (of size less {/#}) realised in a model
M € K isrealised in€. In fact, for a complete typg over an atomic sett C ¢
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with |A| < ||€]|, we have the followingveak compactneg®inciple: p is realised
in ¢ifand only ifp [ C is realised ing for each finiteC' C A.

Homogeneous model theory is very general; it includes the first order case,
Robinson theories, e.c. models, Banach space model theory, classes of models with
amalgamation over sets (infinitarf,*, etc.), many generic constructions, and of
course some concrete cases like Hilbert spaces, and free groups (see below). Ho-
mogeneous model theory is very well-behaved; weak compactness has a number of
nice consequences, for example infinite indiscernible sequences can be extended.

The existence of arbitrarily large homogeneous models implies that the
class is excellent: it is almost immediate for the amalgamation property and for
type realisability. The existence of prime models depends on a fownstdbility,
which follows from uncountable categoricity in this case (see [Ke] or [Sh3]).

Fact 1.5(Keisler, Shelah)If K has arbitrarily large homogeneous models and is
categorical in some uncountable cardinal, then over each countable atomit set
there are only countably many complete types realised by modkls of

Fact 1.6 (Shelah) If K satisfies the conclusion of the previous fact, then there
exists a prime (primary) model over each atomic et

Hence, existence of primary models holds and the class is excellent. Un-
countably categoricity for a homogeneous (not necessarily atomic) class implies
that all the uncountable models ar®, X,)-homogeneous, and the existence of
(D, Xg)-primary models over any set (realising only typedihfollows also (see
[Sh3] or[Lel]). Hence, the conditions we outlined in Remark 1.4 for the nonatomic
case hold.

At present, homogeneous model theory has developed beyond categoricity,
with good notions ofu-stability/total transcendence [Lel], superstability [HySh1],
[HySh2], [HyLe], stability [Sh3], [Sh54], [GrLe], and even simplicity [BuLe]. Ex-
cellence, so far, lives in the realm ofstability.

Notice that the conclusion of Fact 1.5 is stronger than the conclusion we
have in Proposition 2.1; both of which are natural notions,eftability. Keisler
had asked whether categoricity implies the existence of arbitrarily large homoge-
neous models; Shelah answered negatively by giving a counterexample and devel-
oped excellence. It turns out that the difference between excellence and homogene-
ity in this context lies entirely in the strength ofstability [Le2]:

Fact 1.7 (Lessmann) If K has an uncountable model and over each countable
atomic A there are only countably many complete types realised by modgls of
then/C has arbitrarily large homogeneous models.

Thus, in the excellent, nonhomogeneous, uncountably categorical case,
there may be countable atomic sets over which uncountably many types are re-
alised. It follows that there cannot be any prime model over such sets, since only
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countably many types are realised over countable atomic models. This is one of the
major difficulty of excellence, and one of the chief differences with the homoge-
neous case: there exists prime models only over certain sets. In this paper, we will
only use the existence of prime models over sets of the fdrtma, whereM € K

anda realises a typ@ € S,i(M). Another difference with homogeneous model
theory is that infinite indiscernible sequence cannot, in general, be extended.

Fact 1.7 implies also that if the class of atomic models of a first order
theory T is excellent but not homogeneous, tHErcannot bev-stable. Zilber's
example below has superstable first order theory.

2. CATEGORICITY

We start this section with a few consequences of uncountable categoricity,
which can be found in [Sh48], [Sh87a], and [Sh87b]. These properties follow from

(1)—(3) only.

Fact 2.1(Shelah) Let/C be excellent and categorical in some uncountable cardi-
nal. Then| Sat(M)| < X, for each countablé/ € K.

We now capture the conclusion of the previous fact in a definition. We
noted in the previous subsection other possible notionssihbility; in this paper,
we will use:

Definition 2.2. K is w-stableif | S,;(M )| < R, for each countablé/ € K.

The next example shows thHAtmay be unstable, evenii is w-stable.

Examples 2.3.Consider the language containing a predicsitebinary function

+, and constant® and1. Let M be a model, wherd/" is interpreted as the
natural numbersN in the languag€(0, 1, +, -}, and the complement af/" is
infinite. Then,M is an atomic model of its first order theolly. Moreover, any
atomic modelM’ of T interpretsN asN, and has the complement of the size

of M’. This shows that the class of atomic model§'aé categorical in all infinite
cardinals. It is easy to see that the class is excellent (it is homogeneous). However,
the first order theoryf” has the strict order property, and is thus unstable; yet the
class of atomic models is-stable in the sense of the previous definition.

Recall that a complete typeover A splitsover B C A, if there areb, ¢ €
A realising the same type ové and a formulay(z, y) such thaip(z,b) € p and
-¢(x,c) € p. Nonsplitting is a dependence relation with amenable properties in
the first orderv-stable case. It turns out to be quite robust in our case too:

Fact 2.4 (Shelah) Assume thafC is excellent andv-stable. Letp € S, (M),
for M € K. Then there is a finit€' C M such thatp does not split over .
Furthermore, ifM < N € K, then there is a unique € S,;(N) extendingp
which does not split over'.
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We now introduce a convenient notation.
Notation 2.5. We write AL C for the propertytp(a/B U C') does not split over
B

B, for each finite sequencec A.

We will only use this notation whe®® = M € K. In addition to the
previous fact, part of which is rephrased in (1), we have

Fact 2.6(Shelah) Assume thak’ is excellent and-stable.

(1) (Extension) Letp(a/M) € S, (M) and M < N. Then there i$ =
tp(a/M) such thath L N.
M

(2) (Symmetry) Letp(a/M),tp(b/M) € Sat(M). If a L b, thend L a.
M M

(3) (Transitivity) LetM; C My C Ms. Assume thatp(a/Ms) € Sai(Ms). If
a L Msanda | Ms,thena L Ms;.
M, My M,

For more on nonsplitting in excellent classes, see [Ko]. The next fact is
essentially book-keeping whenis regular; it uses nonsplitting in a nontrivial way
for A singular.

Fact 2.7 (Shelah) Assume thafC is excellent andv-stable. Then, for each un-
countable cardinal\ there exists a-full model of size\.

Shelah’s proof of categoricity in the excellent case follows Morley’s argu-
ment using fullness instead of saturation: Any two uncountable full models of the
same size are isomorphic; the uniqgue model in the categoricity cardinal is full; if
there is an uncountable model which is not full, then we can transfer the failure of
fullness to construct a model of any uncountable cardinality which is not full.

We now consider the counterpart of nonalgebraic types.

Definition 2.8. We say that a typg over a subset of a modél € K is big if for
any M’ € K containing the parameters pf there isN € K containingM’ such
thatp is realised inV \ M.

Proposition 2.9. Assume thafC is excellent andv-stable Letp be a type over
A C M € K. The following conditions are equivalent:

(1) pis big;

(2) For someM’ € K containing A, there existsV € K extendingM’ such
thatp is realised inN \ M'.

(3) ThereisamodeN € K containingM where there are more tham | + &,
realisations ofp.
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Proof. Clearly (1) implies (2) and (3). Also, (3) implies (2), as we can choose
M’ < N containingA of size|A| + ¥y, which implies that some realisation of
pis not in M’. Hence, it is enough to show that (2) implies (1): Assume that
is realised by some € N\ M’. Letq = tp(c/M’') € S..(M’). Theng is an
extension ofp. Let M, containA. By amalgamating over the countable model if
necessary, we may assume thét contains)’. There is a finite subsét of M’
such that; does not split ove€”. Let ¢’ be the unique nonsplitting extension of
qin Sy (My). Let N € K be an extension af/; and¢’ € N be a realisation of
¢’. Note thatc’ cannot be inM/; by nonsplitting (otherwiséx = ¢’} and{z # ¢}
are both ing’, butc andc¢’ have the same type ové{’, henceC). Sop is realised
outsideM, and sincell; is arbitrary,p is big. O

Notice in particular that a type over finitely many parameters is big if and
only if it is realised uncountably many times in some model. It is not possible
to change ‘uncountably many’ to ‘infinitely many’ as Example 2.3 demonstrates.
Also, if p is big, then there exists a big extensigne S.i(M), whereM € K
contains the parametersafThis naturally leads to the following definition, which
is an extension of strong minimality.

Definition 2.10. A type g over a setA C M is quasiminimalf it is big and has a
unigue big extension over each modéle K containingA.

Observe that if a big type over A fails to be quasiminimal, then there is
a modelN containingA and two contradictory big types extendindn S, (V).
This implies that there is a formulg x, ¢), with ¢ € N such thay U {¢(z, ¢)} and
q U {=¢(z,c)} are both big. This makes the connection with strong minimality
more explicit. Moreover, ifj(z, a) is big andb |= tp(a/0) theng(z, b) is big, and
similarly if ¢(x, a) is quasiminimal then so gz, b).

We now show that quasiminimal types exist and induce a pregeometry.

Proposition 2.11. Let K bew-stable. LetM € K. Then there exists a quasimini-
malg(x,c), withc € M.

Proof. Let M € K. If there exists a quasiminimal type over the unique prime
model over the empty set, then there exists a quasiminimal typelMvedidence,
we may assume that is countable. Lef\/ = {a; : i < w}.

Assume, for a contradiction, that there are no quasiminimal gypec)
over a finite subset of /. We construct a family of big, complete typgsover
finitely many parameters,, for n € <“2, such that:

(1) qn C qn»

(2) gy is big but not quasiminimal,

(3) a; € ayifi=£(n)

(4) There isp, such that, € g0 and—¢, € g, 1.
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This is possible: For = (), choose any big, complete type oved, (any type
realised outsidé/ is big). Theng, is not quasiminimal, by assumption.

Now assume that, has been constructed. By assumptignis big and is
not quasiminimal. Hence, theredgx,b), withb € M’', M < M’ € K such that
bothg, U ¢(x,b) andg, U —¢(z, b) are big. Leth, € M realisetp(b/a,). Then,
qn U ¢(z, by) andg, U—¢(z, b,) are big (since bigness depends only on the type of
the parameters). Let,, = a,, Ub, Ua;, wherei = /(n) 4 1. Choose complete big
typesg,-o andg, overa, o extendingy, U¢(x, b,) andg, U—¢(x, b,) respectively.
Then, by assumptiog,, is not quasiminimal fof = 0, 1.

This is enough: Forn € “2, we letp, = |, ., @yn- Then, eachp, <
Sat (M), and by (4) we haves,; (M)| = 2%, which contradictso-stability. [

If g(x,c) with ¢ € M is quasiminimal, andd C M, there is a unique
complete type over extendingg which is quasiminimal. This fact is the key to
the next proposition.

Proposition 2.12. Let K be excellent and>-stable. LetM € K. Letq(z) be a
quasiminimal type ove@’ C M. Let N € K be a full model containind/ such
that || M| < || N||. Fora, A C ¢q(IN) and definex € cl(A), if tp(a/AC) is not big.
Then(q(N), cl) satisfies the axioms of a pregeometry.

Proof. Certainly ifa € A, thena € cl(A). Also, if a € cl(A), thentp(a/AC) is
not big and thus differ from the only big type ovar’ extendingy; there is a finite
witness for this, so there is a finif¢ C A such that € cl(B).

Now suppose that € cl(4) andA C cl(B). Without loss of generality,
we may assume that and B are finite. LetM’ < N containingBC. We must
show thatu € M’. But sincetp(A/BC) is not big, we have thatt C M’. Hence,
sincetp(a/AC) is not big, it cannot be realised outside/df, soa € M.

Finally, let us assume that € cl(Bb) \ cl(B). We must show thak €
cl(Ba). Without loss of generality, we may assume tBas finite. Writep(z,y) =
tp(a,b/BC). By assumptiom(z, b) is not big. Assume, for a contradiction, that
p(a,y) is big. Let{a; : i < A} C N be distinct realisations ap(a/BC') (which
is big sincea ¢ cl(B)), whereA > ||M| + |B| + Ry. Let M/ < N contain
M U BU{a; : i < A} and letd’ realise the unique big extension @bver M.
Sincetp(a/M B) = tp(a;/M B), each typen(a;, y) is big extending;, and so by
unigueness we have thidtrealise(a;, y) for eachi < A. This shows thap(z, b')
is big, which is a contradiction, sinee(b/BC) = tp(t'/BC) (by uniqueness of
big extensions). O

We now show the existence of prime models over bases; an alternative
proof using Shelah’s original definition of excellence is given in Remark 2.23. For
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this, we remind the reader of a few concepts and facts belonging-talculus;

we will use these notions again in the next section.

Definition 2.13 (Grossberg-Hart)We say that: dominates” over a modelM, if

whenever .l D, thenC L D.
M M

Fact 2.14(Grossberg-Hart) Let M € K and M’ be a primary model ove#/ U a.
Thena dominatesV!’ over M.

Proposition 2.15. Let K be excellent and-stable. Let)M € K be full andg(z) €
Sat (M) be quasiminimal, with\/y < M. If I C q(M) is independent ovek/y,
then there is a primary model ovérJ M.

Proof. Let I = {a; : i@ < A}. Construct an increasing and continuous chain of
models(M; : i < \), M; < M, M, is primary overM; U a;, and

Mi+1¢f\{ajij<i}, fori < A.
M;
This is possible by excellence; the independence follows from the previous fact.
Let M’ = J;., M;. Then, the independence requirement ensures that pasting
together the constructions of all tié; . ; over M; U a; gives a construction af/’
over My U {a; : i < A}. It follows thatM’ is the desired primary model. O

We recall some more generalisations of Shelah’s orthogonality calculus in
this context.

Fact 2.16(Grossberg-Hart)Let K be excellent and-stable. Iftp(a/Mb) is iso-
lated anda L b, thena € M.
M
Definition 2.17 (Grossberg-Hart)Let p, ¢ € Sat (M), whereM € K. We say that
p is perpendicularto ¢, writtenp L ¢, if for all M’ € K, with M < M’, and
al=pbEqgwitha L M andb L M, thena L b.
M M M’

Fact 2.18(Grossberg-Hart)Let K be excellent and-stable. Lep, g € S, (M).

(1) Thenp L ¢ ifandonly ifa L b, for all a = p andb |= q.
M

(2) Let M’ € K such thatM < M’'. Letp',q € Sa.(M’) be nonsplitting
extensions of andq respectively. Thep L ¢ if and only ifp’ L ¢'.

Definition 2.19. Let K be excellent and-stable.X is unidimensionaif whenever
M < N, andq(z, c) is a quasiminimal type with € M andq(M) = q(N), then
M = N.

Unidimensionality has the following consequence, which we will use in
the next section.
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Lemma 2.20.Let K be excellenty-stable, and unidimensional. Letq € S..(M),
wherep is big andq is quasiminimal. Thep / q.

Proof. Leta = psuchthat ¢ M. Let M’ be primary ovet\/ Ua. ThenM’ # M,

so by unidimensionality, there isl= ¢ with b € M’ \ M. Thentp(b/M U a) is

isolated and ¢ M, sob L a by Fact 2.16. This shows that/ q. O
M

Proposition 2.21. Let K be excellent and categorical in some uncountable cardi-
nal. ThenkC is unidimensional.

Proof. Suppose, for a contradiction, th@t)) = ¢(N), but M # N. We may
assume thaj € S, (M) for some countablé/, < M.

We first show that we may assumé, N are countable. Ldt € N \ M.
Construct increasing sequendgd; : i < w) and (V; : i < w) of countable
models such that:

(1) b € No;

(2) M; < M andN; < N,
(3) M; < Ny;

(4) q(N;) € q(Mi1).

This is easy to do and we havglJ,_, M;) = q(U,-, Ni), yetU,., M; #
Ui<w Nl

So, we may assume th&f, N are countable, and again le€ N\ M. Let
p = tp(b/My). Thenp is big and stationary. Furthermore, for &I’ containing
My andd’ = g such that' L M’ andb = p suchthat! L M’, thend’ L V.
MO MO M’

Construct(N; : i < p) an increasing and continuous sequence of models
such that:

(1) No = N.

(2) Ni # Nit1

(3) a(N;) = q(No).

(4) N;41 is primary overN;b;, whereb; ¢ N, realises the unique free exten-
sion ofp in S, (V).

Let us see that this is possible. Eoe 0 and: a limit, there is no problem.
At the successor stage, notice that there exXistg V; realising the unique free
extension op in S, (1V;), sincep is big. By excellence, there i§;. 1 primary over
N;b;. Now ¢(N;t+1) = q(N;). Otherwise, there is € N, \ N; realisingg. Hence
tp(c/N;b;) is isolated (sincéV,; is primary overN;b;). Sincec ¢ N;, we must
havec L b; by the previous fact. But this contradicts our first claim aboahdg.

1
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This is enough: The modelg;_, N; has size\ and is not full, as it omits
any stationary extension gf € S,;(M). Since there is a full model of sizg K
cannot be categorical ik, and so/C is not uncountably categorical sindewas
arbitrary. O

We can now prove the main theorem of this section. We say that a set is
guasiminimalf it is the set of realisations of a quasiminimal type.

Theorem 2.22.Let K be excellent and categorical in some uncountable cardinal.
Then each model is prime and minimal over the basis of a pregeometry given by
a quasiminimal set (and its parameters). Moreover, the size of the basis deter-
mines the isomorphism-type of the model & categorical in all uncountable
cardinals.

Proof. Let M € K be uncountable. Let/, < M be the prime model over the
empty set. LetM; be a full, uncountable model extendidg (by Fact 2.7). By
Proposition 2.11, we can find a quasiminingék) € S,.(Mp). Theng(M,) is a
pregeometry by Proposition 2.12.

Notice thatq(M) C q(M;) is closed in the sense of the pregeometry
q(My): Leta € q(M;) be such that € cl(¢(M)). Thentp(a/q(M) U M)
is not big by definition, so cannot be realised outsidéoy Proposition 2.9, hence
a € M,soa € q(M).

Sinceq(M) is closed, we can choode= (a; : i < A) a basis for it.

By Proposition 2.15 we can find a primary modél < M overI U M.
But (M) is closed and C q(M’) C q(M), sog(M’) = ¢(M). HenceM =
M’ by unidimensionality (Proposition 2.21). This shows thatis primary over
I U My. Another application of unidimensionality shows thdtis minimal over
I U My. Notice also thatl| = ||M]|, since||M'|| = |I| + Ro.

For M countable, notice that by Proposition 2.15 there is a prime model
M’ over My U I, wherel is any countable independent seyif/; ), andg(M’)
is closed and has countable dimension. ycategoricity, M is isomorphic to
M', soM is prime over the infinite basis of a quasiminimal set and its parameters.
Minimality follows also from unidimensionality (Proposition 2.21).

We can now show categoricity in all uncountable cardinals:MetV € K
be models of sizg > Ny. Let M, be the prime model over the empty set. Without
loss of generalityMly < M andMy < N. Letq(x) € Sai (M) be quasiminimal.
Let I be a basis fog(M) andJ a basis fog(N). Then|I| = |J| and any bijection
f from I to J extending the identity o/, is elementary. Sincé/ is prime over
I U My, there an elementary mgp: M — N extendingf. Theng(M) < N and
containsJ U b. This implies thaty(A) = N sinceN is minimal overJ U M.
Hence g is an isomorphism betweeld and V. O
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Remark 2.23. One of the key issues is the existence of prime (primary) models
over various sets. Excellence is a condition that ensures the existence of prime
models over certain countable atomic sets.

Considem-dimensional directed systems of countable models:of
(Mg :sCmn), forn<uw;
i.e. eachM; € K is countable and C ¢ implies M; < M;. We say that an
n-dimensional system isdependenif, in addition,

My L My, for eachs,t C n.
Msﬁt
Shelah define& to be excellentif, for any n < w, and for anyn-dimensional
independent directed system of countable mod#fs : s C n), there exists a
primary model ovetJ,,, M.

Let M € K be uncountable. Let us see how excellence can be used directly
to show the existence of a prime model oy U I, whereMy < M is countable,
and! is a basis forg (M), whereq € S, (Mp) is quasiminimal. We construct a
directed system of models

(Mg :s C1I,l|s| <Ng),
with My < M as follows:

e Fors =0, we letMy = M.
e Fors = {a} a singleton, we let\/;,, < M be the prime model over

Moy U a.
e Fors = {a,b}, thena L b, and hencel(,; L My, (see Fact 2.14).
My My
Thus,

(Mo, Myqy, Myy)
forms a 2-dimensional independent system and by excellence, there exists
My < M prime overMy,y U My,
e Fors = {a,b, c}, one notices similarly that

(M : t € {a,b,c})

is a 3-dimensional independent system, so by excellence there is a prime
modeIM{aJ,,c} <M OVEI’M{aJ)} U M{b,c} U M{a,c}-
e Continue in this way inductively.

It is not difficult to check that
M = M
sCI,|s|<Rg

is an elementary submodel 8f which is prime overM, U I. The proof of cate-
goricity continues as before.
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This method allows us to construct arbitrarily large models (from the as-
sumption that there exists an uncountable model). An inductive process is used
to show the existence of primary models over any n-dimensional independent sys-
tem of models ofC (that is, not necessarily countable), by decomposing @each
dimensional independent system into(an+ 1)-dimensional system of models of
smaller size (see [Sh87a] and [Sh87h] for details).

Hence, excellence implies the amalgamation property. To see that prop-
erty (3) holds (which implies (2)), expresd U a, wherea = p € Sy (M),
asUJ;<ar Mi U a, whereM L a. ChooseM| primary overMy U a. Then,
My
inductively, choosel;, , prime overM;,,; U M], using excellence by noticing
that (M1, M;, M) forms an independent 2-dimensional system (at limits, take
unions).

Before we consider the examples, we state a final result. It is proved easily
by constructing, for eacl¥ < «, anRg-full model M € K of sizeR, with a
quasiminimal set of dimension exactly;. We leave this to the reader. It is well-
known from the first order case that the lower-bound cannot be improved.

Theorem 2.24. Let K be excellentw-stable, and not uncountably categorical.
Then in each cardinak,, there are at leasfo + 1| nonisomorphic models.

We now describe two examples which are not first order. The first one fits
within homogeneous model theory, and the second is excellent but not homoge-
neous.

2.1. Free groups. We consider the class of free group§X ), where X is an
infinite set of generators. The language is the language of groups with an extra
predicate for the set of generatoXs This class is not first order axiomatisable,

but it can be axiomatised easily by omitting a type — the first order axioms state that
F(X)isagroup, thai is infinite, and if two products of elements &f (and their
inverse) are equal, then the constituents of the product, their order, and number are
equal; finally, omit the type of an element which is not a product of elements (and
inverses of elements) of.

It is a basic fact of algebra that two free groups with the same number of
generators are isomorphic. One deduces easily that all free grouipsirotely
many generators are elementary equivalent, so that they are all models of the same
complete, countable, first order theory. It turns out that the free groups correspond
to the atomic models of this theory. Hence, infinitely generated free groups form
an atomic class of models, which is categorical in all infinite cardinals.

It was noticed by Keisler already that any infinitely generated group in this
language is homogeneous, so this class belongs to homogeneous model theory. As
we noted, it implies that this class is excellent.



CATEGORICITY AND U-RANK IN EXCELLENT CLASSES 17

The quasiminimal set predicted by the Theorem 2.2Xjst is actually
strongly minimal and carries a trivial pregeometryFIfX) is the free group gen-
erated byX, thenF(X) is clearly prime and minimal ovek;; it is the definable
closure ofX.

One can see directly that there are no generic elements in free infinitely
generated free groups. In fact, although the class of free groups is categorical in
all infinite cardinals, free groups only have countable abelian subgroups. Thisis in
sharp contrast to the theorem of Baur-Cherlin-Macintyre [BCM] asserting that any
infinite group, whose first order theory is categorical in all infinite cardinals, has a
definable abelian subgroup of finite index.

2.2. Zilber’'s pseudo-analytic structures. This is a summary of [Zi1] in the lan-
guage of omitting types, rather thdn, .,. Consider

0—7Z—'H % F* -1,
where F* is the multiplicative group of an algebraically closed field of character-
istic 0, H is a torsion-free, divisible, abelian group, and the sequence is exact.
The canonical example, the simplest among Zilber’s pseudo-analytic struc-
tures [Zi2], is whenF’ = C, H = C*, andez is the exponentiation map

exp:Cy — C*.

Zilber represents this as a one-sorted structiliravhose universe is the
universe of the torsion-free divisible abelian groldp in the language of abelian
groups+. He adds two basic relations: a basic equivalence reldilipwhose
interpretation is

E(hi,he) ifandonlyif ex(hy) = ex(hs),
and a ternary relatiof with interpretation
S(hl, ha, hg) if and onIy if €$(h1) + €ZL‘(h2) = €$(h3).

So the nonzero elements of the fiéldcare the equivalence clasde&E, forh € H.
Multiplication in F' can then be defined vi& and+ and addition inF’ is defined
via S. The kernel ofex, which is simply the class corresponding to the unit 1 of
the field, is then definable.

This class can be axiomatised as follows:

e H is atorsion free, divisible, abelian group,
e H/E U {0} is an algebraically closed field of characteristic 0

We also omit a type to express:

e For allz; andzs in the kernel ofex, there arez;, zo € Z \ {0} such that
2121 + 2920 = 0.
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This class is categorical in all uncountable cardinats, the fields are
isomorphic, the abelian groups are isomorphic, and these isomorphisms commute
with ex). It follows (as above) that all the models have the same complete first
order theory in this language. Zilber further proves that every uncountable model
is (D, Xg)-homogeneous, whet® is the set of complete types over the empty set
realised by the models in the class and that the class is excellent. Holvdger
not the set of atomic types for a trivial reason: The type ohéanple which has
transcendence degress realised by all models, yet is not atomic. We outlined in
Remark 1.4 how this fits in our general framework. As we pointed out, a countable
expansion where all the models are atomic can always be found. Note that, the triv-
ial reason why the class is not atomic is essentially the only reason; Zilber in [Zi3]
works in an expansion with extra predicates for linearly and algebraically indepen-
dent tuples ove®. The class is then atomic in this language. Both the atomicity in
this language and excellence have field-theoretic significance (see [Zi1] and [Zi3]).

In this example, the univerdd is quasiminimal and € cl(B) if
ex(a) € acl(ex(B)),

whereacl is the algebraic closure operator in the sense of the field structure (on
ex(H)U{0}).

This example does not belong to homogeneous model theory. A variation,
due to Zilber, wheré is replaced by its completion in the profinite topology, does
belong to homogeneous, as well as other variations due to Hyttinen with an added
random logarithm.

3. U-RANK

In this section, we assume thatis excellent and-stable, though we may
repeat this fact in some statements for emphasis.

We consider here complete types over models. Excellence gives us a good
understanding of such types; they are realised by mode{sifrand only if they
belong toS.;(M), for someM € K. Notice that eachy € S,¢(M) is stationary
i.e. has a unigue nonsplitting extension to aNye K with M < N. Forp €
Sat (M) andg € Sa(IV), we define

q<p,
if M < N,p C q, andq is a splitting extension gs.

Note that ifp; = tp(a;/M;) € Sat(M;), fori = 0,1,2 andp; C py and
p1 < p2, thenpg is a splitting extension gfz, which gives the transitivity o.

Since K is w-stable, the ordek is well-founded: Suppose that <
Sat(M;) and(p; : ¢ < w) forms an infinite strictly descending chain. Théh =
Uicow M; € Kandp = |, ., pi € Sat(M). Leta = p. Thentp(a/M) € Sat (M)
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does not split over some finite set by Fact 2.4. Hence, there existsv such
thattp(a/M) does not split oveV;. Sincea = p;y1, we havep;11 # p;, a
contradiction. We can therefore define the foundational rank:for

Letp € S(M).

e U(p) >0ifandonlyifp € Sy (M);

e U(p) > a+ 1, ifthere existsN € K, M < N andq € S,;(N) such that
g <pandU(q) > «;

e U(p) > 6, for ¢ alimit ordinal, if U(p) > o, forall o < 6.

As usual, we leU (p) = aif U(p) > «, but it is not the case thét(p) > o + 1.

Thus, everyp € S, (M) is given an ordinal by the U-rank (types not
realised by models of the class can be thought of having fallk The U-rank is
invariant under elementary maps. It will be convenient to use the following two
pieces of notation.

Notation 3.1. We will write U(a/M) for U(tp(a/M)) and always assume that
tp(a/M) € Sar(M).

Notation 3.2. We denote by\/ (a) the primary model oveb/ a, wheretp(a/M) €
Sat(M).

We can now prove two easy lemmas.

Lemma 3.3. Let M < N. ThenU(a/M) > U(a/N) with equality if and only if

al N.
M

Proof. Everything is clear except, possibly, tHata/M) = U(a/N) if a L N.
M

To see this, it is enough to show tha{a/M) > « implies thatU(a/N) > «
whena L N, by induction ono and for allM < N € K. Fora = 0 or a limit,
M

there is nothing to prove. Suppose thi&ta/M) > « + 1. Let M’ € K, with
M < M’ be such that/(a/M’) > a anda J M'. By using an elementary map
M

which is the identity onM (a), we may assume that’ L N, which implies
that M’ L N (sinceM(a) L N, asa dominatesM (a) 0%5(]1\2[ anda L N). Let
N' e IC]k\J{e an extension dj\ff’ andN such that J,/ N’ (this exists byg(cellence).
By induction hypothesis, we have thafa/N’) ]ga. But, a]J\,[ N’ by transitivity,

so we must hav&/(a/N) > o + 1. O

Lemma 3.4. Suppose that/(a/M) = aand0 < § < «. Then there exists
N € K, M < N such that/(a/N) = (.
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Proof. We prove this by induction ot (a/M) = «, forall M € K. Itis trivial for

a = 0. Suppose thal/ (a/M) = a + 1. By definition, there isp(b/N) € Sat(V)
such thatp(b/N) is a splitting extension afp(a/M ) andU (b/N) = «. By using
an elementary map if necessary, we may assumebthata. Either = « and
we are done, o < « and we are done also by induction appliedtpda/N)
using transitivity of<. Now suppose that/(a/M) = « is a limit ordinal and
B < a. By definition, there exists a splitting extensigs(a/N) of tp(a/M) such
thatU(a/N) > 5. We must haved/(a/N) < «, so we can use the induction
hypothesis ot/ (a/N) to get the conclusion. O

We now observe the following easy fact, where (2) is simply a restatement
of (1).

Remark 3.5. (1) U(b/M) =0ifandonly ifb € M.
(2) U(b/M) > 1ifand only if tp(b/M) € Sat (M) is big.
(3) U(ab/M) > U(b/M) with equality ifb € M.

This now gives the desired correspondence between the U-rank and quasi-
minimal types.

Lemma 3.6. Letq € Sa(M). Theng is quasiminimal if and only it/ (¢) = 1.
Moreover, ifq is quasiminimal and € ¢(N), whereN is a full model extending/
of size greater thanM ||, thenU (a/M ) = dim(a), in the sense of the pregeometry.

The previous lemma, together with Lemma 3.4 gives another proof that
guasiminimal types over models exist. We now give an example to illustrate the
difference between the U-rank and Shelah’s rank [Sh48].

Remark 3.7. Consider a strongly minimak,-categorical, countable, first order
theoryT'. The class of models df is excellent. Complete types in one variable
over a model either define a singleton (and have U-fgrik are strongly minimal

(and have U-rank). Shelah introduced a rank for thestable, atomic case, which

is based on the 2-rank. If we compute Shelah’s rank in this case, we find that
singletons have ran§, finite sets which are not singletons have ranlkand one
dimensional nonalgebraic sets have r&xkHence, complete types over models

in one variable have Shelah’s rafikwhen they define singletons, drotherwise
(there is no complete type over a model with Shelah rgnk

Fact 2.14 quickly leads to a proof of the next lemma usingalculus. We
provide the details for completeness.

Lemma 3.8. LetM < N and M (b) < M(ab), N(b). ThenM (ab) L N if and
M
only if M(ab) L N(b)andM(b) L N.
M (b) M
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Proof. We only prove the left to right direction, as the converse follows immedi-
ately from transitivity and symmetry.

Assumel/ (ab) L N. Thenab L N, sob.L N and thereforé//(b) L N.
M M M

M
Also, M(ab) L N by monotonicity, which implies that/(ab) L Nb. To
M (b) M (b)
show thatM (ab) L N (b) for the primary modelV (), we use finite character:
M (b)

Supposethat € N(b). Letc € N suchthatp(d/Nb) is isolated by some formula
overch. By excellence, there is a primary modél over M (b) U ¢, which we may
assume containg SinceM (ab) L ¢, we haveM (ab) L M’ by dominance,

M(b) M (b)
andsaM (ab) L d. ThusM(ab) L N(b),sinced € N(b)was arbitrary. [
M(b) M(b)

We can now establish the usual additivity properties of the U-rank. The
proofs are as in the first order case using the previous lemma, instead of the so-
called Pairs Lemma for forking. Recall the meaning of the natural sum of two
ordinals, writtern & 3. We definexr @ § inductively by

a®B=sup({d’ ®pB+1:d <a}U{add +1:8 <B}).
The key property used in the next theorem is thatjif< ay or 81 < (s then
a1 @ 31 < az @ Ba.
We will use later thatp agrees with ordinal addition and regular addition on finite
ordinals.
Theorem 3.9. Let K be excellent and-stable. Then

U(a/M b))+ U(b/M) < U(ab/M) < U(a/M(b)) & U(b/M).

Proof. We first show that/(a/M (b)) + U(b/M) < U(ab/M) by induction on

a = U(a/M()) + Ub/M), forall M € K. Whena = 0 or is a limit or-

dinal, it is easy. Assume that is a successor. Theki(b/M) must be a suc-

cessor ordinal. By Lemma 3.4, we can chodgec K with M < N such

thatU(b/N) + 1 = U(b/M). We may assume, without loss of generality, that

N L a,soU(a/M(b)) = U(a/N(b)) by Lemma 3.3 and symmetry, where
M (b)

N (b) is chosen sd/ (b) < N(b). Now by induction hypothesis we have

1) U(a/N (b)) +U(b/N) <U(ab/N).
Butab . N by Lemma 3.8 sincé. L N. Hence
M M

2) U(ab/N)+1<U(ab/M).
Then (1) and (2) and the choice &fgive U(a/M (b)) + U(b/M) < U(ab/M).
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We now provel (ab/M) < U(a/M (b)) & U(b/M) by induction ono =
U(ab/M), for all M € K. Again fora = 0 or a limit ordinal, it is easy. Assume
thata is a successor. By Lemma 3.4, we can chadse K, M < N, such that
U(ab/N) + 1 = U(ab/M). By induction hypothesis,

(3) U(ab/N) < U(a/N(b)) ® U(b/N),
were N (b) is primary chosen so that/(b) < N(b). Sinceab )L N, then either
M

a L N(b),orb. L N,byLemma 3.8. Hence, eithéf(a/N (b)) < U(a/M (b))
M (b) M
orU(b/N) < U(b/M). In any case, we have:

4) U(a/N(b)@U((b/N) <U(a/M(b)) ® U(b/M).
ThenU(ab/M) < U(a/M (b)) & U(b/M) follows from (3) and (4) and the choice
of N. O

We can now prove the following finiteness result.

Theorem 3.10. Let K be excellent and uncountably categorical. Théfp) < w,
for eachp € Sa(M).

Proof. Assume, for a contradiction, théf(a/M) > w for sometp(a/M) €
Sat(M). By Lemma 3.4, there exist§ € K such that/(a/N) = w (in particular,
tp(a/N) is big). Lettp(b/N) € Sat(IV) be quasiminimal. The® (b/N) = 1. By
unidimensionality (Lemma 2.20), we may assume thatb. Thus,

N

U(a/N (b)) =n <w="U(a/N).
By Theorem 3.9 we have
U(ab/N)=U(a/N(b))+U((b/N)=n+1<w.
HenceU(a/N) < U(ab/N) < w, a contradiction. O

We state the following useful corollary.
Corollary 3.11. Let be excellent and uncountably categorical. Then
U(ab/M) =U(a/M()) +U(b/M).

We can now define what we mean by computing the U-rank of an excellent
class. In the next definition, it is enough to consider only types over countable
models.

Definition 3.12. Let K be excellent, and-stable. ThdJ-rank of K is the supre-
mum of U(a/M), whereM € K anda is an element such thap(a/M) €
Sat(M).
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For example, the universe of Zilber's pseudo-analytic structure is quasi-
minimal. This implies that/(a/M), whena is an element is either (when the
type is not big) orl, when the type is big. Thus, the U-rank of Zilber's pseudo-
analytic structure ig.

The example of free groups is more pathological: We show below that the
U-rank of the class of infinitely generated free groups.isHowever, this supre-
mum is not achieved. This contrasts with the first order uncountably categorical
case, where the supremum is always finite (and therefore achieved). This is another
way of seeing that there are no generics in free groups; the types of maximum rank
are omitted.

3.1. Free groups. Let F' = F(X) be any uncountable free group generatedby

We want to computeup U(a/M), wherea € F, andM < F(X) is countable.

It is not difficult to see tha#'(X) is supersimple in the sense of [BuLe] (see that
paper for more details). Concretely, this means that we can extend the U-rank to
all complete types and that it is enough to compute the supremunttefa/())

fora € F.

Leta € F. Thena = af* - ---- asr, wherea; € X ande; € {—1,1}. Fur-
thermore, they;’s are uniquely determined. This implies that an automorphism
of F fixes a if and only if it fixes ay,...,a,. It follows that U(tp(a/0)) =
U(tp(ai,...,a,/0)). Now sincea; € X and X carries a trivial pregeometry,
it is not difficult to see that/(tp(aq,...,a,/0)) = |{a1,...,a,}| < n. Hence,
for eachn < w, there are elementse G of U-rankn, so

sup U(tp(a/0)) = w.
acF

Yet, no element € F' has U-rankv by Theorem 3.10.
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