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ABSTRACT. LetK be the class of atomic models of a countable first order the-
ory. We prove that ifK is excellent and categorical in some uncountable cardinal,
then each model is prime and minimal over the basis of a definable pregeometry
given by a quasiminimal set. This implies thatK is categorical in all uncountable
cardinals. We also introduce a U-rank to measure the complexity of complete
types over models. We prove that the U-rank has the usual additivity proper-
ties, that quasiminimal types have U-rank 1, and that the U-rank of any type is
finite in the uncountably categorical, excellent case. However, in contrast to the
first order case, the supremum of the U-rank over all types may beω (and is not
achieved). We illustrate the theory with the example of free groups, and Zilber’s
pseudo analytic structures.

0. INTRODUCTION

A class of mathematical structuresK is categoricalin some cardinalλ if
all the structures inK of sizeλ are isomorphic. The problem of categoricity can
be roughly phrased as follows: SupposeK is categorical in some cardinal(s), is
K also categorical in other (all) cardinals? The classical problem, whenK is the
class of models of a first order theory, has been a driving force in first order model
theory, and it is difficult to overestimate the impact of Morley’s theorem [Mo],
Baldwin-Lachlan’s Theorem [BaLa], and Shelah’s generalisation to uncountable
languages [Sh70] on its development.

The present paper is concerned with the categoricity of classes of models
which may not be axiomatisable in first order logic. There are several natural
extensions of first order logic, many of which are equivalent for this problem. We
will focus on classes of models of a first order theoryT omitting a prescribed set of
typesΓ. There are two extreme cases: WhenΓ is empty; this is the first order case.
WhenΓ is the set of nonisolated types; this is theatomic case, the class of models
omitting all nonisolated types is the class of atomic models ofT . For simplicity,
and without real loss of generality, we consider the atomic case; in Remark 1.4 we
explain how to develop excellence for some more generalΓ.

In the early 1970s, Keisler [Ke] and Shelah [Sh3] independently proved
that if a classK of atomic models is categorical in some uncountable cardinal,
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then it is categorical in all uncountable cardinals,provided there are arbitrarily
large homogeneous models inK. Keisler asked at that time [Ke] whether cate-
goricity (say in all uncountable cardinals) implies the proviso. Shelah answered
negatively [Sh48] using an example of Marcus [Ma], and developed the theory of
excellence[Sh48], [Sh87a], and [Sh87b]. He showed:

Theorem 0.1(Shelah). LetK be the class of atomic models of a first order count-
able theory.

(1) Assume GCH. IfK is categorical in all uncountable cardinals, thenK is
excellent.

(2) If K is excellent and categorical in some uncountable cardinal, thenK is
categorical in all uncountable cardinals.

It follows from the work of Shelah [Sh3], that, in this case, the presence of
uncountable homogeneous models implies that of arbitrarily large homogeneous
models and that both imply excellence. Excellence is a form of strong amalgama-
tion property (see Remark 2.23 for the precise definition). In this paper, we extract
two main consequences of excellence and work only with these consequences (we
also present an alternative proof directly from Shelah’s definition of excellence for
illustrative purposes in Remark 2.23). These consequences are:

(1) The amalgamation property over models.
(2) If p is a complete type over a modelM ∈ K with the property thatp ¹ C

is realised in an extension ofM for any finite subsetC ⊆ M , thenp is
realised in an extensionN ∈ K of M . Moreover,N can be chosen prime
overM and a realisation ofp.

Grossberg and Hart continued the classification for excellent classes in [GrHa].
They develop orthogonality calculus and prove the Main Gap, showing that DOP
is a dividing line. All the results attributed to Grossberg-Hart in this paper are from
[GrHa].

Section 1 of the paper is devoted to the basics of excellence. We present
a very accessible description of those properties of excellence that are needed for
our theorems. We also compare excellence with homogeneous model theory and
Shelah’s abstract elementary classes. The results on excellence in this section can
be found in [Sh87a] and [Sh87b].

In Section 2 of the paper, we give a Baldwin-Lachlan proof of the cate-
goricity theorem in the excellent case. We also remind the reader of some basic
facts that can be found in [Sh87a], [Sh87b], and [GrHa]. We show:

Theorem 0.2. LetK be excellent and categorical in some uncountable cardinal.
Then each model is prime and minimal over the basis of a type-definable pregeom-
etry given by a quasiminimal set. Moreover, the size of the basis determines the
isomorphism-type of the model, soK is categorical in all uncountable cardinals.
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Quasiminimal sets are the natural extension of strongly minimal sets. They
were first introduced by Shelah in a different context in [Sh48]. The name was
coined by Zilber in the mid-1990s, where he used an equivalent notion in his
work around the model theory of the field of complex numbers with exponenti-
ation [Zi2].

In Section 3 of the paper, we introduce a natural U-rank to measure the
complexity of complete types over models – excellence provides a good under-
standing of those types. The U-rank does not agree with Shelah’s rank [Sh48]
(Remark 3.7). Quasiminimal types over models are exactly those of U-rank 1

The main result of Section 3 is:

Theorem 0.3. LetK be excellent and uncountably categorical. Then

U(tp(a/M)) < ω,

for eachM ≺ N anda ∈ N ∈ K.

We also show that the U-rank has good additivity properties in the un-
countably categorical, excellent case:

U(tp(ab/M)) = U(tp(a/M(b))) + U(tp(b/M)),

whereM(b) is the primary model overM ∪ b.

Finally, we examine the examples of free groups and one of Zilber’s pseudo-
analytic structures to illustrate the theory. Neither example is first order axiomatis-
able. The example of free groups shows that the supremum of the U-rank of types
of elements may beω, in contrast to the first order uncountably categorical case,
where the supremum is always finite. This example also shows various limitations
on possible generalisations of the theory of stable groups to nonelementary classes
(free groups have no generics, and all their abelian subgroups are countable).

The author would like to thank Boris Zilber and Misha Gavrilovich for
many helpful conversations.

1. EXCELLENCE

We consider the classK of atomic models of a complete first order theory
T in a countable languageL, i.e. K is the class of models ofT which omit all
the nonisolated types ofT over the empty set. The atomicity implies that each
type over finitely many parameters realised in a model ofK is equivalent to a
formula over the same parameters. It follows that eachM ∈ K isℵ0-homogeneous
and thatK is ℵ0-categorical. Recall that a modelM is λ-homogeneousif for any
elementary mapf : M → M with |f | < λ anda ∈ M , there is an elementary map
g : M → M extendingf such thata ∈ dom(g). Finally, notice that the downward
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Löwenheim Skolem theorem holds forK, i.e. if M ∈ K andA ⊆ M , there exists
M ′ ≺ M (henceM ′ ∈ K) containingA such that‖M ′‖ = |A|+ ℵ0.

In general, there may not be uncountable atomic models – for example
the natural numbersN in the language{+, 0, 1} is the only atomic model of its
first order theory. Since we are interested in uncountable categoricity, we always
assume that there exists arbitrarily large models (this also follows from excellence).

We now turn toexcellence. In fact, rather than defining excellence, we
isolate some basic consequences which are the only properties that we use in this
paper. The first is the amalgamation property over models (recall that homogeneity
is essentially the amalgamation property over sets).

(1) Amalgamation property: Let K be excellent. LetM` ∈ K for ` =
0, 1, 2 andf` : M0 → M` elementary maps for̀= 1, 2. Then there exist a model
N ∈ K and elementary mapsg` : M` → N , such thatg2◦f2 ¹ M0 = g1◦f1 ¹ M0.

Since the countable model is unique, we can use amalgamation and the
fact that there are arbitrarily large models to show that each modelM ∈ K has
arbitrarily large elementary extensions inK.

The next consequence has to do with our understanding of types. Given a
complete typep over a modelM ∈ K, when do we know whetherp is realised in an
elementary extensionN ∈ K of M? In the first order case, compactness provides
an easy answer. Here the situation is a bit more involved. We certainly have the
following necessarycondition: Ifa ∈ N ∈ K realisesp, then, sinceMa ⊆ N , we
have thattp(a/C) is isolated by a formula overC, for each finiteC ⊆ M . Hence,
p ¹ C is realised inM for each finite subsetC ⊆ M . Excellence implies that this
is enough:

(2) Type realisability: LetK be excellent. Letp be a complete type over
a modelM ∈ K such thatp ¹ C is realised inM for each finiteC ⊆ M . Then
there existsN ∈ K, with M ≺ N , such thatp is realised inN .

Notice that (2) is a form of weak compactness for complete types over
models; knowing whether a complete type over a model is realised is a property
which has finite character in the parameters. This criterion applies only to complete
types over models. It is convenient to use the following definition.

Definition 1.1. Let M ∈ K. We letSat(M) be the set of typesp ∈ S(M) such
thatp ¹ C is realised inM for each finiteC ⊆ M .

A consequence of (1) and (2) is that ifM ≺ N ∈ K andp ∈ Sat(M), then
there existsq ∈ Sat(N) extendingp (this property fails for atomic, nonexcellentK
in general). We can now introduce the substitute toλ-saturated models.

Definition 1.2. A model N ∈ K is λ-full if N realises each complete typep ∈
Sat(M), whereM ≺ N has size less thanλ.
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This is not Shelah’s original definition, but it is equivalent for uncountable
λ, which are the ones we care about.

Using (1) and (2), we can constructλ-full models inK of size at leastλ
for arbitrarily largeλ: Construct(Mi : i < λ+) increasing and continuous such
that eachMi+1 realises all types inSat(Mi). Then

⋃
i<λ+ Mi is λ-full sinceλ+ is

regular and complete types over models can be extended.

Any λ-full modelN functions as auniversal domainfor the class of mod-
els ofK of size at mostλ: Any such model model embeds elementarily inN , and,
by definition ofλ-fullness, any typep ∈ Sat(M), whereM ≺ N of size less than
λ is realised inN .

Remark 1.3. Let us compare this context with Shelah’s abstract elementary classes.
Let (K, <K) be an abstract elementary class with amalgamation over models. (The
classK of atomic models of a first order theory is an example of abstract ele-
mentary class.) Shelah defines a natural semantic notion of complete types over
models, namedGalois typesby some: He considers triples of the form(a,M,N),
wherea ∈ N , M, N ∈ K and M <K N and defines the relation∼, where
(a1, M1, N1) ∼ (a2,M2, N2) if M1 = M2 and there isN ∈ K andf` : N` → N
such thatf1(a1) = f2(a2). The relations∼ is easily seen to be an equivalence
relation using the amalgamation property. A typetp(a/M,N) is simply the equiv-
alence class(a,M, N)/ ∼. If K is atomic and excellent, type realisability ensures
that the semantic notion of types(a, M, N)/ ∼, for M ≺ N ∈ K, anda ∈ N ,
coincides with the syntactic notion of types inSat(M), for M ∈ K. The notion of
λ-full that we use is what Shelah callsλ-saturation (for Galois types) in abstract
elementary classes, which he showed equivalent toλ-model homogeneity. See
Shelah’s [Sh576] and [Sh600]. For an exposition of Abstract Elementary Classes,
see [Gr1] or [Gr2], where a proof of the equivalence betweenλ-saturation and
λ-model homogeneity is also presented.

The final consequence of excellence that we are going to use is an improve-
ment of (2), which deals with the existence of prime models. Recall that a model
M is primary over a setA, if M = A ∪ {ai : i < λ} andtp(ai/A ∪ {aj : j < i})
is isolated, for eachi < λ. If M ∈ K is primary overA, then it isprimeoverA in
the classK, i.e. each elementary mapf : A → N extends to an elementary map
from M into N . We can now state the improvement:

(3) Existence of primary models:LetK be excellent. Then the modelN
in (2) can be chosen primary overMa, wherea is any realisation ofp.

Remark 1.4. Any uncountably categorical class of models, axiomatised by a com-
plete sentence inLω1,ω, can be axiomatised as the class of atomic models of a
countable first order theory by expanding the language if necessary (see [Sh48]).
However, in applications, we may not want to expand the language. Also, we may
have a direct axiomatisation in terms of classes of models omitting a prescribed set
of types, but realising some nonisolated types (Zilber’s example of pseudo-analytic
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structure we present is initially of this nature). We describe here how to deal di-
rectly with this more general case. LetM be a model realising, over the empty set,
only types inside a prescribed setD. The key point is that whenD is the set of
isolated types, thenM isℵ0-homogeneous and realises all types insideD. Follow-
ing Shelah, we say that a model is(D,ℵ0)-homogeneous, if it isℵ0-homogeneous
and realises exactly the types inD. We must replaceSat(M) by SD(M), which
is the collection of complete typesp ∈ S(M), such that for anyc |= p, the set
M ∪ c realises only types inD. We can defineexcellencefor any class of mod-
els realising only types inD, whereD is countable and all uncountable models
are (D,ℵ0)-homogeneous (this holds in Zilber’s example below). In this case,
there is also a countable(D,ℵ0)-homogeneous model, and this model is unique
up to isomorphism. Simply change the assumptions (1) and (2) with ‘(D,ℵ0)-
homogeneous’ model, instead of ‘model’. For (3), we use the notion of(D,ℵ0)-
primary model;M is (D,ℵ0)-primary overA if it is (D,ℵ0)-homogeneous and
M = A ∪ {ai : i < λ}, andtp(ai/A ∪ {aj : j < i}) is implied by its restriction
to finitely many parameters (so the notion of isolation is with respect to the num-
ber of parameters, rather than the number of formulas). A(D,ℵ0)-primary model
overA is prime in the class of(D,ℵ0)-homogeneous models. We could, of course,
consider other variations of what can be understood as excellence; the advantage
of the one we just presented is that it follows from the existence of uncountably
homogeneous models (see subsection below).

The simplest example of excellent atomic class is the class of models of
anω-categorical,ω-stable, countable, first order theory: All the models are atomic,
amalgamation over models and type realisability are obvious, and the existence
of primary models follows fromω-stability. We finish this section with another
example of excellent classes which is not necessarily first order.

1.1. Homogeneous model theory.A natural hypothesis to assume on the class
K is that it has arbitrarily large homogeneous models (obviously saturated models
will not be in the class in general). This was done independently by Keisler [Ke]
and Shelah [Sh3], and they both proved the categoricity theorem under this assump-
tion (in two different but equivalent contexts). A Baldwin-Lachlan style proof of
categoricity was given in [Le1]. (See also [Le2] for a simpler proof without us-
ing a rank.) A similar geometric proof (with a different statement) was also found
independently by Hyttinen in [Hy].

Studying classes of models omitting a prescribed set of types under the as-
sumption that there are large homogeneous models is now known ashomogeneous
model theory, in contrast to saturated (i.e. first order) model theory.

If C is a (large) homogeneous model inK, any atomic model, or indeed any
atomic set, embeds elementarily inC, provided it has size at most‖C‖. Moreover,
any complete type over an atomic set (of size less than‖C‖) realised in a model
M ∈ K is realised inC. In fact, for a complete typep over an atomic setA ⊆ C



CATEGORICITY AND U-RANK IN EXCELLENT CLASSES 7

with |A| < ‖C‖, we have the followingweak compactnessprinciple: p is realised
in C if and only if p ¹ C is realised inC for each finiteC ⊆ A.

Homogeneous model theory is very general; it includes the first order case,
Robinson theories, e.c. models, Banach space model theory, classes of models with
amalgamation over sets (infinitary,Ln, etc.), many generic constructions, and of
course some concrete cases like Hilbert spaces, and free groups (see below). Ho-
mogeneous model theory is very well-behaved; weak compactness has a number of
nice consequences, for example infinite indiscernible sequences can be extended.

The existence of arbitrarily large homogeneous models implies that the
class is excellent: it is almost immediate for the amalgamation property and for
type realisability. The existence of prime models depends on a form ofω-stability,
which follows from uncountable categoricity in this case (see [Ke] or [Sh3]).

Fact 1.5(Keisler, Shelah). If K has arbitrarily large homogeneous models and is
categorical in some uncountable cardinal, then over each countable atomic setA
there are only countably many complete types realised by models ofK.

Fact 1.6 (Shelah). If K satisfies the conclusion of the previous fact, then there
exists a prime (primary) model over each atomic setA.

Hence, existence of primary models holds and the class is excellent. Un-
countably categoricity for a homogeneous (not necessarily atomic) class implies
that all the uncountable models are(D,ℵ0)-homogeneous, and the existence of
(D,ℵ0)-primary models over any set (realising only types inD) follows also (see
[Sh3] or [Le1]). Hence, the conditions we outlined in Remark 1.4 for the nonatomic
case hold.

At present, homogeneous model theory has developed beyond categoricity,
with good notions ofω-stability/total transcendence [Le1], superstability [HySh1],
[HySh2], [HyLe], stability [Sh3], [Sh54], [GrLe], and even simplicity [BuLe]. Ex-
cellence, so far, lives in the realm ofω-stability.

Notice that the conclusion of Fact 1.5 is stronger than the conclusion we
have in Proposition 2.1; both of which are natural notions ofω-stability. Keisler
had asked whether categoricity implies the existence of arbitrarily large homoge-
neous models; Shelah answered negatively by giving a counterexample and devel-
oped excellence. It turns out that the difference between excellence and homogene-
ity in this context lies entirely in the strength ofω-stability [Le2]:

Fact 1.7 (Lessmann). If K has an uncountable model and over each countable
atomicA there are only countably many complete types realised by models ofK,
thenK has arbitrarily large homogeneous models.

Thus, in the excellent, nonhomogeneous, uncountably categorical case,
there may be countable atomic sets over which uncountably many types are re-
alised. It follows that there cannot be any prime model over such sets, since only
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countably many types are realised over countable atomic models. This is one of the
major difficulty of excellence, and one of the chief differences with the homoge-
neous case: there exists prime models only over certain sets. In this paper, we will
only use the existence of prime models over sets of the formM ∪a, whereM ∈ K
anda realises a typep ∈ Sat(M). Another difference with homogeneous model
theory is that infinite indiscernible sequence cannot, in general, be extended.

Fact 1.7 implies also that if the class of atomic models of a first order
theoryT is excellent but not homogeneous, thenT cannot beω-stable. Zilber’s
example below has superstable first order theory.

2. CATEGORICITY

We start this section with a few consequences of uncountable categoricity,
which can be found in [Sh48], [Sh87a], and [Sh87b]. These properties follow from
(1)–(3) only.

Fact 2.1(Shelah). LetK be excellent and categorical in some uncountable cardi-
nal. Then| Sat(M)| ≤ ℵ0 for each countableM ∈ K.

We now capture the conclusion of the previous fact in a definition. We
noted in the previous subsection other possible notions ofω-stability; in this paper,
we will use:

Definition 2.2. K is ω-stableif |Sat(M)| ≤ ℵ0, for each countableM ∈ K.

The next example shows thatT may be unstable, even ifK is ω-stable.

Examples 2.3.Consider the language containing a predicateN , binary function
+, and constants0 and1. Let M be a model, whereMN is interpreted as the
natural numbersN in the language{0, 1, +, ·}, and the complement ofMN is
infinite. Then,M is an atomic model of its first order theoryT . Moreover, any
atomic modelM ′ of T interpretsN asN, and has the complement ofN the size
of M ′. This shows that the class of atomic models ofT is categorical in all infinite
cardinals. It is easy to see that the class is excellent (it is homogeneous). However,
the first order theoryT has the strict order property, and is thus unstable; yet the
class of atomic models isω-stable in the sense of the previous definition.

Recall that a complete typep overA splitsoverB ⊆ A, if there areb, c ∈
A realising the same type overB and a formulaφ(x, y) such thatφ(x, b) ∈ p and
¬φ(x, c) ∈ p. Nonsplitting is a dependence relation with amenable properties in
the first orderω-stable case. It turns out to be quite robust in our case too:

Fact 2.4 (Shelah). Assume thatK is excellent andω-stable. Letp ∈ Sat(M),
for M ∈ K. Then there is a finiteC ⊆ M such thatp does not split overC.
Furthermore, ifM ≺ N ∈ K, then there is a uniqueq ∈ Sat(N) extendingp
which does not split overC.
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We now introduce a convenient notation.

Notation 2.5. We writeA ^
B

C for the propertytp(a/B ∪ C) does not split over

B, for each finite sequencea ∈ A.

We will only use this notation whenB = M ∈ K. In addition to the
previous fact, part of which is rephrased in (1), we have

Fact 2.6(Shelah). Assume thatK is excellent andω-stable.

(1) (Extension) Lettp(a/M) ∈ Sat(M) and M ≺ N . Then there isb |=
tp(a/M) such thatb ^

M
N .

(2) (Symmetry) Lettp(a/M), tp(b/M) ∈ Sat(M). If a ^
M

b, thenb ^
M

a.

(3) (Transitivity) LetM1 ⊆ M2 ⊆ M3. Assume thattp(a/M3) ∈ Sat(M3). If
a ^

M1

M2 anda ^
M2

M3, thena ^
M1

M3.

For more on nonsplitting in excellent classes, see [Ko]. The next fact is
essentially book-keeping whenλ is regular; it uses nonsplitting in a nontrivial way
for λ singular.

Fact 2.7 (Shelah). Assume thatK is excellent andω-stable. Then, for each un-
countable cardinalλ there exists aλ-full model of sizeλ.

Shelah’s proof of categoricity in the excellent case follows Morley’s argu-
ment using fullness instead of saturation: Any two uncountable full models of the
same size are isomorphic; the unique model in the categoricity cardinal is full; if
there is an uncountable model which is not full, then we can transfer the failure of
fullness to construct a model of any uncountable cardinality which is not full.

We now consider the counterpart of nonalgebraic types.

Definition 2.8. We say that a typep over a subset of a modelM ∈ K is big if for
anyM ′ ∈ K containing the parameters ofp, there isN ∈ K containingM ′ such
thatp is realised inN \M ′.

Proposition 2.9. Assume thatK is excellent andω-stable Letp be a type over
A ⊆ M ∈ K. The following conditions are equivalent:

(1) p is big;
(2) For someM ′ ∈ K containingA, there existsN ∈ K extendingM ′ such

thatp is realised inN \M ′.
(3) There is a modelN ∈ K containingM where there are more than|A|+ℵ0

realisations ofp.
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Proof. Clearly (1) implies (2) and (3). Also, (3) implies (2), as we can choose
M ′ ≺ N containingA of size |A| + ℵ0, which implies that some realisation of
p is not in M ′. Hence, it is enough to show that (2) implies (1): Assume thatp
is realised by somec ∈ N \ M ′. Let q = tp(c/M ′) ∈ Sat(M ′). Thenq is an
extension ofp. Let M1 containA. By amalgamating over the countable model if
necessary, we may assume thatM1 containsM ′. There is a finite subsetC of M ′
such thatq does not split overC. Let q′ be the unique nonsplitting extension of
q in Sat(M1). Let N ∈ K be an extension ofM1 andc′ ∈ N be a realisation of
q′. Note thatc′ cannot be inM1 by nonsplitting (otherwise{x = c′} and{x 6= c}
are both inq′, butc andc′ have the same type overM ′, henceC). Sop is realised
outsideM1, and sinceM1 is arbitrary,p is big. ¤

Notice in particular that a type over finitely many parameters is big if and
only if it is realised uncountably many times in some model. It is not possible
to change ‘uncountably many’ to ‘infinitely many’ as Example 2.3 demonstrates.
Also, if p is big, then there exists a big extensionp′ ∈ Sat(M), whereM ∈ K
contains the parameters ofp. This naturally leads to the following definition, which
is an extension of strong minimality.

Definition 2.10. A type q over a setA ⊆ M is quasiminimalif it is big and has a
unique big extension over each modelN ∈ K containingA.

Observe that if a big typeq overA fails to be quasiminimal, then there is
a modelN containingA and two contradictory big types extendingq in Sat(N).
This implies that there is a formulaφ(x, c), with c ∈ N such thatq∪{φ(x, c)} and
q ∪ {¬φ(x, c)} are both big. This makes the connection with strong minimality
more explicit. Moreover, ifq(x, a) is big andb |= tp(a/∅) thenq(x, b) is big, and
similarly if q(x, a) is quasiminimal then so isq(x, b).

We now show that quasiminimal types exist and induce a pregeometry.

Proposition 2.11. LetK beω-stable. LetM ∈ K. Then there exists a quasimini-
mal q(x, c), with c ∈ M .

Proof. Let M ∈ K. If there exists a quasiminimal type over the unique prime
model over the empty set, then there exists a quasiminimal type overM . Hence,
we may assume thatM is countable. LetM = {ai : i < ω}.

Assume, for a contradiction, that there are no quasiminimal typeq(x, c)
over a finite subsetc of M . We construct a family of big, complete typesqη over
finitely many parametersaη, for η ∈ <ω2, such that:

(1) qη ⊆ qη,
(2) qη is big but not quasiminimal,
(3) ai ∈ aη if i = `(η)
(4) There isφη such thatφη ∈ qη 0̂ and¬φη ∈ qη 1̂.
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This is possible: Forη = 〈〉, choose any bigq〈〉 complete type overa0 (any type
realised outsideM is big). Thenq〈〉 is not quasiminimal, by assumption.

Now assume thatqη has been constructed. By assumption,qη is big and is
not quasiminimal. Hence, there isφ(x, b), with b ∈ M ′, M ≺ M ′ ∈ K such that
bothqη ∪ φ(x, b) andqη ∪ ¬φ(x, b) are big. Letbη ∈ M realisetp(b/aη). Then,
qη ∪φ(x, bη) andqη ∪¬φ(x, bη) are big (since bigness depends only on the type of
the parameters). Letaηˆ̀ = aη ∪ bη ∪ai, wherei = `(η)+1. Choose complete big
typesqη 0̂ andqη 1̂ overaη 0̂ extendingqη∪φ(x, bη) andqη∪¬φ(x, bη) respectively.
Then, by assumptionqηˆ̀ is not quasiminimal for̀ = 0, 1.

This is enough: Forη ∈ ω2, we letpη =
⋃

n<ω qη�n. Then, eachpη ∈
Sat(M), and by (4) we have| Sat(M)| = 2ℵ0 , which contradictsω-stability. ¤

If q(x, c) with c ∈ M is quasiminimal, andA ⊆ M , there is a unique
complete type overA extendingq which is quasiminimal. This fact is the key to
the next proposition.

Proposition 2.12. LetK be excellent andω-stable. LetM ∈ K. Let q(x) be a
quasiminimal type overC ⊆ M . LetN ∈ K be a full model containingM such
that‖M‖ < ‖N‖. For a, A ⊆ q(N) and definea ∈ cl(A), if tp(a/AC) is not big.
Then(q(N), cl) satisfies the axioms of a pregeometry.

Proof. Certainly if a ∈ A, thena ∈ cl(A). Also, if a ∈ cl(A), thentp(a/AC) is
not big and thus differ from the only big type overAC extendingq; there is a finite
witness for this, so there is a finiteB ⊆ A such thata ∈ cl(B).

Now suppose thata ∈ cl(A) andA ⊆ cl(B). Without loss of generality,
we may assume thatA andB are finite. LetM ′ ≺ N containingBC. We must
show thata ∈ M ′. But sincetp(A/BC) is not big, we have thatA ⊆ M ′. Hence,
sincetp(a/AC) is not big, it cannot be realised outside ofM ′, soa ∈ M ′.

Finally, let us assume thata ∈ cl(Bb) \ cl(B). We must show thatb ∈
cl(Ba). Without loss of generality, we may assume thatB is finite. Writep(x, y) =
tp(a, b/BC). By assumptionp(x, b) is not big. Assume, for a contradiction, that
p(a, y) is big. Let{ai : i < λ} ⊆ N be distinct realisations oftp(a/BC) (which
is big sincea 6∈ cl(B)), whereλ > ‖M‖ + |B| + ℵ0. Let M ′ ≺ N contain
M ∪ B ∪ {ai : i < λ} and letb′ realise the unique big extension ofq overM ′.
Sincetp(a/MB) = tp(ai/MB), each typep(ai, y) is big extendingq, and so by
uniqueness we have thatb′ realisesp(ai, y) for eachi < λ. This shows thatp(x, b′)
is big, which is a contradiction, sincetp(b/BC) = tp(b′/BC) (by uniqueness of
big extensions). ¤

We now show the existence of prime models over bases; an alternative
proof using Shelah’s original definition of excellence is given in Remark 2.23. For



12 OLIVIER LESSMANN

this, we remind the reader of a few concepts and facts belonging to^-calculus;

we will use these notions again in the next section.

Definition 2.13 (Grossberg-Hart). We say thata dominatesC over a modelM , if
whenevera ^

M
D, thenC ^

M
D.

Fact 2.14(Grossberg-Hart). LetM ∈ K andM ′ be a primary model overM ∪ a.
Thena dominatesM ′ overM .

Proposition 2.15. LetK be excellent andω-stable. LetM ∈ K be full andq(x) ∈
Sat(M0) be quasiminimal, withM0 ≺ M . If I ⊆ q(M) is independent overM0,
then there is a primary model overI ∪M0.

Proof. Let I = {ai : i < λ}. Construct an increasing and continuous chain of
models(Mi : i < λ), Mi ≺ M , Mi+1 is primary overMi ∪ ai, and

Mi+1 ^
Mi

I \ {aj : j < i}, for i < λ.

This is possible by excellence; the independence follows from the previous fact.
Let M ′ =

⋃
i<λ Mi. Then, the independence requirement ensures that pasting

together the constructions of all theMi+1 overMi ∪ ai gives a construction ofM ′
overM0 ∪ {ai : i < λ}. It follows thatM ′ is the desired primary model. ¤

We recall some more generalisations of Shelah’s orthogonality calculus in
this context.

Fact 2.16(Grossberg-Hart). LetK be excellent andω-stable. Iftp(a/Mb) is iso-
lated anda ^

M
b, thena ∈ M .

Definition 2.17 (Grossberg-Hart). Let p, q ∈ Sat(M), whereM ∈ K. We say that
p is perpendicularto q, written p ⊥ q, if for all M ′ ∈ K, with M ≺ M ′, and
a |= p, b |= q with a ^

M
M ′ andb ^

M
M ′, thena ^

M ′
b.

Fact 2.18(Grossberg-Hart). LetK be excellent andω-stable. Letp, q ∈ Sat(M).

(1) Thenp ⊥ q if and only ifa ^
M

b, for all a |= p andb |= q.

(2) Let M ′ ∈ K such thatM ≺ M ′. Let p′, q′ ∈ Sat(M ′) be nonsplitting
extensions ofp andq respectively. Thenp ⊥ q if and only ifp′ ⊥ q′.

Definition 2.19. LetK be excellent andω-stable.K is unidimensionalif whenever
M ≺ N , andq(x, c) is a quasiminimal type withc ∈ M andq(M) = q(N), then
M = N .

Unidimensionality has the following consequence, which we will use in
the next section.
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Lemma 2.20.LetK be excellent,ω-stable, and unidimensional. Letp, q ∈ Sat(M),
wherep is big andq is quasiminimal. Thenp 6⊥ q.

Proof. Leta |= p such thata 6∈ M . LetM ′ be primary overM∪a. ThenM ′ 6= M ,
so by unidimensionality, there isb |= q with b ∈ M ′ \M . Thentp(b/M ∪ a) is
isolated andb 6∈ M , sob /̂

M
a by Fact 2.16. This shows thatp 6⊥ q. ¤

Proposition 2.21. LetK be excellent and categorical in some uncountable cardi-
nal. ThenK is unidimensional.

Proof. Suppose, for a contradiction, thatq(M) = q(N), but M 6= N . We may
assume thatq ∈ Sat(M0) for some countableM0 ≺ M .

We first show that we may assumeM, N are countable. Letb ∈ N \M .
Construct increasing sequences(Mi : i < ω) and (Ni : i < ω) of countable
models such that:

(1) b ∈ N0;
(2) Mi ≺ M andNi ≺ N ;
(3) Mi ≺ Ni;
(4) q(Ni) ⊆ q(Mi+1).

This is easy to do and we haveq(
⋃

i<ω Mi) = q(
⋃

i<ω Ni), yet
⋃

i<ω Mi 6=⋃
i<ω Ni.

So, we may assume thatM, N are countable, and again letb ∈ N \M . Let
p = tp(b/M0). Thenp is big and stationary. Furthermore, for allM ′ containing
M0 anda′ |= q such thata′ ^

M0

M ′ andb′ |= p such thatb′ ^
M0

M ′, thena′ ^
M ′

b′.

Construct(Ni : i < µ) an increasing and continuous sequence of models
such that:

(1) N0 = N .
(2) Ni 6= Ni+1

(3) q(Ni) = q(N0).
(4) Ni+1 is primary overNibi, wherebi 6∈ Ni realises the unique free exten-

sion ofp in Sat(Ni).

Let us see that this is possible. Fori = 0 andi a limit, there is no problem.
At the successor stage, notice that there existsbi 6∈ Ni realising the unique free
extension ofp in Sat(Ni), sincep is big. By excellence, there isNi+1 primary over
Nibi. Nowq(Ni+1) = q(Ni). Otherwise, there isc ∈ Ni+1\Ni realisingq. Hence
tp(c/Nibi) is isolated (sinceNi+1 is primary overNibi). Sincec 6∈ Ni, we must
havec /̂

Ni

bi by the previous fact. But this contradicts our first claim aboutp andq.
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This is enough: The models
⋃

i<λ Ni has sizeλ and is not full, as it omits
any stationary extension ofq ∈ Sat(M). Since there is a full model of sizeλ, K
cannot be categorical inλ, and soK is not uncountably categorical sinceλ was
arbitrary. ¤

We can now prove the main theorem of this section. We say that a set is
quasiminimalif it is the set of realisations of a quasiminimal type.

Theorem 2.22.LetK be excellent and categorical in some uncountable cardinal.
Then each model is prime and minimal over the basis of a pregeometry given by
a quasiminimal set (and its parameters). Moreover, the size of the basis deter-
mines the isomorphism-type of the model andK is categorical in all uncountable
cardinals.

Proof. Let M ∈ K be uncountable. LetM0 ≺ M be the prime model over the
empty set. LetM1 be a full, uncountable model extendingM (by Fact 2.7). By
Proposition 2.11, we can find a quasiminimalq(x) ∈ Sat(M0). Thenq(M1) is a
pregeometry by Proposition 2.12.

Notice thatq(M) ⊆ q(M1) is closed in the sense of the pregeometry
q(M1): Let a ∈ q(M1) be such thata ∈ cl(q(M)). Thentp(a/q(M) ∪ M0)
is not big by definition, so cannot be realised outsideM by Proposition 2.9, hence
a ∈ M , soa ∈ q(M).

Sinceq(M) is closed, we can chooseI = (ai : i < λ) a basis for it.

By Proposition 2.15 we can find a primary modelM ′ ≺ M overI ∪M0.
But q(M ′) is closed andI ⊆ q(M ′) ⊆ q(M), soq(M ′) = q(M). HenceM =
M ′ by unidimensionality (Proposition 2.21). This shows thatM is primary over
I ∪M0. Another application of unidimensionality shows thatM is minimal over
I ∪M0. Notice also that|I| = ‖M‖, since‖M ′‖ = |I|+ ℵ0.

For M countable, notice that by Proposition 2.15 there is a prime model
M ′ overM0 ∪ I, whereI is any countable independent set inq(M1), andq(M ′)
is closed and has countable dimension. Byℵ0-categoricity,M is isomorphic to
M ′, soM is prime over the infinite basis of a quasiminimal set and its parameters.
Minimality follows also from unidimensionality (Proposition 2.21).

We can now show categoricity in all uncountable cardinals: LetM, N ∈ K
be models of sizeµ > ℵ0. LetM0 be the prime model over the empty set. Without
loss of generalityM0 ≺ M andM0 ≺ N . Let q(x) ∈ Sat(M0) be quasiminimal.
Let I be a basis forq(M) andJ a basis forq(N). Then|I| = |J | and any bijection
f from I to J extending the identity onM0 is elementary. SinceM is prime over
I ∪M0, there an elementary mapg : M → N extendingf . Theng(M) ≺ N and
containsJ ∪ b. This implies thatg(M) = N sinceN is minimal overJ ∪ M0.
Hence,g is an isomorphism betweenM andN . ¤
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Remark 2.23. One of the key issues is the existence of prime (primary) models
over various sets. Excellence is a condition that ensures the existence of prime
models over certain countable atomic sets.

Considern-dimensional directed systems of countable models ofK:

(Ms : s ( n), for n < ω;

i.e. eachMs ∈ K is countable ands ⊆ t implies Ms ≺ Mt. We say that an
n-dimensional system isindependentif, in addition,

Ms ^
Ms∩t

Mt, for eachs, t ( n.

Shelah definesK to beexcellentif, for any n < ω, and for anyn-dimensional
independent directed system of countable models(Ms : s ( n), there exists a
primary model over

⋃
s(n Ms.

LetM ∈ K be uncountable. Let us see how excellence can be used directly
to show the existence of a prime model overM0∪ I, whereM0 ≺ M is countable,
andI is a basis forq(M), whereq ∈ Sat(M0) is quasiminimal. We construct a
directed system of models

(Ms : s ⊆ I, |s| < ℵ0),

with Ms ≺ M as follows:

• Fors = ∅, we letM∅ = M0.
• For s = {a} a singleton, we letM{a} ≺ M be the prime model over

M0 ∪ a.
• For s = {a, b}, thena ^

M0

b, and henceM{a} ^
M0

M{b} (see Fact 2.14).

Thus,
(M0,M{a},M{b})

forms a 2-dimensional independent system and by excellence, there exists
M{a,b} ≺ M prime overM{a} ∪M{b}.

• Fors = {a, b, c}, one notices similarly that

(Mt : t ( {a, b, c})
is a 3-dimensional independent system, so by excellence there is a prime
modelM{a,b,c} ≺ M overM{a,b} ∪M{b,c} ∪M{a,c}.

• Continue in this way inductively.

It is not difficult to check that

M ′ :=
⋃

s⊆I,|s|<ℵ0

Ms

is an elementary submodel ofM which is prime overM0 ∪ I. The proof of cate-
goricity continues as before.
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This method allows us to construct arbitrarily large models (from the as-
sumption that there exists an uncountable model). An inductive process is used
to show the existence of primary models over any n-dimensional independent sys-
tem of models ofK (that is, not necessarily countable), by decomposing eachn-
dimensional independent system into an(n + 1)-dimensional system of models of
smaller size (see [Sh87a] and [Sh87b] for details).

Hence, excellence implies the amalgamation property. To see that prop-
erty (3) holds (which implies (2)), expressM ∪ a, wherea |= p ∈ Sat(M),
as

⋃
i<‖M‖Mi ∪ a, whereM ^

M0

a. ChooseM ′
0 primary overM0 ∪ a. Then,

inductively, chooseM ′
i+1 prime overMi+1 ∪ M ′

i , using excellence by noticing
that (Mi+1,Mi,M

′
i) forms an independent 2-dimensional system (at limits, take

unions).

Before we consider the examples, we state a final result. It is proved easily
by constructing, for eachβ ≤ α, anℵβ-full model M ∈ K of sizeℵα with a
quasiminimal set of dimension exactlyℵβ. We leave this to the reader. It is well-
known from the first order case that the lower-bound cannot be improved.

Theorem 2.24. Let K be excellent,ω-stable, and not uncountably categorical.
Then in each cardinalℵα, there are at least|α + 1| nonisomorphic models.

We now describe two examples which are not first order. The first one fits
within homogeneous model theory, and the second is excellent but not homoge-
neous.

2.1. Free groups. We consider the class of free groupsF (X), whereX is an
infinite set of generators. The language is the language of groups with an extra
predicate for the set of generatorsX. This class is not first order axiomatisable,
but it can be axiomatised easily by omitting a type – the first order axioms state that
F (X) is a group, thatX is infinite, and if two products of elements ofX (and their
inverse) are equal, then the constituents of the product, their order, and number are
equal; finally, omit the type of an element which is not a product of elements (and
inverses of elements) ofX.

It is a basic fact of algebra that two free groups with the same number of
generators are isomorphic. One deduces easily that all free groups oninfinitely
many generators are elementary equivalent, so that they are all models of the same
complete, countable, first order theory. It turns out that the free groups correspond
to the atomic models of this theory. Hence, infinitely generated free groups form
an atomic class of models, which is categorical in all infinite cardinals.

It was noticed by Keisler already that any infinitely generated group in this
language is homogeneous, so this class belongs to homogeneous model theory. As
we noted, it implies that this class is excellent.
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The quasiminimal set predicted by the Theorem 2.22 isX; it is actually
strongly minimal and carries a trivial pregeometry. IfF (X) is the free group gen-
erated byX, thenF (X) is clearly prime and minimal overX; it is the definable
closure ofX.

One can see directly that there are no generic elements in free infinitely
generated free groups. In fact, although the class of free groups is categorical in
all infinite cardinals, free groups only have countable abelian subgroups. This is in
sharp contrast to the theorem of Baur-Cherlin-Macintyre [BCM] asserting that any
infinite group, whose first order theory is categorical in all infinite cardinals, has a
definable abelian subgroup of finite index.

2.2. Zilber’s pseudo-analytic structures. This is a summary of [Zi1] in the lan-
guage of omitting types, rather thanLω1,ω. Consider

0 → Z→i H →ex F ∗ → 1,

whereF ∗ is the multiplicative group of an algebraically closed field of character-
istic 0,H is a torsion-free, divisible, abelian group, and the sequence is exact.

The canonical example, the simplest among Zilber’s pseudo-analytic struc-
tures [Zi2], is whenF = C, H = C∗, andex is the exponentiation map

exp : C+ → C∗.

Zilber represents this as a one-sorted structureH, whose universe is the
universe of the torsion-free divisible abelian groupH, in the language of abelian
groups+. He adds two basic relations: a basic equivalence relationE, whose
interpretation is

E(h1, h2) if and only if ex(h1) = ex(h2),

and a ternary relationS with interpretation

S(h1, h2, h3) if and only if ex(h1) + ex(h2) = ex(h3).

So the nonzero elements of the fieldF are the equivalence classesh/E, for h ∈ H.
Multiplication in F can then be defined viaE and+ and addition inF is defined
via S. The kernel ofex, which is simply the class corresponding to the unit 1 of
the field, is then definable.

This class can be axiomatised as follows:

• H is a torsion free, divisible, abelian group,
• H/E ∪ {0} is an algebraically closed field of characteristic 0

We also omit a type to express:

• For all x1 andx2 in the kernel ofex, there arez1, z2 ∈ Z \ {0} such that
z1x1 + z2x2 = 0.
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This class is categorical in all uncountable cardinals,i.e. the fields are
isomorphic, the abelian groups are isomorphic, and these isomorphisms commute
with ex). It follows (as above) that all the models have the same complete first
order theory in this language. Zilber further proves that every uncountable model
is (D,ℵ0)-homogeneous, whereD is the set of complete types over the empty set
realised by the models in the class and that the class is excellent. HoweverD is
not the set of atomic types for a trivial reason: The type of ann-tuple which has
transcendence degreen is realised by all models, yet is not atomic. We outlined in
Remark 1.4 how this fits in our general framework. As we pointed out, a countable
expansion where all the models are atomic can always be found. Note that, the triv-
ial reason why the class is not atomic is essentially the only reason; Zilber in [Zi3]
works in an expansion with extra predicates for linearly and algebraically indepen-
dent tuples overQ. The class is then atomic in this language. Both the atomicity in
this language and excellence have field-theoretic significance (see [Zi1] and [Zi3]).

In this example, the universeH is quasiminimal anda ∈ cl(B) if

ex(a) ∈ acl(ex(B)),

whereacl is the algebraic closure operator in the sense of the field structure (on
ex(H) ∪ {0}).

This example does not belong to homogeneous model theory. A variation,
due to Zilber, whereZ is replaced by its completion in the profinite topology, does
belong to homogeneous, as well as other variations due to Hyttinen with an added
random logarithm.

3. U-RANK

In this section, we assume thatK is excellent andω-stable, though we may
repeat this fact in some statements for emphasis.

We consider here complete types over models. Excellence gives us a good
understanding of such types; they are realised by models inK if and only if they
belong toSat(M), for someM ∈ K. Notice that eachp ∈ Sat(M) is stationary,
i.e. has a unique nonsplitting extension to anyN ∈ K with M ≺ N . For p ∈
Sat(M) andq ∈ Sat(N), we define

q < p,

if M ≺ N , p ⊆ q, andq is a splitting extension ofp.

Note that ifpi = tp(ai/Mi) ∈ Sat(Mi), for i = 0, 1, 2 andp1 ⊆ p0 and
p1 < p2, thenp0 is a splitting extension ofp2, which gives the transitivity of<.

SinceK is ω-stable, the order< is well-founded: Suppose thatpi ∈
Sat(Mi) and(pi : i < ω) forms an infinite strictly descending chain. ThenM =⋃

i<ω Mi ∈ K andp =
⋃

i<ω pi ∈ Sat(M). Let a |= p. Thentp(a/M) ∈ Sat(M)
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does not split over some finite set by Fact 2.4. Hence, there existsi < ω such
that tp(a/M) does not split overMi. Sincea |= pi+1, we havepi+1 6> pi, a
contradiction. We can therefore define the foundational rank for<:

Let p ∈ S(M).

• U(p) ≥ 0 if and only if p ∈ Sat(M);
• U(p) ≥ α + 1, if there existsN ∈ K, M ≺ N andq ∈ Sat(N) such that

q < p andU(q) ≥ α;
• U(p) ≥ δ, for δ a limit ordinal, if U(p) ≥ α, for all α < δ.

As usual, we letU(p) = α if U(p) ≥ α, but it is not the case thatU(p) ≥ α + 1.

Thus, everyp ∈ Sat(M) is given an ordinal by the U-rank (types not
realised by models of the class can be thought of having rank−1). The U-rank is
invariant under elementary maps. It will be convenient to use the following two
pieces of notation.

Notation 3.1. We will write U(a/M) for U(tp(a/M)) and always assume that
tp(a/M) ∈ Sat(M).

Notation 3.2. We denote byM(a) the primary model overMa, wheretp(a/M) ∈
Sat(M).

We can now prove two easy lemmas.

Lemma 3.3. Let M ≺ N . ThenU(a/M) ≥ U(a/N) with equality if and only if
a ^

M
N .

Proof. Everything is clear except, possibly, thatU(a/M) = U(a/N) if a ^
M

N .

To see this, it is enough to show thatU(a/M) ≥ α implies thatU(a/N) ≥ α
whena ^

M
N , by induction onα and for allM ≺ N ∈ K. For α = 0 or a limit,

there is nothing to prove. Suppose thatU(a/M) ≥ α + 1. Let M ′ ∈ K, with
M ≺ M ′ be such thatU(a/M ′) ≥ α anda /̂

M
M ′. By using an elementary map

which is the identity onM(a), we may assume thatM ′
^

M(a)
N , which implies

thatM ′
^
M

N (sinceM(a) ^
M

N , asa dominatesM(a) overM anda ^
M

N ). Let

N ′ ∈ K be an extension ofM ′ andN such thata ^
M ′

N ′ (this exists by excellence).

By induction hypothesis, we have thatU(a/N ′) ≥ α. But,a /̂
N

N ′ by transitivity,

so we must haveU(a/N) ≥ α + 1. ¤
Lemma 3.4. Suppose thatU(a/M) = α and 0 ≤ β < α. Then there exists
N ∈ K, M ≺ N such thatU(a/N) = β.
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Proof. We prove this by induction onU(a/M) = α, for all M ∈ K. It is trivial for
α = 0. Suppose thatU(a/M) = α + 1. By definition, there istp(b/N) ∈ Sat(N)
such thattp(b/N) is a splitting extension oftp(a/M) andU(b/N) = α. By using
an elementary map if necessary, we may assume thatb = a. Eitherβ = α and
we are done, orβ < α and we are done also by induction applied totp(a/N)
using transitivity of<. Now suppose thatU(a/M) = α is a limit ordinal and
β < α. By definition, there exists a splitting extensiontp(a/N) of tp(a/M) such
that U(a/N) ≥ β. We must haveU(a/N) < α, so we can use the induction
hypothesis onU(a/N) to get the conclusion. ¤

We now observe the following easy fact, where (2) is simply a restatement
of (1).

Remark 3.5. (1) U(b/M) = 0 if and only if b ∈ M .
(2) U(b/M) ≥ 1 if and only if tp(b/M) ∈ Sat(M) is big.
(3) U(ab/M) ≥ U(b/M) with equality if b ∈ M .

This now gives the desired correspondence between the U-rank and quasi-
minimal types.

Lemma 3.6. Let q ∈ Sat(M). Thenq is quasiminimal if and only ifU(q) = 1.
Moreover, ifq is quasiminimal anda ∈ q(N), whereN is a full model extendingM
of size greater than‖M‖, thenU(a/M) = dim(a), in the sense of the pregeometry.

The previous lemma, together with Lemma 3.4 gives another proof that
quasiminimal types over models exist. We now give an example to illustrate the
difference between the U-rank and Shelah’s rank [Sh48].

Remark 3.7. Consider a strongly minimal,ℵ0-categorical, countable, first order
theoryT . The class of models ofT is excellent. Complete types in one variable
over a model either define a singleton (and have U-rank0) or are strongly minimal
(and have U-rank1). Shelah introduced a rank for theω-stable, atomic case, which
is based on the 2-rank. If we compute Shelah’s rank in this case, we find that
singletons have rank0, finite sets which are not singletons have rank1, and one
dimensional nonalgebraic sets have rank2. Hence, complete types over models
in one variable have Shelah’s rank0 when they define singletons, or2 otherwise
(there is no complete type over a model with Shelah rank1).

Fact 2.14 quickly leads to a proof of the next lemma using^-calculus. We

provide the details for completeness.

Lemma 3.8. Let M ≺ N andM(b) ≺ M(ab), N(b). ThenM(ab) ^
M

N if and

only if M(ab) ^
M(b)

N(b) andM(b) ^
M

N .
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Proof. We only prove the left to right direction, as the converse follows immedi-
ately from transitivity and symmetry.

AssumeM(ab) ^
M

N . Thenab ^
M

N , sob ^
M

N and thereforeM(b) ^
M

N .

Also, M(ab) ^
M(b)

N by monotonicity, which implies thatM(ab) ^
M(b)

Nb. To

show thatM(ab) ^
M(b)

N(b) for the primary modelN(b), we use finite character:

Suppose thatd ∈ N(b). Letc ∈ N such thattp(d/Nb) is isolated by some formula
overcb. By excellence, there is a primary modelM ′ overM(b)∪ c, which we may
assume containsd. SinceM(ab) ^

M(b)
c, we haveM(ab) ^

M(b)
M ′ by dominance,

and soM(ab) ^
M(b)

d. ThusM(ab) ^
M(b)

N(b), sinced ∈ N(b) was arbitrary. ¤

We can now establish the usual additivity properties of the U-rank. The
proofs are as in the first order case using the previous lemma, instead of the so-
called Pairs Lemma for forking. Recall the meaning of the natural sum of two
ordinals, writtenα⊕ β. We defineα⊕ β inductively by

α⊕ β = sup({α′ ⊕ β + 1 : α′ < α} ∪ {α⊕ β′ + 1 : β′ < β}).
The key property used in the next theorem is that ifα1 < α2 or β1 < β2 then

α1 ⊕ β1 < α2 ⊕ β2.

We will use later that⊕ agrees with ordinal addition and regular addition on finite
ordinals.

Theorem 3.9. LetK be excellent andω-stable. Then

U(a/M(b)) + U(b/M) ≤ U(ab/M) ≤ U(a/M(b))⊕ U(b/M).

Proof. We first show thatU(a/M(b)) + U(b/M) ≤ U(ab/M) by induction on
α = U(a/M(b)) + U(b/M), for all M ∈ K. Whenα = 0 or is a limit or-
dinal, it is easy. Assume thatα is a successor. ThenU(b/M) must be a suc-
cessor ordinal. By Lemma 3.4, we can chooseN ∈ K with M ≺ N such
that U(b/N) + 1 = U(b/M). We may assume, without loss of generality, that
N ^

M(b)
a, so U(a/M(b)) = U(a/N(b)) by Lemma 3.3 and symmetry, where

N(b) is chosen soM(b) ≺ N(b). Now by induction hypothesis we have

(1) U(a/N(b)) + U(b/N) ≤ U(ab/N).

But ab /̂
M

N by Lemma 3.8 sinceb /̂
M

N . Hence

(2) U(ab/N) + 1 ≤ U(ab/M).

Then (1) and (2) and the choice ofN giveU(a/M(b)) + U(b/M) ≤ U(ab/M).
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We now proveU(ab/M) ≤ U(a/M(b))⊕ U(b/M) by induction onα =
U(ab/M), for all M ∈ K. Again forα = 0 or a limit ordinal, it is easy. Assume
thatα is a successor. By Lemma 3.4, we can chooseN ∈ K, M ≺ N , such that
U(ab/N) + 1 = U(ab/M). By induction hypothesis,

(3) U(ab/N) ≤ U(a/N(b))⊕ U(b/N),

wereN(b) is primary chosen so thatM(b) ≺ N(b). Sinceab /̂
M

N , then either

a /̂
M(b)

N(b), or b /̂
M

N , by Lemma 3.8. Hence, eitherU(a/N(b)) < U(a/M(b))

or U(b/N) < U(b/M). In any case, we have:

(4) U(a/N(b))⊕ U(b/N) < U(a/M(b))⊕ U(b/M).

ThenU(ab/M) ≤ U(a/M(b))⊕U(b/M) follows from (3) and (4) and the choice
of N . ¤

We can now prove the following finiteness result.

Theorem 3.10.LetK be excellent and uncountably categorical. ThenU(p) < ω,
for eachp ∈ Sat(M).

Proof. Assume, for a contradiction, thatU(a/M) ≥ ω for sometp(a/M) ∈
Sat(M). By Lemma 3.4, there existsN ∈ K such thatU(a/N) = ω (in particular,
tp(a/N) is big). Lettp(b/N) ∈ Sat(N) be quasiminimal. ThenU(b/N) = 1. By
unidimensionality (Lemma 2.20), we may assume thata /̂

N
b. Thus,

U(a/N(b)) = n < ω = U(a/N).

By Theorem 3.9 we have

U(ab/N) = U(a/N(b)) + U(b/N) = n + 1 < ω.

Hence,U(a/N) ≤ U(ab/N) < ω, a contradiction. ¤

We state the following useful corollary.

Corollary 3.11. LetK be excellent and uncountably categorical. Then

U(ab/M) = U(a/M(b)) + U(b/M).

We can now define what we mean by computing the U-rank of an excellent
class. In the next definition, it is enough to consider only types over countable
models.

Definition 3.12. Let K be excellent, andω-stable. TheU-rank ofK is the supre-
mum of U(a/M), whereM ∈ K and a is an element such thattp(a/M) ∈
Sat(M).
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For example, the universe of Zilber’s pseudo-analytic structure is quasi-
minimal. This implies thatU(a/M), whena is an element is either0 (when the
type is not big) or1, when the type is big. Thus, the U-rank of Zilber’s pseudo-
analytic structure is1.

The example of free groups is more pathological: We show below that the
U-rank of the class of infinitely generated free groups isω. However, this supre-
mum is not achieved. This contrasts with the first order uncountably categorical
case, where the supremum is always finite (and therefore achieved). This is another
way of seeing that there are no generics in free groups; the types of maximum rank
are omitted.

3.1. Free groups. Let F = F (X) be any uncountable free group generated byX.
We want to computesupU(a/M), wherea ∈ F , andM ≺ F (X) is countable.
It is not difficult to see thatF (X) is supersimple in the sense of [BuLe] (see that
paper for more details). Concretely, this means that we can extend the U-rank to
all complete types and that it is enough to compute the supremum ofU(tp(a/∅))
for a ∈ F .

Let a ∈ F . Thena = aε1
1 · · · · · aεn

n , whereai ∈ X andεi ∈ {−1, 1}. Fur-
thermore, theai’s are uniquely determined. This implies that an automorphism
of F fixes a if and only if it fixes a1, . . . , an. It follows that U(tp(a/∅)) =
U(tp(a1, . . . , an/∅)). Now sinceai ∈ X andX carries a trivial pregeometry,
it is not difficult to see thatU(tp(a1, . . . , an/∅)) = |{a1, . . . , an}| ≤ n. Hence,
for eachn < ω, there are elementsa ∈ G of U-rankn, so

sup
a∈F

U(tp(a/∅)) = ω.

Yet, no elementa ∈ F has U-rankω by Theorem 3.10.
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