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Abstract

We prove that the theory of fields with a derivation of Frobenius
has the model companion which is stable and admits elimination of
quantifiers up to the level of the λ-functions. Along the way, we give
new geometric axioms of DCFp.

0 Introduction

Throughout this paper Ω is a big algebraically closed field of characteristic
p > 0, all the other fields are embedded into Ω, n ≥ 0 and q = pn. Let K be
a field and δ : K −→ K. δ is a derivation of the n-th power of Frobenius if
for any a, b ∈ K,

δ(a + b) = δ(a) + δ(b), δ(ab) = bqδ(a) + aqδ(b).

Let DFp,n denotes the theory of fields with a derivation of the n-th power of
Frobenius. For brevity, we call a derivation of the n-th power of Frobenius an
n-derivation and a field with an n-derivation an n-differential field. Similarly,
we talk about n-differential fields extensions, etc. Thus differential fields are
0-differential fields in our terminology. A natural example of an n-derivation
is the composition of the n-th power of Frobenius with a derivation. However,
not all the n-derivations can be obtained in such a way.
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In this paper we prove that DFp,n has the model companion DCFp,n,
which behaves much as the theory of differentially closed fields in positive
characteristic (see [Wo1]); in particular it is stable, not superstable and ad-
mits elimination of quantifiers in the language with the λ-functions. We do
not know if adding just the p-th root function is enough, as in the case of
DCFp.

The axioms of DCFp,n are in the style of Pierce-Pillay axioms of DCF0

[PP]. In particular, this gives new axioms of DCFp. The proof that DCFp,n

does axiomatize the model companion of DFp,n follows the lines from [PP],
however some care needs to be taken while dealing with separability issues.

The main motivation for considering n-derivations is a theorem [Kow,
2.3.1] saying that the n-derivations constitute the remaining (besides deriva-
tions and endomorphisms) class of jet operators [Bu] (up to a natural notion
of equivalence of operators [Bu]) on fields . Therefore, this paper shows that
for any jet operator, its theory has the model companion.

At first I thought that the Shelah-Wood theory [Sh], [Wo1] can be ex-
tended smoothly to the case of n-derivations just by ”twisting arguments by
a power of Frobenius”. However, not all the arguments from the differen-
tial algebra extend to the n-differential case. Some results trivially follow
from functorial properties of the structure ring together with the existence of
extensions to fields of fractions. For others some computations are needed,
but there are always twisted versions of the proofs from differential alge-
bra. For example, the role of the tangent space is played by the Frobenius
tangent space. Finally, there are some results which do not hold for deriva-
tions of non-zero powers of Frobenius. Note that the real difference between
derivations and n-derivations can be seen via looking at compositions. The
composition of an n-derivation with an m-derivation is an n + m-derivation
for m > 0 and is not an l-derivation for any l, if m = 0. The lack of higher
order derivations is the main obstacle for proving the quantifier elimination
up to the level of the (partial) inverse of Frobenius.

I would like to thank Zoé Chatzidakis and Ludomir Newelski for their
comments and suggestions. I would like also to thank the referee for many
valuable suggestions.
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1 Some n-differential algebra

To prove certain properties of n-derivations, we need to go beyond the con-
text of fields. All the rings considered in this section are of characteristic p
commutative and with unity. One can associate with a ring R its structure
ring of n-derivations R(1) := (R2,⊕, ∗), where:

(a0, a1)⊕ (b0, b1) = (a0 + a1, b0 + b1), (a0, a1) ∗ (b0, b1) = (a0b0, a
q
0b1 + bq

0a1).

One can check that R(1) is really a ring (0 = (0, 0),1 = (1, 0)). This is
functorial: for f : R −→ S we define f(1) : R(1) −→ S(1) as f × f .

Definition 1.1 Let R be a ring. A map δ : R → R is an n-derivation if the
map R 3 a 7→ (a, δ(a)) ∈ R(1) is a ring homomorphism.

One easily checks that this definition coincides with the one given in the
introduction. Thus n-derivations are jet operators in the sense of [Bu] (see
also [Kow]), or D-operators from [Sc] .

Since R(1) is a ring, we get that n-derivations not coming from deriva-
tions (i.e. not being the compositions of the n-th power of Frobenius with a
derivation) exist. Consider the zero n-derivation on a field K. Since an n-
derivation on K[X] is equivalent to a homomorphism from K[X] to K[X](1),
for any F ∈ K[X], X 7→ F extends uniquely to an n-derivation of K[X].
It is enough to choose F not belonging to K[X]p, to get an n-derivation
not coming from a derivation. Using Lemma 1.4, we can produce such an
n-derivation on a field.

If f : R −→ S is a homomorphism of rings, we call a map δ : R −→ S
an n-derivation of f , if δ is additive and the map (f, δ) : R → S(1) is a
ring homomorphism. So the usual n-derivations can be considered as n-
derivations of the identity map. After Fact 1.2, f is always an inclusion map,
and all the n-derivations are denoted by δ.

As was noted by Udi Hrushovski and David Pierce, n-derivations on a ring
R correspond to derivations of the inclusion Rq ⊂ R (actually, we need also to
assume that the Frobenius map is injective on R). In this correspondence, an
n-derivation coming from a derivation correspond to a derivation of Rq ⊂ R
whose image is contained in Rq.

Fact 1.2 If δ : R −→ S is an n-derivation of f : R −→ S, and I ¢R, J ¢S,
are ideals such that δ(I), f(I) ⊂ J , then δ̄ : R/I −→ S/J is an n-derivation
of f : R/I −→ S/J .
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Proof The map (f, δ) : R −→ S(1) is a ring homomorphism. Let g :
S −→ S/J be the quotient map. Then g(1) : S(1) −→ (S/J)(1) is a ring
homomorphism, and (f, δ)(I) ⊂ ker(g(1)) = J × J , hence the composition:

R −→ S(1) −→ (S/J)(1)

factors through the quotient map R −→ R/I, inducing the homomorphism:

(f̄ , δ̄) : R/I −→ (S/J)(1).

This means that δ̄ is an n-derivation of f̄ .

Fact 1.3 Suppose R ⊂ R1, R2 are n-differential ring extensions. Then there
is a unique n-derivation on R1⊗R R2 such that the maps R1, R2 → R1⊗R R2

are n-differential. Moreover R1 ⊗R R2 is the coproduct of R1 and R2 in the
natural category of n-differential R-algebras.

Proof It is a general (obvious) fact about jet operators [Kow, p. 19]. The
n-derivation on R1 ⊗R R2 is given by the following formula:

δ(
∑

i

ai ⊗ bi) =
∑

i

aq
i ⊗ δ(bi) + δ(ai)⊗ bq

i .

Lemma 1.4 Suppose i : R ⊂ S is an extension of domains, and δ : R −→ S
is an n-derivation of i. Then δ extends to an n-derivation of the embedding
R0 −→ S0 of the fields of fractions.

Proof The map (i, δ) : R −→ S(1) is a ring homomorphism. Denote by Φ
the following composition:

R −→ S(1) −→ (S0)(1),

where the latter map comes from the embedding of S into its fraction field
S0. It is enough to check, whether Φ factors through R −→ R0. It does if
Φ(R \ {0}) is a subset of the multiplicative group of (S0)(1).

Take any r ∈ R \ {0}. It is easy to check that

Φ(r) ∗ (
1

i(r)
,− δ(r)

i(r)2q
) = (1, 0) = 1.

Hence Φ(r) is invertible in (S0)(1).
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Now we turn our attention to jet spaces and their connection with extensions
of δ. If L is a field, then an affine L-variety is the set of zeroes in a cartesian
power of Ω of a finite set of polynomials over L (we do not demand L-
irreducibility). For an L-variety V , let IL(V ) = {F ∈ L[X̄] : F (V ) = 0}.
By Hilbert Nullstellensatz and properties of polynomial ideals, L-varieties
correspond to radical ideals in L[X̄], and L-irreducible L-varieties correspond
to prime ideals in L[X̄].

For a field L and a finite tuple a ⊂ Ω, the locus of a over L, denoted by
locusL(a), is the smallest affine L-variety which contains a. It is the set of
zeroes of the ideal IL(a) = {f ∈ L[X̄] : f(a) = 0}. A locus over a field L
is an L-irreducible L-variety and any L-irreducible L-variety is a locus over
L of a certain tuple a ⊂ Ω. An affine variety V is defined over L, if IΩ(V )
can be generated over L[X̄]. Note that locusL(a) need not be defined over
L; e.g. if a ∈ L−Lp, then locusLp(a) is an Lp-variety defined over L and not
defined over Lp (but still definable over Lp).

We fix an n-differential field (K, δ), and denote by C the kernel of δ. One
checks that C is a field, called the field of constants of K. Note some obvious
consequences of the twisted Leibnitz rule (a ∈ K, c ∈ C,m > 0):

δ(am) = ma(m−1)qδ(a), δ(ca) = cqδ(a)

Hence, as in the case of derivations Kp ⊆ C. We call K strict, if Kp = C.

If X̄ = (X1, ..., Xn), X̄ ′ = (X ′
1, ..., X

′
n) are tuples of variables, then X̄ 7→ X̄ ′

extends to an n-derivation of the inclusion K[X̄] ⊂ K[X̄, X̄ ′] extending δ on
K. For F ∈ K[X̄] we have a similar formula as in the (0-)differential case:

δ(F )(X̄, X̄ ′) = F δ(X̄q) +
∑

i

∂F

∂Xi

(X̄)qX ′
i,

where F δ is the polynomial obtained from F by applying δ to its coefficients,
and X̄q = (Xq

1 , ..., X
q
n).

Definition 1.5 Let V be an affine K-variety. The jet space of V , denoted
by V (1), is the set of zeroes of (IK(V ), δ(IK(V ))) ¢ K[X̄, X̄ ′].

One can check that V (1) is a torsor of the n-th Frobenius tangent space to
V , which is the pull-back of the tangent space to Frn(V ) by the morphism
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Frn : V → Frn(V ).
Also, V 7→ V (1) is a functor, and we have always a projection map V (1) → V .
For c ∈ V , we denote by V (1)

c , the fibre of V (1) → V over c.

Fact 1.6 If a, b ∈ Ωm (m > 0) and V = locusK(a), then (a, b) ∈ V (1) if and
only if a 7→ b extends to an n-derivation of the inclusion K[a] ⊂ K[a, b].

Proof Obviously, K[a] ∼= K[X̄]/IK(a) and (a, b) ∈ V (1) if and only if
δ(IK(a)) vanishes at (a, b). The latter condition is equivalent to δ(IK(a)) ⊂
IK(a, b). By 1.2, δ(IK(a)) ⊂ IK(a, b) if and only if a 7→ b extends to an
n-derivation of the inclusion K[a] ⊂ K[a, b].

Remark Note that an n-derivation of K[a] ⊂ K[a, b] not necessarily ex-
tends to an n-derivation of K(a, b). For example we have a derivation of
K[X] ⊂ K[X1/p] induced by δ(X) = X1/p, which clearly does not extend to
K(X1/p). In the next fact, we give conditions equivalent to the existence of
an extension to the fraction field.

Fact 1.7 Let a, b ∈ Ωm (m > 0), V = locusK(a),W = locusK(a, b). The
following are equivalent:
i) There exists an n-derivation on K(a, b) extending δ and taking a to b.
ii) There exists an n-differential field extension K ⊂ M such that a, b ⊂ M
and δ(a) = b.

iii) W ⊂ V (1) and (a, b) ∈ Im(W
(1)
(a,b) → V (1)

a ).

iv) W ⊂ V (1) and W ′ := {(x, y) ∈ W : (x, y) ∈ Im(W
(1)
(x,y) → V (1)

x )} is Zariski
dense in W .

Proof
i)−→ii) Obvious.
ii)−→iii) By 1.6, (a, b) ∈ V (1) and (a, b, b, δ(b)) ∈ W (1), since b = δ(a).
Therefore W ⊂ V (1), and as the map W (1) → V (1) is the restriction of the
projection on the first and third coordinate, we get:

W
(1)
(a,b) 3 (a, b, b, δ(b)) 7→ (a, b) ∈ V (1)

a .

iii) −→ i) By iii), we know that the set

Z := {c ∈ Ωm : (a, b, b, c) ∈ W (1)}
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is non-empty. By the form of δ(F ) (for F ∈ K[X̄]), Z is also the set of zeroes
of linear polynomials over K(a, b), so we can find c ∈ Z(K(a, b)). By 1.6,
there is an n-derivations of the inclusion: K[a, b] ⊂ K[a, b, b, c] taking a to b.
By 1.4, it extends to an n-derivation of the inclusion K(a, b) ⊂ K(a, b, b, c).
But the latter is identity, since c ⊂ K(a, b).
iii)←→iv) Let W ′′ be the Zariski closure of W ′. W ′ is K-definable, hence W ′′

is a K-variety. By quantifier elimination for ACFp, W ′ is K-constructible,
therefore (a, b) ∈ W ′ if and only if W ′ contains a K-definable Zariski open
subset of W . Since W is K-irreducible and W ′′ is a K-variety containing W ′,
the former condition is equivalent to W ′ being Zariski dense in W .

We investigate now algebraic extensions of n-differential fields and show that
the results from differential algebra are still true in this context.

Lemma 1.8 Suppose (K, δ) is an n-differential field. Then δ extends in a
unique way to an n-derivation on the separable closure of K. Moreover, if
K ⊂ L is any n-differential field extension, then the derivation on L preserves
the relative separable closure of K in L.

Proof Let b ∈ Ω be separable over K, and F ∈ K[X] be the minimal
polynomial of b over K. For G ∈ K[X], we define δ on K[X] extending the
n-derivation on K and such that δ(X) = G. Then:

δ(F )(X) = F δ(Xq) + (F ′qG)(X)

By 1.2, we need to find a polynomial G such that I, the ideal generated by
F , is preserved by δ. By the twisted Leibnitz rule, it is enough to find G
such that δ(F ) ∈ I.

Since K[X]/I is a field, it is enough to show that F ′q /∈ I. Since F is
separable, F ′ 6= 0 and deg(F ′) < deg(F ). Hence F ′q can not belong to the
maximal ideal I.

Therefore, we can extend δ to K(b), for any b separable over K. Since
DFp,n is inductive, we can extend δ to the separable closure of K.

Uniqueness and the moreover claim follow in the same way: for b ∈ L

separable over K and F a minimal polynomial of b over K, δ(b) = −F δ(bq)
F ′q(b)

,

so δ(b) is uniquely determined and separable over K (even δ(b) ∈ K(b)).

In a similar manner we prove:
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Lemma 1.9 Any n-differential field has a separably closed strict extension.

Let Lλ be the language of (n-)differential fields expanded by the symbols
for the λ-functions, see [Ch, 1.8] for the definition of the λ-functions. Since
the λ-functions are definable in the pure field language, any n-differential field
has naturally the Lλ-structure. We will use thoroughly the fact that the ex-
tensions of fields preserving λ-functions are exactly the separable extensions
[Ch, 1.9].

Fact 1.10 The theory of n-differential fields has the amalgamation property
and is universal in the language Lλ.

Proof The proof of the amalgamation property goes similarly as in [Zi]. Let
K ⊂ K1, K2 be extensions of Lλ-structures (in particular, separable exten-
sions). Using 1.8, we can assume that K1, K2 are separably closed. Hence
Ks, the separable closure of K is a subfield of K1, K2. By the uniqueness
and moreover claim in 1.8, Ks is an n-differential subfield of K1, K2 and the
induced n-differential structures coincide. The extensions Ks ⊂ K1, K2 are
still separable, because if we take a p-basis of K, it remains a p-basis of Ks

and is still p-independent in K1, K2. Therefore, we can assume (replacing K
by Ks) that the extensions K ⊂ K1, K2 are regular. We can also assume that
K1 is a lgebraically disjoint from K2 over K. Hence, by the regularity of the
extensions, K1 is linearly disjoint from K2 over K [FJ, 9.9]. This means that
K1K2

∼=K (K1⊗K K2)0, the field of fractions of K1⊗K K2, and the extensions
K1, K2 ⊂ K1K2 are separable (even regular [FJ, 9.10]). By 1.3 and 1.4, δ
extends to K1K2, so the extensions K1, K2 ⊂ K1K2 are Lλ-extensions.

It remains to show that DFp,n is universal in Lλ. The sentences expressing
properties of λ-functions are actually existential, but any Lλ-substructure of
an Lλ-model of DFp,n is still an Lλ-model of DFp,n, since the λ-functions
are also the Skolem functions for the sentences expressing p-independence.
Namely, we can write an universal sentence expressing that a tuple is p-
independent, as well as a universal sentence expressing that the p-th powers
of λ-functions are p-coordinates of a p-dependent tuple.

Remark 1.11 The above fact was proved in [Kol] in the case of n = 0 (i.e.
for differential fields).

Remark 1.12 DFp,n does not have the amalgamation property in the lan-
guage of n-differential fields.
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Proof An example from [Wo1] works also for n-differential fields.
Namely, if K is an n-differential field and a ∈ K −Kp such that δ(a) = 0,
then δ extends to K(a1/p) with an arbitrary value for δ(a1/p) (since the ideal
(Xp−a)K[X] is closed under δ, no matter how δ(X) is defined). Hence there
are extensions of K with e.g. δ(a1/p) = 0 and δ(a1/p) = 1 and they can not
be amalgamated.

2 The model companion of DFp,n

Now we are ready to give axioms of the model companion of DFp,n, which
we call DCFp,n. The axioms actually consist of a scheme of axioms.

Axioms of DCFp,n

Suppose V , W are K-irreducible K-varieties, and X is a proper K-
subvariety of W . If W ⊂ V (1), W projects generically onto V , and the
set

{(x, y) ∈ W : (x, y) ∈ Im(W
(1)
(x,y) → V (1)

x )}
is Zariski dense in W , then there is a ∈ V (K) such that (a, δ(a)) ∈
W −X.

We need to say a word whether this scheme of axioms is first-order. It is
rather standard (see the axiomatization of ACFA in [CH], or SCFA in [Ch]).
The main point is that the theory ACFp is strongly minimal, eliminates quan-
tifiers and is complete. In particular, the most important density assumption
translates as a quantifier-free formula in the language of fields about the pa-
rameters defining W and V saying that the Morley rank of a subset of W
coincides with the Morley rank of W . This formula is true in Ω if and only
if it is true in K. The definability of being K-irreducible (even uniformly in
K) is classical, see the introduction to Chapter IV in [vdD] (van den Dries
also gives a new proof there).
As usual, we can remove X from the assumptions by replacing W with some
higher-dimensional K-variety.

Theorem 2.1 K is an existentially closed model of DFp,n if and only if
K |= DCFp,n .
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Proof
=⇒ Take V , W and X satisfying the axiom assumptions. Since V and W are
irreducible K-varieties and W projects generically onto V , there are a, b ⊂ Ω
such that V = locusK(a), W = locusK(a, b).

By the density assumption and 1.7, there exists an n-derivation δ on
K(a, b) such that δ(a) = b. Obviously (a, b) ∈ W−X. Since K is existentially
closed, we can find a′ ∈ V (K) such that (a′, δ(a′)) ∈ W −X.
⇐= By the standard trick, it is enough to show that for any quantifier-free
ζ(x, y) in the language of fields, if M |= (∃x)ζ(x, δ(x)) for some n-differential
field M extending K, then K |= (∃x)ζ(x, δ(x)).

Take a ⊂ M such that M |= ζ(a, δ(a)) and let V = locusK(a), W =
locusK(a, δ(a)). We take X such that the axiom assumptions concerning it
are satisfied and ζ(x, y) is implied by (x, y) ∈ W −X.

By 1.7, the density assumption holds. Hence we get a′ ∈ V (K) such that
(a′, δ(a′)) ∈ W −X. Therefore K |= (∃x)ζ(x, δ(x)).

Now, we discuss the model-theoretical properties of DCFp,n. We follow the
lines from [Wo1]. Let L denotes the language of n-differential fields and Lλ

the language of n-differential fields with λ-functions. In the next theorem we
list some algebraic and model-theoretic properties of DCFp,n . We say that an
n-differential field K is n-differentially perfect if any n-differential extension
of K is separable.

Theorem 2.2 (i) Models of DCFp,n (as pure fields) are separably closed and
of infinite imperfection degree.
(ii) Models of DCFp,n are n-differentially perfect.
(iii) DCFp,n has the amalgamation property and the join embedding property
in L and Lλ.
(iv) DCFp,n is the model companion of DFp,n in L. DFp,n does not have the
model completion in L. DCFp,n is complete.
(v) DCFp,n is the model completion of DFp,n in Lλ. DCFp,n has quantifier
elimination in Lλ.

Proof
(i) By 1.9 and 2.1, models of DCFp,n are separably closed.
Take K |= DCFp,n and assume that the imperfection degree of K is finite.
Let a1, . . . am be a basis of K over Kp. For convenience, we take the actual
basis as opposed to a p-basis, so the imperfection degree of K equals logp m.
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We are looking for a contradiction.
For n = 0, the result was proved by Wood [Wo1]. Let us assume n > 0.
By the universal property of the ring of polynomials, equivalence of n-
derivations with certain homomorphisms of rings and 1.4, we can extend
an n-derivation δ on K to K(X) (the field of rational functions) such that
δ(X) = X. Since DFp,n is inductive, there exists K̄, an existentially closed
extension of K. Since K ≺ K̄, a1, . . . am is a basis of K̄ over K̄p. Therefore
we can write

X =
m∑

i=1

αiai

for certain α1, . . . , αm ∈ K̄p.
Let B = (bij) ∈ Mm(Kp) such that for each i ≤ m, δ(ai) =

∑
j bijaj. Then

X = δ(X) =
m∑

i=1

αq
i δ(ai) =

m∑

i,j

αq
i bijai.

Let ᾱ = (α1, . . . , αm). By the previous computation, Bᾱq = ᾱ.
Let X̄ = (X1, . . . , Xm) be a tuple of variables and consider BX̄q − X̄, the
tuple of polynomials over K. Then BX̄q−X̄ vanishes on α and the Jacobian
of BX̄q − X̄ is the identity matrix (we use n > 0 here!).
By [La, Chapter VIII, 5.3], the extension K ⊆ K(ᾱ) is separable algebraic.
Since K is separably closed, αi ∈ K for each i ≤ m. Therefore X ∈ K, a
contradiction.
(ii) Take K ⊂ M , an extension of n-differential fields with K |= DCFp,n .
Take a finite tuple a from K. Since K is existentially closed, and the sen-
tence expressing that a is linearly dependent over the field of p-th powers is
existential, a is linearly dependent over Kp if and only if a is linearly depen-
dent over Mp.
(iii) DCFp,n has the amalgamation property in Lλ by 1.10 and the induc-
tiveness of DFp,n . By (ii), any L-extension of models of DCFp,n is also an
Lλ-extension, hence DCFp,n has also the amalgamation property in L.
For the joint embedding property, take K, M |= DCFp,n . Let F denotes the
algebraic closure of the prime field. By (i), we can assume that F (together
with the 0-function as the n-derivation) is an n-differential subfield of both
K and M . Since F is perfect, the extensions F ⊂ K, M are separable, hence
they are Lλ-extensions. By 1.10 and the inductiveness of DFp,n , K and M
jointly L-embed into a model of DCFp,n . By (ii), DCFp,n has also the joint
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embedding property in Lλ.
(iv) Since DFp,n is inductive, the model companion of DFp,n exists if and
only if the class of existentially closed models of DFp,n is elementary, and is
given by an axiomatization of this class [Ho, 8.3.6].
By (iii) and 2.1, DCFp,n is complete.
Since DFp,n does not have the amalgamation property in L (1.12), it does
not have the model completion in L.
(v) By (ii), any L-extension of a model of DCFp,n is also an Lλ-extension,
hence (by (iii)) DCFp,n is the model companion of DFp,n in Lλ as well. Since
DFp,n has the amalgamation property and is universal in Lλ (1.10), DCFp,n

is the model completion of DFp,n in Lλ and DCFp,n has quantifier elimination
in Lλ.

In the theory DCFp, we get the elimination of quantifiers just after adding
the λ0-function (the inverse of Frobenius on Kp, zero elsewhere). It is implied
by the fact that the strict differential fields are differentially perfect. We do
not know, if this is true in the case of n-differential fields, however (as in
[Wo1]), if a field is n-differentially perfect, then it is strict (see the proof of
1.12).
What we really need is the property that for any extension K ⊂ L of n-
differential fields, the constants of L are linearly disjoint from K over the
constants of K. To prove this the Wronskian technique is needed. This tech-
nique does not work in the n-differential case (for n > 0). For instance the
solutions of the equation X ′′ = 0 can have infinite dimension over constants:
e.g. if δ = Frn ◦ δ′ (n > 0), where δ′ is a derivation on K such that K has
the infinite dimension over constants of δ′. The usage of Wronskian for n = 0
gives that the dimension of the solution set of the equation X ′′ = 0 is not
bigger than 2.
Using Wronskian, one can also easily show that models of DCFp have infinite
imperfection degree: dependence over constants becomes a quantifier-free
condition, so having big imperfection degree becomes an existential condi-
tion. Note also that our proof of 2.1(i) does not work in the (0-)differential
case.
The reason of the non-existence of Wronskian for n > 0 is the following: the
composition of two n-derivations is a 2n-derivation, and to use Wronskian
effectively we need higher order operators. But maybe some other techniques
may be used, or the higher order operators may be obtained in an indirect
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way, so we find it natural to ask the following:

Question 1 Let K ⊂ L be an n-differential field extension. Are the con-
stants of L linearly disjoint from K over the constants of K?

Question 2 Is any strict n-differential field n-differentially perfect?

Question 3 Does DCFp,n has elimination of quantifiers in the language with
the inverse of Frobenius?

As it was explained above, the positive answer to Question 1 implies the
positive answer to Question 2 and the positive answer to Question 2 implies
the positive answer to Question 3.

Our axioms of DCFp,n include the Wood axiomatization [Wo1] of DCFp

in the case of n = 0. Let us recall these axioms:

• K is strict.

• If F, G are differential polynomials over K in one variable, ord(G) =
m, ord(F ) < m, and ∂G

∂X(m) 6= 0, then there exists a ∈ K such that
G(a) = 0, F (a) 6= 0.

Note that these axioms make perfect sense also for n-derivations.
If we set V = Am, W = Z(X ′

1 = X2, ..., X
′
m−1 = Xm, G(X1, ..., Xm, X ′

m)),
X = W∩Z(F (X1, ..., Xm)), then finding a ∈ K such that G(a) = 0, F (a) 6= 0
is equivalent to finding a ∈ V (K) such that (a, δ(a)) ∈ W −X (for δ, an n-
derivation on K). The condition ∂G

∂X(m) 6= 0 means exactly that the morphism
W → V is separable. This morphism is separable if and only if the tangent
morphism TwW → TvV is surjective for a generic w ∈ W if and only if the n-
th Frobenius tangent morphism F nTwW → F nTvV is surjective for a generic
w ∈ W . As the jet space is a torsor of the n-th Frobenius tangent space (see
remark after 1.5), the separability of W → V implies the density assumption
axioms of DCFp,n. So the Wood axioms are a part of our axioms in the
case of n = 0, similarly as in the characteristic zero case, the Blum axioms
are a part of Pierce-Pillay axioms [PP]. For p = 0, the density assumption
is superfluous, since a dominant morphism is always separable. Removing
this assumption from our axioms, we get exactly the Pierce-Pillay axioms of
DCF0. Pierce [Pi] has recently given new geometric axioms of DCF (including
the positive characteristic case) and ACFA of somewhat dual nature to the
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original axioms.
It is natural to ask the following:

Question 4 Suppose that the density assumption in Axiom 2 is replaced by
the separability of the morphism W → V together with the strictness of K.
Does it still axiomatize DCFp,n?

Question 5 Can DCFp,n be axiomatized by the Wood axioms?

The positive answer to Question 5 implies the positive answer to Question
4, since the axioms from Question 4 still include the Wood axioms.

The last question concerns the behavior of compositions of n-derivations:

Question 6 Suppose n > 0 and (K, δ) is a model of DCFp,n . Is (K, δ ◦ δ) a
model of DCFp,2n?

To prove stability of DCFp,n we need the fact below. For necessary definitions
see [De2]. We say that for K ⊂ L ⊂ F,K ⊂ M ⊂ F , separable extensions
of fields, L is p-disjoint from M over K in F , if any subset of L which
is p-free over K in F , remains p-free over M in F . This is equivalent to
saying that there exist p-bases BK , BL, BM of K,L, M respectively such that
BK ⊂ BL, BM and BL ∪ BM is p-independent in F . By [De1, p. 63], if
F above is an enough saturated model of SCFp,∞ (the theory of separably
closed fields of infinite imperfection degree), then L is forking independent
from M over K if and only if L is p-disjoint and algebraically disjoint (in
this case equivalently linearly disjoint) from M over K in F .

Fact 2.3 Suppose K ⊂ L ⊂ F, K ⊂ M ⊂ F are separable extensions of n-
differential fields , F (as a pure field) is an enough saturated model of SCFp,∞
and a ∈ F . Then:
i) If L is p-disjoint from M over K in F , then the extension LM ⊂ F is
separable.
ii) There exists Ka, a countable Lλ-substructure of F containing a, such that
Ka is SCFp,∞-independent from K over Ka ∩K.

Proof
i) This is a fact about pure separable fields, and its proof appears in [Wo2].
It is enough to notice that BL ∪ BM (BL, BM as above) is a p-basis of LM
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and is still p-independent in F .
ii) By stability of SCFp,∞, for any countable a ⊂ F , there exists a countable
field k ⊂ K such that a is SCFp,∞-independent from K over k. Then K(a),
the smallest λ-closed subfield of F containing k(a) satisfies the statement
of (ii) except it is not n-differential subfield. But we can take a1, the n-
differential field generated by K(a), and apply to this countable tuple the
above construction again. Then we finish using the usual chain procedure.

Theorem 2.4 DCFp,n is stable and not superstable.

Proof Since models of DCFp,n are not perfect (as fields), DCFp,n is not
superstable. To prove stability we follow the Shelah’s proof of stability of
DCFp [Sh]. We need to prove that for any pair K ⊂ L of models of DCFp,n,
there at most |K|ℵ0 1-types over K of elements of L. We can assume that
L (as a pure field) is an enough saturated model of SCFp,∞. By 2.5(ii), to
any a ∈ L we can associate Ka, a countable Lλ-substructure of L such that
a ∈ Ka and Ka is linearly disjoint and p-independent from K over K ∩Ka.

For a, b ∈ L, we let a ∼ b, if K ∩Ka = K ∩Kb and Ka is n-differentially
isomorphic to Kb over K ∩Ka by a map sending a to b. There are obviously
≤ |K|ℵ0 equivalence classes of ∼. Suppose a ∼ b and let k := K∩Ka. By 1.3,
we can extend the n-differential isomorphism between Ka and Kb to an n-
differential isomorphism Ka⊗k K ∼=K Kb⊗k K. By the linear disjointness, we
get a field isomorphism (Ka⊗kK)0

∼=K KaK and (Kb⊗kK)0
∼=K KbK. These

isomorphisms are n-differential by the uniqueness of the n-derivations on the
fields in question. Hence KaK and KbK are n-differentially isomorphic over
K. The extensions KKa, KKb ⊂ L are separable by 2.5(i), so KKa, KKb

are Lλ-substructures of L. By 2.4, DCFp,n has elimination of quantifiers in
Lλ, thus a and b have the same types over K.

Therefore, the equality of types is coarser than ∼, so there are ≤ |K|ℵ0

types over K.

The proof of 2.6 also shows that the non-forking independence relation in
DCFp,n is (as usual) the natural one: A is independent from B over C, if
< A >λ is SCFp,∞-independent from < B >λ over < C >λ, where for a set
D, < D >λ is the Lλ-substructure generated by D.

The theory DCFp,n is an expansion of SCFp,∞, which behaves to a certain
degree similarly as DCFp. It seems interesting to go to the limit with n, i.e.
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to consider the theory DCFp,∞, the limit theory (ultraproduct) of DCFp,n as
n goes to infinity. This will be done in the forthcoming paper.
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