Descriptive Complexity of Finite Structures: Saving the Quantifier Rank

Oleg Pikhurko* and Oleg Verbitsky ${ }^{\dagger}$

Abstract

We say that a first order formula Φ distinguishes a structure M over a vocabulary L from another structure M^{\prime} over the same vocabulary if Φ is true on M but false on M^{\prime}. A formula Φ defines an L-structure M if Φ distinguishes M from any other non-isomorphic L-structure M^{\prime}. A formula Φ identifies an n-element L-structure M if Φ distinguishes M from any other non-isomorphic n-element L-structure M^{\prime}.

We prove that every n-element structure M is identifiable by a formula with quantifier rank less than $\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2$ and at most one quantifier alternation, where k is the maximum relation arity of M. Moreover, if the automorphism group of M contains no transposition of two elements, the same result holds for definability rather than identification.

The Bernays-Schönfinkel class consists of prenex formulas in which the existential quantifiers all precede the universal quantifiers. We prove that every n-element structure M is identifiable by a formula in the Bernays-Schönfinkel class with less than $\left(1-\frac{1}{2 k^{2}+2}\right) n+k$ quantifiers. If in this class of identifying formulas we restrict the number of universal quantifiers to k, then less than $n-\sqrt{n}+k^{2}+k$ quantifiers suffice to identify M and, as long as we keep the number of universal quantifiers bounded by a constant, at total $n-O(\sqrt{n})$ quantifiers are necessary.

[^0]
Contents

1 Introduction 3
2 Background 6
2.1 Notation 6
2.2 Basic definitions 7
2.3 The Ehrenfeucht game 8
3 Exploring structural properties of finite structures 9
3.1 A few useful relations 9
3.2 A couple of useful transformations 11
3.3 The many-layered base of a finite structure 11
4 Identifying finite structures with smaller quantifier rank 14
4.1 Spoiler's strategy 14
4.2 Estimation of the length of the game 20
4.3 Definability results 21
4.3.1 Definability of irredundant structures 21
4.3.2 A further refinement 22
4.3.3 Cloning an element of a structure 22
4.3.4 An upper bound for $\mathrm{D}(M)$ 26
5 Identifying finite structures by Bernays-Schönfinkel formulas 28
5.1 Notation 28
5.2 A couple of useful formulas 29
5.3 The first way of identification 29
5.4 The second way of identification 30
5.5 The third way of identification 32
5.6 Putting it together 32
6 Identifying finite structures by Bernays-Schönfinkel formulas with bounded number of universal quantifiers 33
7 The case of graphs 35
8 Open problems 38

1 Introduction

Let M be a structure over a vocabulary L. A closed first order formula Φ with relation symbols in $L \cup\{=\}$ is either true or false on M. If M^{\prime} is another L structure isomorphic with M, then Φ is equally true or false on M and M^{\prime}. On the other hand, if M is finite and M^{\prime} is non-isomorphic with M, then there is a formula $\Phi_{M, M^{\prime}}$ that is true on M and false on M^{\prime}. As it is well known, for infinite structures this is not necessary true. In this paper, however, we deal only with finite structures. We call the number of elements of a structure M its order.

If a first order formula Φ is true on M but false on M^{\prime}, we say that Φ distinguishes M from M^{\prime}. We say that Φ defines an L-structure M if Φ distinguishes M from any other non-isomorphic L-structure M^{\prime}. Furthermore, a formula Φ identifies a finite L-structure M if Φ distinguishes M from any other non-isomorphic L-structure M^{\prime} of the same order.

We address the question how simple a formula identifying (defining) a finite structure can be. The complexity measure of a first order formula we use here is the quantifier rank, that is, the maximum number of nested quantifiers in a formula. Let $\mathrm{I}(M)$ (resp. $\mathrm{D}(M)$) denote the minimum quantifier rank of a formula identifying (resp. defining) a structure M. We will pay a special attention to formulas of restricted logical structure. The alternation number of a formula Φ is the maximum number of quantifier alternations over all possible sequences of nested quantifiers under the assumption that Φ is reduced to its negation normal form, i.e., all negations are assumed to occur only in front of atomic subformulas. By $\mathrm{I}_{l}(M)$ and $\mathrm{D}_{l}(M)$ we denote the variants of $\mathrm{I}(M)$ and $\mathrm{D}(M)$ for the class of formulas with alternation number at most l.

We will estimate $\mathrm{I}(M)$ and $\mathrm{D}(M)$ as functions of the order of M. The latter is denoted throughout the paper by n. A simple upper bound for $\mathrm{I}(M)$ is

$$
\mathrm{I}_{0}(M) \leq n
$$

Indeed, every structure M is identified by formula

$$
\begin{equation*}
\exists x_{1} \ldots \exists x_{n}\left(\bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j} \wedge \Psi_{M}\left(x_{1}, \ldots, x_{n}\right)\right), \tag{1}
\end{equation*}
$$

where Ψ_{M} is the conjunction that gives an account of all relations between elements of M and negations thereof. For example, if M consists of a single binary relation R^{M} on the set $\{1, \ldots, n\}$, then

$$
\Psi_{M}=\bigwedge_{(i, j) \in R^{M}} R\left(x_{i}, x_{j}\right) \wedge \bigwedge_{(i, j) \notin R^{M}} \neg R\left(x_{i}, x_{j}\right) .
$$

It is an easy exercise to show that, if M has only unary relations, then $\mathrm{I}_{0}(M) \leq$ $(n+1) / 2$. In [14] we prove the following results. If M has only unary and binary relations, then $\mathrm{I}_{1}(M) \leq(n+3) / 2$. In the particular case that M is an ordinary undirected graph, we are able to improve on the alternation number by showing
that then $\mathrm{I}_{0}(M) \leq(n+5) / 2$. It is not hard to show that these bounds are tight up to a small additive constant. If M is a k-uniform hypergraph, we have the bound $\mathrm{I}_{1}(M) \leq(1-1 / k) n+2 k-1$.

Here we continue the research initiated in [14] and prove a general upper bound

$$
\begin{equation*}
\mathrm{I}_{1}(M)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2 \tag{2}
\end{equation*}
$$

where k, here and throughout, denotes the maximum relation arity of the vocabulary L.

A simple upper bound for $\mathrm{D}(M)$ is

$$
\mathrm{D}_{1}(M) \leq n+1
$$

An appropriate defining formula is

$$
\exists x_{1} \ldots \exists x_{n} \forall x_{n+1}\left(\bigwedge_{1 \leq i<j \leq n}\left(x_{i} \neq x_{j}\right) \wedge \bigvee_{i=1}^{n}\left(x_{n+1}=x_{i}\right) \wedge \Psi_{M}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where Ψ_{M} is as in (1). The upper bound of $n+1$ is generally best possible. For example, we have $\mathrm{D}\left(M_{n}\right)=n+1$ if M_{n} consists of the single totally true unary relation or is a complete graph on n vertices. However, for a quite representative class of structures we are able to prove a better bound. We call a structure irredundant if its automorphism group contains no transposition of two elements. Similarly to (2), for any irredundant structure M we obtain

$$
\begin{equation*}
\mathrm{D}_{1}(M)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+1 . \tag{3}
\end{equation*}
$$

This is a qualitative extension of a result in [14], where the bound $\mathrm{D}_{1}(M) \leq n / 2+2$ is proved for any irredundant structure M with maximum relation arity 2 . On the other hand, there are simple examples of irredundant structures with $\mathrm{D}(M) \geq n / 4$ (see Remark 4.4).

In fact, the bound $\mathrm{D}_{1}(M)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2$ may not hold only for structures with a simple, easily recognizable property. Namely, given elements u and v of M, let us call them similar if the transposition of u and v is an automorphism of M. It turns out that, either we have the upper bound for $\mathrm{D}_{1}(M)$ or otherwise M has more than $\left(1-\frac{1}{2 k}\right) n+(k-1)^{2}$ pairwise similar elements. In the latter case we are able to easily compute the value of $\mathrm{D}(M)$ up to an additive constant of k. For graphs such a dichotomy result was obtained in [14].

Furthermore, we address the identification of finite structures by formulas of the simplest logical structure, namely, those in the prenex normal form (or prenex formulas). In this case the quantifier rank is just the number of quantifiers occurring in a formula. Let $\Sigma_{1}\left(\right.$ resp. $\left.\Pi_{1}\right)$ consist of the existential (resp. universal) prenex formulas. Furthermore, let $\Sigma_{i}\left(\right.$ resp. $\left.\Pi_{i}\right)$ be the extension of $\Sigma_{i-1} \cup \Pi_{i-1}$ with prenex formulas whose quantifier prefix begins with \exists (resp. with \forall) and has less than i quantifier alternations. In particular, Σ_{2} is the well-known Bernays-Schönfinkel class
of formulas (see [4] for the role of this class in finite model theory). Define $\mathrm{P}_{i}(M)$ to be the minimum number of quantifiers in a $\Sigma_{i} \cup \Pi_{i}$ formula identifying a structure M. Similarly, let $\mathrm{BS}(M)$ be the minimum number of quantifiers of an identifying formula in the Bernays-Schönfinkel class Σ_{2}. We hence have the following hierarchy:

$$
\begin{align*}
& \mathrm{I}(M) \leq \mathrm{I}_{i-1}(M) \leq \mathrm{P}_{i}(M) \leq \mathrm{P}_{i-1}(M), \quad i \geq 1 \\
& \mathrm{P}_{2}(M) \leq \mathrm{BS}(M) \leq \mathrm{P}_{1}(M) \leq n \tag{4}
\end{align*}
$$

The upper bound of n is here due to the identifying formula (2). The bound $\mathrm{P}_{1}(M) \leq$ n is generally best possible. It is attained, for example, if M consists of the single unary relation true on all but one elements of the structure.

Our concern becomes therefore $\mathrm{BS}(M)$, the next member at the top of the hierarchy (4). We prove that

$$
\begin{equation*}
\mathrm{BS}(M)<\left(1-\frac{1}{2 k^{2}+2}\right) n+k \tag{5}
\end{equation*}
$$

Though the multiplicative constant in (5) is worse than that in the bound (2), the bound (5) may be regarded as a qualitative strengthening of (2) because the class of formulas in the former result is much more limited than that in the latter result. Curiously, the bound (5) strengthens the bound (2) also quantitatively if we consider a somewhat unusual complexity measure of a formula, namely, the total number of quantifiers occurring in it.

If we restrict the number of universal quantifiers to a constant, Bernays-Schönfinkel formulas become much less powerful. Let $\mathrm{BS}_{q}(M)$ denote the minimum total number of quantifiers in a Bernays-Schönfinkel formula identifying M with at most q universal quantifiers. We prove that $\mathrm{BS}_{k}(M)<n-\sqrt{n}+k^{2}+k$ and that $\mathrm{BS}_{q}(M) \geq$ $n-O(\sqrt{n})$ as long as q is bounded by a constant.

To prove (2), we use the characterization of the quantifier rank of a formula distinguishing structures M and M^{\prime} as the length of the Ehrenfeucht game on M and $M^{\prime}[3]$ (an essentially equivalent characterization in terms of partial isomorphisms between M and M^{\prime} and extensions thereof is due to Fraïssé [5]). Unlike (2), our proof of (5) uses a direct approach. Nevertheless, both the results share the same background which is based on the notion of a base of a structure M.

Given a set X of elements of M and elements u and v of M, we say that X separates u and v if the extension of the identity map of X onto itself taking u to v is not a partial automorphism of M. Clearly, no X can separate similar u and v. On the other hand, if X separates every two non-similar elements in the complement of X, we call X a base of M. Every M trivially has $(n-1)$-element bases. Our technical results imply that a considerably smaller base always exists. ${ }^{1}$

[^1]Related work. Our paper is focused on the descriptive complexity of individual structures as opposed to the descriptive complexity of classes of structures. The latter is the subject of a large research area, which is emphasized much on the monadic second order logic (we refer the reader to the survey [4] and textbooks $[2,8]$).

The identification of graphs in first order logic is studied in $[9,10,1,6,7]$ in aspects relevant to computer science. The main focus of this line of research is on the minimum number of variables in an identifying formula, where formulas are in the first order language enriched by counting quantifiers. This complexity measure of a formula corresponds to the dimension of the Weisfeiler-Lehman algorithm that succeeds in finding a canonic form of a graph [1].

The present paper studies, in a sense, the worst case descriptive complexity of a structure. Two other possibilities, the "best" and average structures, are considered in [13] and [11] in the case of graphs.

Organization of the paper. In Section 2 we explain the notation used throughout the paper, recall some basic definitions, define the Ehrenfeucht game and state its connection to distinguishing non-isomorphic structures in first order logic. In Section 3 we introduce some relations, partitions, transformations, and constructions over a finite structure and explore their properties. The main task performed in this section is construction of a particular base in an arbitrary structure. We will benefit from these preliminaries while proving our both main results, bounds (2) and (5), in Sections 4 and 5 respectively. In Section 4 we also prove the bound (3) and the other definability results. Section 6 is devoted to identification by BernaysSchönfinkel formulas with bounded number of universal quantifiers. In Section 7 we focus on graphs and improve the bound (5) for this class of structures. We conclude with a list of open problems in Section 8.

2 Background

2.1 Notation

Writing $\bar{u} \in U^{k}$ for a set U and a positive integer k, we mean that $\bar{u}=\left(u_{1}, \ldots, u_{k}\right)$ with $u_{i} \in U$ for every $i \leq k$. If $u, v \in U$, then $\bar{u}^{(u v)}$ denotes ${ }^{2}$ the result of substituting v in place of every occurrence of u in \bar{u} and substituting u in place of every occurrence of v in \bar{u}. Here $(u v)$ denotes the transposition of u and v, that is, the permutation of U interchanging u and v and leaving the remaining elements unchanged. Given a function ϕ defined on U, we extend it over U^{k} by $\phi(\bar{u})=\left(\phi\left(u_{1}\right), \ldots, \phi\left(u_{k}\right)\right)$ for $\bar{u} \in U^{k}$.

Notation id_{U} stands for the identity map of a set U onto itself. The domain and range of a function f are denoted by $\operatorname{dom} f$ and range f respectively. By $f^{(k)}$ we denote the k-fold composition of f.

[^2]
2.2 Basic definitions

A k-ary relation R on a set V (or a relation R of arity k) is a function from V^{k} to $\{0,1\}$. A vocabulary is a finite sequence R_{1}, \ldots, R_{m} of relation symbols along with a sequence k_{1}, \ldots, k_{m} of positive integers, where each k_{i} is the arity of the respective R_{i}. If L is a vocabulary, a finite structure A over L (or an L-structure A) is a finite set $V(A)$, called the universe, along with relations $R_{1}^{A}, \ldots, R_{m}^{A}$, where R_{i}^{A} has arity k_{i}. The order of A is the number of elements in the universe $V(A)$. If $U \subseteq V(A)$, then A induces on U the structure $A[U]$ with the universe $V(A[U])=U$ and relations $R_{1}^{A[U]}, \ldots, R_{m}^{A[U]}$ such that $R_{i}^{A[U]} \bar{a}=R_{i}^{A} \bar{a}$ for every $\bar{a} \in U^{k_{i}}$. Two L structures A and B are isomorphic if there is a one-to-one map $\phi: V(A) \rightarrow V(B)$, called an isomorphism from A to B, such that $R_{i}^{A} \bar{a}=R_{i}^{B} \phi \bar{a}$ for every $i \leq m$ and all $\bar{a} \in V(A)^{k_{i}}$. An automorphism of A is an isomorphism from A to itself. If $U \subseteq V(A)$ and $W \subseteq V(B)$, we call a one-to-one map $\phi: U \rightarrow W$ a partial isomorphism from A to B if it is an isomorphism from $A[U]$ to $B[W]$.

Without loss of generality we assume first order formulas to be over the set of connectives $\{\neg, \wedge, \vee\}$.

Definition 2.1 A sequence of quantifiers is a finite word over the alphabet $\{\exists, \forall\}$. If S is a set of such sequences, then $\exists S$ (resp. $\forall S$) means the set of concatenations $\exists s$ (resp. $\forall s$) for all $s \in S$. If s is a sequence of quantifiers, then \bar{s} denotes the result of replacement of all occurrences of \exists to \forall and vice versa in s. The set \bar{S} consists of all \bar{s} for $s \in S$.

Given a first order formula Φ, its set of sequences of nested quantifiers is denoted by $\operatorname{Nest}(\Phi)$ and defined by induction as follows:

1) $\operatorname{Nest}(\Phi)=\{\lambda\}$ if Φ is atomic, where λ denotes the empty word.
2) $\operatorname{Nest}(\neg \Phi)=\overline{\operatorname{Nest}(\Phi)}$.
3) $\operatorname{Nest}(\Phi \wedge \Psi)=\operatorname{Nest}(\Phi \vee \Psi)=\operatorname{Nest}(\Phi) \cup \operatorname{Nest}(\Psi)$.
4) $\operatorname{Nest}(\exists x \Phi)=\exists \operatorname{Nest}(\Phi)$ and $\operatorname{Nest}(\forall x \Phi)=\forall \operatorname{Nest}(\Phi)$.

The quantifier rank of a formula Φ, denoted by $\mathrm{qr}(\Phi)$, is the maximum length of a string in $\operatorname{Nest}(\Phi)$.

Given a sequence of quantifiers s, let alt (s) denote the number of occurrences of $\exists \forall$ and $\forall \exists$ in s. The alternation number of a first order formula Φ is the maximum $\operatorname{alt}(s)$ over $s \in \operatorname{Nest}(\Phi)$.

Given an L-structure A and a closed first order formula Φ whose relation symbols are from $L \cup\{=\}$, we write $A \models \Phi$ if Φ is true on A and $A \not \models \Phi$ otherwise. Given A, a formula $\Psi\left(x_{1}, \ldots, x_{m}\right)$ with m free variables x_{1}, \ldots, x_{m}, and a sequence a_{1}, \ldots, a_{m} of elements in $V(A)$, we write $A, a_{1}, \ldots, a_{m} \models \Psi\left(x_{1}, \ldots, x_{m}\right)$ if $\Psi\left(x_{1}, \ldots, x_{m}\right)$ is true on A with each x_{i} assigned the respective a_{i}.

If B is another L-structure, we say that a formula Φ distinguishes A from B if $A \models \Phi$ but $B \not \vDash \Phi$. We say that Φ defines an L-structure A (up to an isomorphism)
if Φ distinguishes A from any non-isomorphic L-structure B. We say that Φ identifies an L-structure A of order n (up to an isomorphism in the class of L-structures of the same order) if Φ distinguishes A from any non-isomorphic L-structure B of order n.

By $\mathrm{D}(A, B)$ (resp. $\left.\mathrm{D}_{l}(A, B)\right)$ we denote the minimum quantifier rank of a formula (resp. with alternation number at most l) distinguishing a structure A from a structure B. By $\mathrm{D}(A)$ (resp. $\mathrm{D}_{l}(A)$) we denote the minimum quantifier rank of a formula defining A (resp. with alternation number at most l). By $\mathrm{I}(A)$ (resp. $\mathrm{I}_{l}(A)$) we denote the minimum quantifier rank of a formula identifying A (resp. with alternation number at most l).

Lemma 2.2 Let A be a finite structure over vocabulary L. Then the following equalities hold true:

$$
\begin{aligned}
\mathrm{D}(A) & =\max \{\mathrm{D}(A, B): B \not \approx A\}, \\
\mathrm{D}_{l}(A) & =\max \left\{\mathrm{D}_{l}(A, B): B \not \approx A\right\}, \\
\mathrm{I}(A) & =\max \{\mathrm{D}(A, B): B \nsubseteq A,|V(B)|=|V(A)|\}, \\
\mathrm{I}_{l}(A) & =\max \left\{\mathrm{D}_{l}(A, B): B \nsubseteq A,|V(B)|=|V(A)|\right\},
\end{aligned}
$$

where \cong denotes the isomorphism relation between L-structures.
Proof. We prove the first equality; The proof of the others is similar. Given an L-structure B non-isomorphic with A, let Φ_{B} be a formula of minimum quantifier rank distinguishing A from B, that is, $\operatorname{qr}\left(\Phi_{B}\right)=\mathrm{D}(A, B)$. Let $R=\max _{B} \operatorname{qr}\left(\Phi_{B}\right)$. We have $\mathrm{D}(A) \geq R$ because $\mathrm{D}(A) \geq \mathrm{D}(A, B)$ for every B. To prove the reverse inequality $\mathrm{D}(A) \leq R$, notice that A is defined by the formula $\Phi=\wedge_{B} \Phi_{B}$ whose quantifier rank is R. The only problem is that Φ is an infinite conjunction (a $F O_{\infty \omega^{-}}$ formula). However, as it is well known, over a fixed finite vocabulary there are only finitely many inequivalent first order formulas of bounded quantifier rank (see e.g. $[1,2,8]$). We therefore can reduce Φ to a finite conjunction.

2.3 The Ehrenfeucht game

Let A and B be structures over the same vocabulary with disjoint universes. The r-round Ehrenfeucht game on A and B, denoted by $\operatorname{EHR}_{r}(A, B)$, is played by two players, Spoiler and Duplicator, with r pairwise distinct pebbles p_{1}, \ldots, p_{r}, each given in duplicate. Spoiler starts the game. A round consists of a move of Spoiler followed by a move of Duplicator. In the s-th round Spoiler selects one of the structures A or B and places p_{s} on an element of this structure. In response Duplicator should place the other copy of p_{s} on an element of the other structure. It is allowed to place more than one pebble on the same element. We will use a_{s} (resp. b_{s}) to denote the element of A (resp. B) occupied by p_{s}, irrespectively of who of the players places the pebble on this element. If after every of r rounds it is true that

$$
a_{i}=a_{j} \text { iff } b_{i}=b_{j} \text { for all } i, j \leq s
$$

and the component-wise correspondence between $\left(a_{1}, \ldots, a_{s}\right)$ and $\left(b_{1}, \ldots, b_{s}\right)$ is a partial isomorphism from A to B, this is a win for Duplicator; Otherwise the winner is Spoiler.

The l-alternation Ehrenfeucht game on A and B is a variant of the game in which Spoiler is allowed to switch from one structure to another at most l times during the game, i.e., in at most l rounds he can choose the structure other than that in the preceding round.

The following statement provides us with a robust technical tool.
Lemma 2.3 Let A and B be non-isomorphic structures over the same vocabulary.

1) $\mathrm{D}(A, B)$ equals the minimum r such that Spoiler has a winning strategy in $\operatorname{EHR}_{r}(A, B)$.
2) $\mathrm{D}_{l}(A, B)$ equals the minimum r such that Spoiler has a winning strategy in the l-alternation $\operatorname{EHR}_{r}(A, B)$.

We refer the reader to [2, Theorem 1.2.8], [8, Theorem 6.10], or [15, Theorem 2.3.1] for the proof of the first claim and to [12] for the second claim.

3 Exploring structural properties of finite structures

3.1 A few useful relations

Throughout this section we are given an arbitrary finite structure M over vocabulary L. We abbreviate $V=V(M)$.

Definition 3.1 For $a, b \in V$ we write $a \sim b$ if the transposition $(a b)$ is an automorphism of M. In other words, $a \sim b$ if, for every l-ary relation R of M, we have $R \bar{a}=R \bar{a}^{(a b)}$ for all $\bar{a} \in V^{l}$.

Lemma $3.2 \sim$ is an equivalence relation on V.
Proof. The relation is obviously reflexive and symmetric. The transitivity follows from the facts that the composition of automorphisms is an automorphism and that the transposition $(a c)$ is decomposed into a composition of $(a b)$ and $(b c)$.

Given $X \subset V$, we will denote its complement by $\bar{X}=V \backslash X$.
Definition 3.3 Let $X \subset V$ and $a, b \in \bar{X}$. We write $a \equiv_{X} b{\text { if } \text { id }_{X} \text { extends to an }}^{\text {a }}$ isomorphism from $M[X \cup\{a\}]$ to $M[X \cup\{b\}]$. In other words, for every l-ary relation R of M, we have $R \bar{a}=R \bar{a}^{(a b)}$ for all $\bar{a} \in(X \cup\{a\})^{l}$.

Furthermore, we write $a \approx_{X} b$ if the transposition (a, b) is an automorphism of $M[X \cup\{a, b\}]$. In other words, for every l-ary relation R of M, we have $R \bar{a}=R \bar{a}^{(a b)}$ for all $\bar{a} \in(X \cup\{a, b\})^{l}$.

Clearly, $a \approx_{X} b$ implies $a \equiv_{X} b$. It is also clear that \equiv_{X} is an equivalence relation on \bar{X}. In contrast to this, simple examples show that $a \approx_{X} b$ is generally not an equivalence relation.

Definition 3.4 $\mathcal{C}(X)$ is the partition of \bar{X} into \equiv_{X}-equivalence classes. Furthermore, $\mathcal{C}^{m}(X)=\{C \in \mathcal{C}(X):|C| \leq m\}$.

The following lemma points some trivial but important properties of the partition $\mathcal{C}(X)$.

Lemma 3.5

1) If $X_{1} \subseteq X_{2}$, then $\mathcal{C}\left(X_{2}\right)$ is a refinement of $\mathcal{C}\left(X_{1}\right)$ on $\overline{X_{2}}$.
2) For any X, the \sim-equivalence classes restricted to \bar{X} refine the partition $\mathcal{C}(X)$.

In the sequel M^{\prime} denotes another L-structure.
Definition 3.6 Let $\phi: X \rightarrow X^{\prime}$ be a partial isomorphism from M to M^{\prime}. Let $a \in \bar{X}$ and $a^{\prime} \in \overline{X^{\prime}}$. We write $a \equiv_{\phi} a^{\prime}$ if ϕ extends to an isomorphism from $M[X \cup\{a\}]$ to $M^{\prime}\left[X^{\prime} \cup\left\{a^{\prime}\right\}\right]$.

Lemma 3.7 Let $\phi: X \rightarrow X^{\prime}$ be a partial isomorphism from M to M^{\prime}. Then the following claims are true.

1) Assume that $a \equiv_{X} b$ and $a^{\prime} \equiv_{X^{\prime}} b^{\prime}$. Then $a \equiv_{\phi} a^{\prime}$ iff $b \equiv_{\phi} b^{\prime}$.
2) Assume that $a \equiv_{\phi} a^{\prime}$ and $b \equiv_{\phi} b^{\prime}$. Then $a \equiv_{X} b$ iff $a^{\prime} \equiv_{X^{\prime}} b^{\prime}$.
3) Let $\bar{\phi}$ be a partial isomorphism from M to M^{\prime} which is an extension of ϕ. If $a \in \operatorname{dom} \bar{\phi} \backslash X$, then $a \equiv_{\phi} \bar{\phi}(a)$.
4) Let $\bar{\phi}$ be a partial isomorphism from M to M^{\prime} which is an extension of ϕ. Let $a, b \in \operatorname{dom} \bar{\phi} \backslash X$. Then $a \equiv_{X} b$ iff $\bar{\phi}(a) \equiv_{X^{\prime}} \bar{\phi}(b)$.

The proof is easy. Item 1 of the lemma makes the following definition correct.
Definition 3.8 Let $\phi: X \rightarrow X^{\prime}$ be a partial isomorphism from M to M^{\prime}. Let $C \in \mathcal{C}(X)$ and $C^{\prime} \in \mathcal{C}\left(X^{\prime}\right)$. We write $C \equiv{ }_{\phi} C^{\prime}$ if $a \equiv_{\phi} a^{\prime}$ for some (equivalently, for all) $a \in C$ and $a^{\prime} \in C^{\prime}$.

3.2 A couple of useful transformations

Let M be a finite structure of order n with the maximum relation arity k. Let $X \subseteq V(M)$. We define two transformations that, if applicable to X, extend it to a larger set.

Transformation T. If there exists a set $S \subseteq \bar{X}$ with at most $k-1$ elements such that $|\mathcal{C}(X \cup S)|>|\mathcal{C}(X)|$, take the lexicographically first such S and set $T(X)=X \cup S$. Otherwise T is not applicable to X.

Transformation E. Apply T iteratively as long as it is applicable. The result is denoted by $E(X)$. In other words, $E(X)=T^{(n)}(X)$. If T is not applicable at all, set $E(X)=X$.

Lemma 3.9 Assume that T is not applicable to X. If $C \in \mathcal{C}(X) \backslash \mathcal{C}^{2}(X)$, then $a \approx_{X} b$ for every $a, b \in C$.

Proof. Let $C \in \mathcal{C}(X)$ and $|C| \geq 3$. Given a and b in C, we have to show that $a \approx_{X} b$. In other words, our task is, given an l-ary relation R of M and $\bar{a} \in(X \cup\{a, b\})^{l}$, to show that $R \bar{a}=R \bar{a}^{(a b)}$. If \bar{a} contains no occurrence of a or no occurrence of b, this equality is true because $a \equiv_{X} b$. It remains to consider the case that \bar{a} contains occurrences of both a and b.
Claim A. Let u, v, and w be pairwise distinct elements in C. Let R be an l ary relation of M and $\bar{u} \in(X \cup\{u, v\})^{l}$ with occurrences of both u and v. Then $R \bar{u}=R \bar{u}^{(v w)}$.
Proof of Claim. If $R \bar{u} \neq R \bar{u}^{(v w)}$, then removal of u from C to X splits C into at least two $\equiv_{X \cup\{u\}}$-subclasses, containing v and w respectively. This contradicts the assumption that T is not applicable to X.

Let c be an arbitrary element in $C \backslash\{a, b\}$. Applying Claim A repeatedly three times, we obtain

$$
R \bar{a}=R \bar{a}^{(b c)}=R\left(\bar{a}^{(b c}\right)^{(a b)}=R\left(\left(\bar{a}^{(b c)}\right)^{(a b)}\right)^{(a c)}=R \bar{a}^{(b c)(a b)(a c)}=R \bar{a}^{(a b)},
$$

as required.
Lemma $3.10|E(X) \backslash X| \leq(k-1)|\mathcal{C}(E(X)) \backslash \mathcal{C}(X)|$.

3.3 The many-layered base of a finite structure

Definition 3.11 Suppose that a finite structure M with maximum relation arity k is given. For $X \subset V(M)$, let $Y(X)=\cup_{C \in \mathcal{C}^{k+1}(X)} C$. We set

$$
\begin{aligned}
& X_{0}=Y_{0}=\emptyset \\
& X_{i}=E\left(X_{i-1} \cup Y_{i-1}\right) \text { for } 1 \leq i \leq k, \\
& Y_{i}=Y\left(X_{i}\right) \text { for } 1 \leq i \leq k, \\
& X_{k+1}=X_{k} \cup Y_{k}, \\
& Z=V(M) \backslash X_{k+1} .
\end{aligned}
$$

We will call X_{k+1} the base of M.

An important role of the base of a finite structure is due to the following fact (cf. the more general Definition 5.3).

Lemma 3.12 On Z the relations $\equiv_{X_{k}}$, $\equiv_{X_{k+1}}$, and \sim coincide.
Proof. We start with relations $\equiv_{X_{k}}$ and \sim. Assume on the contrary that $a \equiv_{X_{k}} b$ but $a \nsim b$ for some $a, b \in Z$. The latter means that, for some l-ary relation R of M and $\bar{a} \in V^{l}$ with at least one occurrence of a,

$$
\begin{equation*}
R \bar{a}^{(a b)} \neq R \bar{a} \tag{6}
\end{equation*}
$$

Denote $A=\left\{a_{1}, \ldots, a_{l}\right\} \backslash\{a, b\}$. Since $|A| \leq k-1$ and the Y_{i} 's are pairwise disjoint, there is $j \leq k$ such that

$$
\begin{equation*}
A \cap Y_{j}=\emptyset \tag{7}
\end{equation*}
$$

Remove all elements from $A \backslash X_{j}$ to X_{j} and set $X_{j}^{\prime}=X_{j} \cup A$. Due to (6), this operation has the effect that

$$
\begin{equation*}
a \not \not \approx_{X_{j}^{\prime}} b . \tag{8}
\end{equation*}
$$

No class in $\mathcal{C}\left(X_{j}\right)$ can disappear completely: The classes in $\mathcal{C}^{k+1}\left(X_{j}\right)$ can only split up because of (7), the classes in $\mathcal{C}\left(X_{j}\right) \backslash \mathcal{C}^{k+1}\left(X_{j}\right)$ can lose up to $k-1$ elements and/or split up.

Since $a \equiv_{X_{k}} b$ and $a, b \in Z$, both a and b belong to the same $\equiv_{X_{k}}$-class C^{*} containing at least $k+2$ elements. Let C be the $\equiv_{X_{j}}$-class such that $C^{*} \subseteq C$. We now show that C is split up after modifying X_{j} and therefore $\left|\mathcal{C}\left(X_{j}^{\prime}\right)\right|>\left|\mathcal{C}\left(X_{j}\right)\right|$, making a contradiction to the construction of X_{j}.

Indeed, if $a \not \equiv_{X_{j}^{\prime}} b$, we have two subclasses containing respectively a and b. If $a \equiv_{X_{j}^{\prime}} b$, it follows by Lemma 3.9 from (8) that the class in $\mathcal{C}\left(X_{j}^{\prime}\right)$ containing a and b is exactly $\{a, b\}$. After removing at most $k-1$ elements, in C there remain at least 3 elements and therefore C must have at least one more $\equiv_{X_{j}^{\prime}}$-subclass besides $\{a, b\}$.

Thus, on Z the relations $\equiv_{x_{k}}$ and \sim are identical. By Item 1 of Lemma 3.5, on Z the relation $\equiv_{X_{k+1}}$ refines $\equiv_{x_{k}}$. By Item 2 of the same lemma the converse is also true. It follows that on Z the relations $\equiv_{X_{k+1}}$ and $\equiv_{X_{k}}$ also coincide.

Lemma 3.13 Let n be the order of M and k be the maximum relation arity of M. We have

$$
\begin{equation*}
\sum_{i=1}^{k}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+\frac{|Z|}{2}>\frac{n}{2 k}+\frac{1}{2}-\frac{1}{2 k} \text { if } k \geq 2 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
2 k \sum_{i=1}^{k-1}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+(k+1)\left|\mathcal{C}^{k+1}\left(X_{k}\right)\right|+(k-1)\left|\mathcal{C}\left(X_{k}\right)\right|+|Z| \geq n+k-1 \tag{10}
\end{equation*}
$$

Proof. By Lemma 3.10 we have

$$
\begin{align*}
\left|X_{1}\right| & \leq(k-1)\left(\left|\mathcal{C}\left(X_{1}\right)\right|-1\right), \tag{11}\\
\left|X_{i} \backslash\left(X_{i-1} \cup Y_{i-1}\right)\right| & \leq(k-1)\left(\left|\mathcal{C}\left(X_{i}\right)\right|-\left|\mathcal{C}\left(X_{i-1} \cup Y_{i-1}\right)\right|\right) \tag{12}
\end{align*}
$$

for $2 \leq i \leq k$. Note that

$$
\left|\mathcal{C}\left(X_{i}\right)\right|=\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+\left|\mathcal{C}\left(X_{i}\right) \backslash \mathcal{C}^{k+1}\left(X_{i}\right)\right|
$$

and

$$
\left|\mathcal{C}\left(X_{i}\right) \backslash \mathcal{C}^{k+1}\left(X_{i}\right)\right| \leq\left|\mathcal{C}\left(X_{i} \cup Y_{i}\right)\right|
$$

for $1 \leq i \leq k$. The latter inequality is true because, according to Item 1 of Lemma 3.5, the partition $\mathcal{C}\left(X_{i} \cup Y_{i}\right)$ is a refinement of $\mathcal{C}\left(X_{i}\right) \backslash \mathcal{C}^{k+1}\left(X_{i}\right)$. Combining it with (11) and (12), we obtain

$$
\begin{align*}
\left|X_{1}\right| & \leq(k-1)\left(\left|\mathcal{C}^{k+1}\left(X_{1}\right)\right|+\left|\mathcal{C}\left(X_{1} \cup Y_{1}\right)\right|-1\right) \tag{13}\\
\left|X_{i} \backslash\left(X_{i-1} \cup Y_{i-1}\right)\right| & \leq(k-1)\left(\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+\mathcal{C}\left(X_{i} \cup Y_{i}\right)-\left|\mathcal{C}\left(X_{i-1} \cup Y_{i-1}\right)\right|\right) \tag{14}
\end{align*}
$$

Summing up (13) and (14) over all $2 \leq i \leq k$, we have

$$
\begin{equation*}
\left|X_{1}\right|+\sum_{i=2}^{k}\left|X_{i} \backslash\left(X_{i-1} \cup Y_{i-1}\right)\right| \leq(k-1)\left(\sum_{i=1}^{k}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+\left|\mathcal{C}\left(X_{k} \cup Y_{k}\right)\right|-1\right) \tag{15}
\end{equation*}
$$

According to Lemma 3.12,

$$
\begin{equation*}
\mathcal{C}\left(X_{k} \cup Y_{k}\right)=\mathcal{C}\left(X_{k}\right) \backslash \mathcal{C}^{k+1}\left(X_{k}\right) \tag{16}
\end{equation*}
$$

and, as a consequence,

$$
\begin{equation*}
\left|\mathcal{C}\left(X_{k} \cup Y_{k}\right)\right| \leq|Z| /(k+2) \tag{17}
\end{equation*}
$$

From (15) we conclude, using (16), that

$$
\begin{equation*}
\left|X_{1}\right|+\sum_{i=2}^{k}\left|X_{i} \backslash\left(X_{i-1} \cup Y_{i-1}\right)\right| \leq(k-1)\left(\sum_{i=1}^{k-1}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+\left|\mathcal{C}\left(X_{k}\right)\right|-1\right) \tag{18}
\end{equation*}
$$

and, using (17), that

$$
\begin{equation*}
\left|X_{1}\right|+\sum_{i=2}^{k}\left|X_{i} \backslash\left(X_{i-1} \cup Y_{i-1}\right)\right| \leq(k-1)\left(\sum_{i=1}^{k}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+\frac{|Z|}{k+2}-1\right) \tag{19}
\end{equation*}
$$

Notice also a trivial inequality

$$
\begin{equation*}
\left|Y_{i}\right| \leq(k+1)\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right| \tag{20}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
n=\left|X_{1}\right|+\sum_{i=2}^{k}\left|X_{i} \backslash\left(X_{i-1} \cup Y_{i-1}\right)\right|+\sum_{i=1}^{k}\left|Y_{i}\right|+|Z| \tag{21}
\end{equation*}
$$

Using (18) and (20), we derive from (21) that

$$
n \leq 2 k \sum_{i=1}^{k-1}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+(k+1)\left|\mathcal{C}^{k+1}\left(X_{k}\right)\right|+(k-1)\left|\mathcal{C}\left(X_{k}\right)\right|+|Z|-(k-1)
$$

which implies (10). Using (19) and (20), we derive from (21) that

$$
\begin{equation*}
n \leq 2 k \sum_{i=1}^{k}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+\left(2-\frac{3}{k+2}\right)|Z|-(k-1) \tag{22}
\end{equation*}
$$

which implies (9).

4 Identifying finite structures with smaller quantifier rank

Theorem 4.1 Let L be a vocabulary with maximum relation arity k. For every L-structure M of order n we have

$$
\mathrm{I}_{1}(M)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2 .
$$

The proof takes the next two subsections. The case of $k=1$ is an easy exercise and we will assume that $k \geq 2$. According to Lemma 2.2, it suffices to consider an arbitrary L-structure M^{\prime} non-isomorphic with M and of the same order n, and estimate the value of $\mathrm{D}_{1}\left(M, M^{\prime}\right)$. We will design a strategy enabling Spoiler to win the Ehrenfeucht game on M and M^{\prime} in less than $\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2$ moves with at most one alternation between the structures. This will give us the desired bound by Lemma 2.3.

4.1 Spoiler's strategy

The strategy splits play into $k+2$ phases. Spoiler will play almost all the time in M, possibly with one alternation from M to M^{\prime} at the end of the game. For each vertex $v \in V(M)$ selected by Spoiler up to Phase i, let $\phi_{i}^{*}(v)$ denote the vertex in $V\left(M^{\prime}\right)$ selected in response by Duplicator. Thus, each subsequent ϕ_{i+1}^{*} extends ϕ_{i}^{*}. Provided Phase i has been already finished but the game not yet, ϕ_{i}^{*} is a partial isomorphism from M to M^{\prime}. Under the same condition, it will be always the case that dom $\phi_{i}^{*} \subseteq X_{i}$. We will use notation $\tilde{Y}_{i-1}=\operatorname{dom} \phi_{i}^{*} \cap Y_{i-1}$. Recall that the sets X_{i} and Y_{i} are defined by Definition 3.11 so that $Y_{i-1} \subset X_{i}$.

Phase 1.

Spoiler selects all vertices in X_{1}. Let $X_{1}^{\prime}=\phi_{1}^{*}\left(X_{1}\right)$.
End of phase description.
Phase $j+1,1 \leq j \leq k$.
Our description of Phase $j+1$ is based on the assumption that Phase j is complete but the game is not finished yet and that the following conditions are true for every $1 \leq i \leq j$.

Condition 1. ϕ_{i}^{*} has a unique extension ϕ_{i} over the whole X_{i} that is a partial isomorphism from M to M^{\prime}. Let $X_{i}^{\prime}=\phi_{i}\left(X_{i}\right)$.

Condition 2. There is a one-to-one correspondence between the partitions $\mathcal{C}^{k+1}\left(X_{i-1}\right)$ and $\mathcal{C}^{k+1}\left(X_{i-1}^{\prime}\right)$ such that, if $C^{\prime} \in \mathcal{C}^{k+1}\left(X_{i-1}^{\prime}\right)$ corresponds to $C \in \mathcal{C}^{k+1}\left(X_{i-1}\right)$, then $C \equiv_{\phi_{i-1}} C^{\prime}$ and $|C|=\left|C^{\prime}\right|$.

Condition 3. For every $C \in \mathcal{C}^{k+1}\left(X_{i-1}\right)$, ϕ_{i}^{*} is defined on all but one elements of C. Denote $\tilde{C}=\operatorname{dom} \phi_{i}^{*} \cap C$. Then $\phi_{i}^{*}(\tilde{C}) \subset C^{\prime}$, where C^{\prime} corresponds to $C_{\tilde{C}}$ according to Condition 2. Furthermore, ϕ_{i} takes the single element in $C \backslash \tilde{C}$ to the single element in $C^{\prime} \backslash \phi_{i}^{*}(\tilde{C})$. Thus, $\phi_{i}(C)=C^{\prime}$.
For the further references we denote the set $\phi_{i}\left(Y_{i-1}\right)=Y\left(X_{i-1}^{\prime}\right)$ by Y_{i-1}^{\prime} and its subset $\phi_{i}^{*}\left(\tilde{Y}_{i-1}\right)$ by \tilde{Y}_{i-1}^{\prime}.

Condition 1 is true for $i=1$ because ϕ_{1}^{*} is defined on the whole X_{1}. For the sake of technical convenience, we set $X_{0}^{\prime}=X_{0}=\emptyset$. We suppose that $n>k+1$ (otherwise Theorem 4.1 is trivially true). This implies that $\mathcal{C}^{k+1}\left(X_{0}\right)=\mathcal{C}^{k+1}\left(X_{0}^{\prime}\right)=\emptyset$ and makes Conditions 2 and 3 for $i=1$ trivially true. For $i>1$ Conditions $1-3$ follow by induction from Claim C below.

In the sequel we will intensively exploit the following notion. We say that a pair $\left(a, a^{\prime}\right) \in V(M) \times V\left(M^{\prime}\right)$ is i-threatening (for Duplicator) if a and a^{\prime} are selected by the players in the same round after Phase i and

- $a \notin X_{i}$ or $a^{\prime} \notin X_{i}^{\prime}$,
- $a \not \equiv_{\phi_{i}} a^{\prime}$.

We now start description of the phase. It consists of two parts.
Part 1. As long as no i-threatening pair arises for $1 \leq i \leq j$, Spoiler selects all but one elements in each class $C \in \mathcal{C}^{k+1}\left(X_{j}\right)$. The set of the vertices selected in C will be denoted by \tilde{C}. Furthermore, Spoiler selects all vertices in $X_{j+1} \backslash\left(X_{j} \cup Y_{j}\right)$. As soon as an i-threatening pair for some $1 \leq i \leq j$ arises, Spoiler switches to the strategy given by Claim B below and wins in at most $(i-1)(k-1)$ moves.

Part 2. Assume that Part 1 finishes and Duplicator still does not lose. Then, if Spoiler is able to win in at most k next moves irrespective of Duplicator's strategy, he does so and the game finishes. If he is not able to win but able in at most k moves to enforce creating an i-threatening pair for some $i \leq j$, he does so and wins in at most $(i-1)(k-1)$ subsequent moves using the strategy of Claim B. Otherwise Phase $j+1$ is complete and the next Phase $j+2$ starts.

End of phase description.
$\operatorname{Claim} A$. Let $i \leq k+1$. Suppose that Phase i is finished and Conditions $1-3$ are met for i and all its preceding values. Assume that $a \in V(M)$ and $a^{\prime} \in V\left(M^{\prime}\right)$ are selected by the players in the same round after Phase i and neither of them has been selected before. If

- $a \in X_{i}$ but $a^{\prime} \neq \phi_{i}(a)$
or
- $a^{\prime} \in X_{i}^{\prime}$ but $a \neq \phi_{i}^{-1}\left(a^{\prime}\right)$,
then the pair (a, a^{\prime}) is m-threatening for some $m<i$.
Proof of Claim. Let $m, 1 \leq m<i$, be the largest index such that neither $a \in X_{m}$ nor $a^{\prime} \in X_{m}^{\prime}$. Then $a \in X_{m+1}$ or $a^{\prime} \in X_{m+1}^{\prime}$. We consider the former case (the analysis of the latter case is symmetric). By Condition 3, $a \in Y_{m} \backslash \tilde{Y}_{m}$ and the relation $a \equiv_{\phi_{m}} x$ holds for the only $x=\phi_{m+1}(a)$. We have $a^{\prime} \neq \phi_{i}(a)=\phi_{m+1}(a)$ (the latter equality is due to the uniqueness of the ϕ_{i} 's ensured by Condition 1). Therefore $a \equiv_{\phi_{m}} a^{\prime}$, which means that $\left(a, a^{\prime}\right)$ is m-threatening.
Claim B. Assume that Phase $j, j \leq k+1$, finishes, Conditions $1-3$ for all $i \leq j$ are met, and the game is going on. Let $1 \leq i \leq j$. As soon as after Phase j an i-threatening pair $\left(a, a^{\prime}\right)$ arises, Spoiler is able to win in at most $(i-1)(k-1)$ moves playing all the time, at his own choice, either in M or in M^{\prime}.
Convention. Given a relation $R=R^{M}$ of M, we will denote the respective relation $R^{M^{\prime}}$ by R^{\prime}.

Proof of Claim. We proceed by induction on i. For $i=1$ the claim easily follows from Item 3 of Lemma 3.7. Let $i \geq 2$ and assume that the claim is true for all preceding values $1,2, \ldots, i-1$.

We focus on the case that $a \notin X_{i}$ (in the case that $a^{\prime} \notin X_{i}^{\prime}$ the proof is given by the symmetric argument). The non-equivalence $a \not \equiv_{\phi_{i}} a^{\prime}$ can happen in two situations.

Case 1: $a^{\prime} \in X_{i}^{\prime}$. Clearly, $a \neq \phi_{i}^{-1}\left(a^{\prime}\right)$ and therefore, by Claim A, the pair $\left(a, a^{\prime}\right)$ is m-threatening for some $m<i$. By the induction hypothesis, Spoiler is able to win in at most $(m-1)(k-1)$ moves.

Case 2: $a^{\prime} \notin X_{i}^{\prime}$. Then the non-equivalence $a \not \equiv_{\phi_{i}} a^{\prime}$ means that there is an l-ary relation of M and $\bar{a} \in\left(X_{i} \cup\{a\}\right)^{l}$ with at least one occurrence of a such that

$$
\begin{equation*}
R \bar{a} \neq R^{\prime} \psi \bar{a} \tag{23}
\end{equation*}
$$

where ψ is the map defined by $\psi(x)=\phi_{i}(x)$ for all x in $A=\left\{a_{1}, \ldots, a_{l}\right\} \backslash\{a\}$ and by $\psi(a)=a^{\prime}$. Thus, ψ is not a partial isomorphism from M to M^{\prime}. Hence, if $A \subseteq \operatorname{dom} \phi_{i}^{*}$, then Spoiler wins immediately.

Assume that $\hat{A}=A \backslash \operatorname{dom} \phi_{i}^{*}$ is nonempty. Spoiler selects all unselected elements in \hat{A}, if he wants to play in M, or in $\phi_{i}(\hat{A})$, if he prefers to play in M^{\prime}. This takes at most $k-1$ moves. Suppose that Spoiler plays in M (for M^{\prime} the argument is symmetric). If for every $b \in \hat{A}$ its counterpart in $V\left(M^{\prime}\right)$ is $\phi_{i}(b)$, this is Spoiler's win by (23). If some $b \in \hat{A}$ has the counterpart b^{\prime} such that $b^{\prime} \neq \phi_{i}(b)$, by Claim A there arises an m-threatening pair for some $m<i$. Applying the induction hypothesis for the index m, we conclude that Spoiler is able to win in at most $(m-1)(k-1)$ moves, having made altogether at most $(k-1)+(m-1)(k-1) \leq(i-1)(k-1)$ moves.

Claim C. Assume that Phase $j, j \leq k$, has been finished and Conditions 1-3 for all $i \leq j$ are met. Assume furthermore that Part 1 of Phase $j+1$ finishes and the game is still going on. Then either Conditions 1-3 hold true for $i=j+1$ as well or Spoiler is able to win or to create an i-threatening pair for some $i \leq j$ in at most k
moves with at most one alternation from M to M^{\prime} (and hence he is able to win in Part 2 of Phase $j+1$).
Proof of Claim. Assuming that Spoiler is unable to win or to create an i-threatening pair, we check Conditions 1-3.

Condition 2. The following two facts take place, for else Spoiler would be able to enforce creating a j-threatening pair in at most one move:

- For every $C^{\prime} \in \mathcal{C}^{k+1}\left(X_{j}^{\prime}\right)$ there is $C \in \mathcal{C}^{k+1}\left(X_{j}\right)$ such that $C \equiv{ }_{\phi_{j}} C^{\prime}$. (Otherwise Spoiler selects an elements in C^{\prime} that violates this condition and a j-threatening pair arises whatever Duplicator's response.)
- For every $C \in \mathcal{C}^{k+1}\left(X_{j}\right)$ there is $C^{\prime} \in \mathcal{C}^{k+1}\left(X_{j}^{\prime}\right)$ such that $C \equiv_{\phi_{j}} C^{\prime}$ and $\left|C^{\prime}\right| \geq|C|-1$. (Otherwise, for some $C, \phi_{j+1}^{*}(\tilde{C})$ cannot be included into the respective C^{\prime}. Therefore $c \not \equiv_{\phi_{j}} \phi_{j+1}^{*}(c)$ for at least one $c \in \tilde{C}$, providing us with a j-threatening pair.)

Thus, there is a one-to-one correspondence between $\mathcal{C}^{k+1}\left(X_{j}\right)$ and $\mathcal{C}^{k+1}\left(X_{j}^{\prime}\right)$ such that, for C and C^{\prime} corresponding to one another, $C \equiv_{\phi_{j}} C^{\prime},\left|C^{\prime}\right| \geq|C|-1$, and $\phi_{j+1}^{*}(\tilde{C}) \subseteq C^{\prime}$. Moreover, it actually holds $\left|C^{\prime}\right|=|C|$ because, if $\left|C^{\prime}\right| \geq|C|+1$, Spoiler could select 2 vertices in $C^{\prime} \backslash \phi_{j+1}^{*}(\tilde{C})$ obtaining a j-threatening pair whatever Duplicator's response.

Conditions 1 and 3. By Condition 1 for $i=j$, the partial isomorphism ϕ_{j+1}^{*} can be extended on X_{j} only to ϕ_{j} and then it remains undefined within X_{j+1} only on $Y_{j} \backslash \tilde{Y}_{j}$. Define an extension ϕ_{j+1} of ϕ_{j+1}^{*} on the whole X_{j+1} so that ϕ_{j+1}

- agrees with ϕ_{j} on X_{j},
- agrees with ϕ_{j+1}^{*} on \tilde{Y}_{j}, and
- for each $C \in \mathcal{C}^{k+1}\left(X_{j}\right)$, takes the single element in $C \backslash \tilde{C}$ to the single element in $C^{\prime} \backslash \phi_{j+1}^{*}(\tilde{C})$, where C^{\prime} corresponds to C according to Condition 2 that we have already proved.

We have to show that ϕ_{j+1} is a partial isomorphism from M to M^{\prime} and no other extension of ϕ_{j+1}^{*} is such.

Assume that ϕ_{j+1} is not a partial isomorphism and get a contradiction to the assumption that Spoiler can in the nearest k moves neither win nor create an i threatening pair. For some l-ary relation of M and $\bar{a} \in X_{j+1}^{l}$, we should have

$$
\begin{equation*}
R \bar{a} \neq R^{\prime} \phi_{j+1} \bar{a} \tag{24}
\end{equation*}
$$

As a consequence, $A=\left\{a_{1}, \ldots, a_{l}\right\}$ is not included into dom ϕ_{j+1}^{*} for else ϕ_{j+1}^{*} would not be a partial isomorphism, contradicting the assumption that the game is still going on. Let Spoiler select all elements in $\hat{A}=A \backslash \operatorname{dom} \phi_{j+1}^{*}$. If for $b \in \hat{A}$ Duplicator always responds with $\phi_{j+1}(b)$, he loses by (24). Otherwise, let b be an element in \hat{A} to which Duplicator responds with $b^{\prime} \neq \phi_{j+1}(b)$. If $b \in X_{j}$ or $b^{\prime} \in X_{j}^{\prime}$, then we have $b^{\prime} \neq \phi_{j}(b)$ because ϕ_{j+1} extends ϕ_{j}, . By Claim A, $\left(b, b^{\prime}\right)$ is an i-threatening
pair for some $i<j$. If $b \in X_{j+1} \backslash X_{j}$ and $b^{\prime} \in X_{j+1}^{\prime} \backslash X_{j}^{\prime}$, then $b \not \equiv_{\phi_{j}} b^{\prime}$ by Condition 2 proved above and the definition of ϕ_{j+1}. Thus, $\left(b, b^{\prime}\right)$ is j-threatening. We have a contradiction in any case and therefore ϕ_{j+1} is a partial isomorphism from M to M^{\prime} indeed.

To prove the uniqueness of the extension ϕ_{j+1} (i.e., Condition 1), assume that $\hat{\phi}_{j+1}$ is another extension of ϕ_{j+1}^{*} over X_{j+1} which is a partial isomorphism and differs from ϕ_{j+1} at $b \in Y_{j} \backslash \tilde{Y}_{j}$. Let $b^{\prime}=\phi_{j+1}(b)$ and $b^{\prime \prime}=\hat{\phi}_{j+1}(b)$. By Condition 2 proved above,

$$
\begin{equation*}
b^{\prime} \not 三_{X_{j}^{\prime}} b^{\prime \prime} . \tag{25}
\end{equation*}
$$

By Condition 1 for $i=j, \hat{\phi}_{j+1}$ on X_{j} coincides with ϕ_{j}. Thus, the composition $\hat{\phi}_{j+1} \phi_{j+1}^{-1}$ takes b^{\prime} to $b^{\prime \prime}$, extends $\operatorname{id}_{X_{j}^{\prime}}$, and is an automorphism of $M^{\prime}\left[X_{j+1}^{\prime}\right]$. This makes a contradiction to (25).

Claim C implies by an easy induction on j from 1 to $k+1$ that, for each $1 \leq j \leq k$, unless Spoiler wins in Phase j or earlier, Conditions 1-3 assumed in our description of Phase $j+1$ are indeed true. For analysis of the concluding phase, we state simple consequences of Claims A-C.

Claim D. Suppose that Spoiler follows the strategy designed above (Duplicator's strategy does not matter). Assume that Duplicator survives up to Phase $k+1$. Then the following claims are true.

1) Conditions $1-3$ hold true for all $i \leq k+1$.
2) When in further play Spoiler selects $v \in V(M) \cup V\left(M^{\prime}\right)$, we denote Duplicator's response by $\psi(v)$. As long as there arises no i-threatening pair for any $i \leq k$, it holds

$$
\begin{array}{rll}
\psi(v) \equiv_{\phi_{k}} v & \text { if } & v \notin X_{k} \cup X_{k}^{\prime}, \\
\psi(v)=\phi_{k+1}(v) & \text { if } & v \in X_{k+1}, \\
\psi(v)=\phi_{k+1}^{-1}(v) & \text { if } & v \in X_{k+1}^{\prime} . \tag{28}
\end{array}
$$

(The relations in (26) and (27)-(28) are equivalent on $\left(X_{k+1} \cup X_{k+1}^{\prime}\right) \backslash\left(X_{k} \cup\right.$ $\left.X_{k}^{\prime}\right)$.)

Proof of Claim. Item 1 follows from Claim C by an easy inductive argument. Regarding Item 2, note that, if (26) were false, $(v, \psi(v))$ would be a k-threatening pair. If (27) or (28) were false, $(v, \psi(v))$ would be an i-threatening pair for some $i \leq k$ on the account of Claim A.

Concluding Phase (Phase $k+2$).
We here assume that Phases from 1 up to $k+1$ have been finished without Spoiler's win and therefore Items 1 and 2 of Claim D hold true. As soon as there arises an i-threatening pair for some $i \leq k$, Spoiler switches to the strategy given by Claim B and wins in at most $(k-1)^{2}$ moves. As long as there occurs no such pair, Spoiler follows the strategy described below. The strategy depends on which of the following three cases takes place.

Case 1: There is a one-to-one correspondence between $\mathcal{C}\left(X_{k}\right)$ and $\mathcal{C}\left(X_{k}^{\prime}\right)$ such that, if C and C^{\prime} correspond to one another, then $C \equiv_{\phi_{k}} C^{\prime}$ and, moreover, $|C|=$ $\left|C^{\prime}\right|$. By Item 1 of Claim D , such correspondence does exist between $\mathcal{C}^{k+1}\left(X_{k}\right)$ and $\mathcal{C}^{k+1}\left(X_{k}^{\prime}\right)$ in any case.

Let Υ be the set of maps $\phi: V\left(M^{\prime}\right) \rightarrow V(M)$ such that

- ϕ is one-to-one,
- ϕ extends ϕ_{k+1}^{-1},
- for every $C^{\prime} \in \mathcal{C}\left(X_{k}^{\prime}\right)$, we have $\phi\left(C^{\prime}\right) \in \mathcal{C}\left(X_{k}\right)$ and $\phi\left(C^{\prime}\right) \equiv_{\phi_{k}} C^{\prime}$.

Claim E. Assume that ϕ and ψ are in Υ. Let R be an l-ary relation of M. Then $R \phi \bar{a}^{\prime}=R \psi \bar{a}^{\prime}$ for all $\bar{a}^{\prime} \in V\left(M^{\prime}\right)^{l}$.
Proof of Claim. The product $\psi \phi^{-1}$ is a permutation of $V(M)$ that moves only elements in Z. Moreover, $\psi \phi^{-1}$ preserves the partition $\mathcal{C}\left(X_{k}\right) \backslash \mathcal{C}^{k+1}\left(X_{k}\right)$ of Z and therefore $\psi \phi^{-1}$ is decomposed into the product of permutations π_{C} over $C \in$ $\mathcal{C}\left(X_{k}\right) \backslash \mathcal{C}^{k+1}\left(X_{k}\right)$, where each π_{C} acts on the respective C. Since every π_{C} is decomposable into a product of transpositions, we have $\psi \phi^{-1}=\tau_{1} \tau_{2} \ldots \tau_{t}$ with τ_{i} being a transposition of two elements both in some C. It is easy to see that $\psi \bar{a}^{\prime}=\left(\ldots\left(\left(\phi \bar{a}^{\prime}\right)^{\tau_{t}}\right) \ldots\right)^{\tau_{1}}$. By Lemma 3.12, each application of τ_{i} does not change the initial value of $R \phi \bar{a}^{\prime}$. Therewith we arrive at the desired equality $R \phi \bar{a}^{\prime}=R \psi \bar{a}^{\prime}$.

To specify Spoiler's strategy, we fix $\phi \in \Upsilon$ arbitrarily. Since M and M^{\prime} are nonisomorphic, ϕ is not an isomorphism from M^{\prime} to M, that is,

$$
\begin{equation*}
R \phi \bar{a}^{\prime} \neq R^{\prime} \bar{a}^{\prime} \tag{29}
\end{equation*}
$$

for some l-ary relation R^{\prime} of M^{\prime} and $\bar{a}^{\prime} \in V\left(M^{\prime}\right)^{l}$. This inequality implies that the set $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{l}^{\prime}\right\}$ is not included into X_{k+1}^{\prime}. Spoiler selects, one by one, elements of $\hat{A}=A^{\prime} \backslash$ range ϕ_{k+1}^{*}. For Spoiler's move v, let $\psi(v)$ denote Duplicator's response.

Assume first that

$$
\begin{align*}
& \psi(v) \equiv_{\phi_{k}} v \quad \text { whenever } \quad v \notin X_{k}^{\prime} \\
& \text { and } \tag{30}\\
& \psi(v)=\phi_{k+1}^{-1}(v) \quad \text { whenever } \quad v \in X_{k+1}^{\prime} .
\end{align*}
$$

Due to (30), we are able to extend ψ, initially defined on \hat{A}, to a map in Υ. Fix a such extension. By Claim E, $R \phi \bar{a}^{\prime}=R \psi \bar{a}^{\prime}$ and, by (29), Spoiler wins. If (30) is violated for some $v \in \hat{A}$, by Item 2 of Claim D this produces an i-threatening pair for $i \leq k$ and therefore Spoiler wins in at most $(k-1)^{2}$ moves, having made altogether at most $k+(k-1)^{2}$ moves.

Case 2: There is no one-to-one correspondence between $\mathcal{C}\left(X_{k}\right)$ and $\mathcal{C}\left(X_{k}^{\prime}\right)$ such that, if C and C^{\prime} correspond to one another, then $C \equiv{ }_{\phi_{k}} C^{\prime}$. Spoiler selects an element in C or C^{\prime} that has no counterpart. If Duplicator responds with a vertex outside $X_{k} \cup X_{k}^{\prime}$, there arises a k-threatening pair. If Duplicator responds with a
vertex in $X_{k} \cup X_{k}^{\prime}$, there arises an i-threatening pair for $i<k$ by Item 2 of Claim D. This allows Spoiler to win altogether in at most $1+(k-1)^{2}$ moves.

Case 3: There is a one-to-one correspondence between $\mathcal{C}\left(X_{k}\right)$ and $\mathcal{C}\left(X_{k}^{\prime}\right)$ such that, if C and C^{\prime} correspond to one another, then $C \equiv_{\phi_{k}} C^{\prime}$. However, there are $C \in \mathcal{C}\left(X_{k}\right)$ and $C^{\prime} \in \mathcal{C}\left(X_{k}^{\prime}\right)$ such that $C \equiv_{\phi_{k}} C^{\prime}$ but $|C| \neq\left|C^{\prime}\right|$.

Call a class $C \in \mathcal{C}\left(X_{k}\right)$ useful if $C \equiv_{\phi_{k}} C^{\prime}$ but $|C| \neq\left|C^{\prime}\right|$. The description of Case 3 tells us that there is at least one useful class. Actually, since $|V(M)|=\left|V\left(M^{\prime}\right)\right|$, there are at least two useful classes, C_{1} and C_{2}. Note that $\left|C_{1}\right|+\left|C_{2}\right| \leq|Z|$. Without loss of generality, assume that $\left|C_{1}\right| \leq|Z| / 2$. Let C_{1}^{\prime} be the counterpart of C_{1} in $\mathcal{C}\left(X_{k}^{\prime}\right)$, i.e., $C_{1} \equiv_{\phi_{k}} C_{1}^{\prime}$. In the larger of C_{1} and C_{1}^{\prime} Spoiler selects $\min \left\{\left|C_{1}\right|,\left|C_{1}^{\prime}\right|\right\}+1$ elements. Duplicator is enforced to at least once reply not in the smaller class. By Item 2 of Claim D , this produces an i-threatening pair and Spoiler, according to Claim B, wins in at most $(k-1)^{2}$ subsequent moves, having made altogether at most $|Z| / 2+1+(k-1)^{2}$ moves.

End of description of the concluding phase

4.2 Estimation of the length of the game

If Spoiler follows the above strategy and Duplicator delays his loss as long as possible, the end of the game is always this: Spoiler enforces creating a threatening pair in at most k moves and then wins in at most $(k-1)^{2}$ next moves using the strategy of Claim B. Let us calculate the smallest possible (optimal for Duplicator) number of elements in M unoccupied till such final stage of the game. The minimum is attained if all Phases from 1 up to $k+2$ are played and in Phase $k+2$ it happens Case 3. Then the number of elements unoccupied in X_{k+1} is equal to

$$
\sum_{i=1}^{k}\left|Y_{i} \backslash \tilde{Y}_{i}\right|=\sum_{i=1}^{k}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|
$$

The number of elements unoccupied in Z is at least $|Z|-(|Z| / 2+1)=|Z| / 2-1$. By Lemma 3.13, the total number of unoccupied elements is at least

$$
\sum_{i=1}^{k}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+\frac{|Z|}{2}-1>\frac{n}{2 k}-\frac{1}{2}-\frac{1}{2 k}
$$

Thus, the maximum possible number of occupied elements is less than

$$
\left(1-\frac{1}{2 k}\right) n+\frac{1}{2}+\frac{1}{2 k} .
$$

Summing up, we conclude that our strategy allows Spoiler to win in less that

$$
\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2
$$

moves. Theorem 4.1 is proved.

4.3 Definability results

A natural question is if our approach applies to defining rather than identifying formulas. In fact, the proof of Theorem 4.1 implies the definability with lower quantifier rank for a quite representative class of structures.

4.3.1 Definability of irredundant structures

Definition 4.2 If M is a finite structure, let

$$
\sigma(M)=\max \left\{|A|: A \subseteq V(M) \text { such that } a_{1} \sim a_{2} \text { for every } a_{1}, a_{2} \in A\right\}
$$

be the maximum cardinality of a \sim-equivalence class in $V(M)$.
If $\sigma(M)=1$, i.e., no transposition of two elements is an automorphism of M, we call M irredundant.

Theorem 4.3 Let M be an irredundant structure of order n with maximum relation arity k. Then

$$
\mathrm{D}_{1}(M)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+1 .
$$

Proof. It is not hard to see that an irredundant structure whose all relations are unary is definable by a formula with quantifier rank 1. Assume therefore that $k \geq 2$. Notice that Spoiler's strategy described in Section 4.1 applies for any pair of L-structures M and M^{\prime} of arbitrary orders with the only exception of Case 3 in the concluding Phase $k+2$, where the equality $|V(M)|=\left|V\left(M^{\prime}\right)\right|$ is supposed. Since the set Z is partitioned into \sim-equivalence classes each consisting of at least $k+2$ elements, for an irredundant structure M we have $Z=\emptyset$. Consequently, $V(M)=X_{k+1}$. It follows that either Spoiler wins at latest in Phase $k+1$ or, according to Item 1 of Claim D , there is a partial isomorphism ϕ_{k+1} from M to M^{\prime} with $\operatorname{dom} \phi_{k+1}=V(M)$.

In the latter case, since M and M^{\prime} are non-isomorphic, there is at least one element $v \in V\left(M^{\prime}\right) \backslash$ range ϕ_{k+1}. In the concluding phase of the game Spoiler selects v and, according to Item 2 of Claim D , there arises a k-threatening pair. Spoiler switches to the strategy given by Claim B and wins in at most $(k-1)^{2}$ moves.

It remains to estimate the length of the game. Similarly to Section 4.2, we conclude that Spoiler needs at most $n-\sum_{i=1}^{k}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+k+(k-1)^{2}$ to win. By estimate (22), where $|Z|=0$, this number is less than $\left(1-\frac{1}{2 k}\right) n+k^{2}-k+1$.

Remark 4.4 There are simple examples of irredundant structures M showing a lower bound $\mathrm{D}(M) \geq n / 4$. For example, let F be a directed graph on two vertices u and v consisting of a single (directed) edge (uv). Let G be another directed graph on u and v consisting of two edges, (uv) and the loop (uu). Denote the disjoint union of a copies of F and b copies of G by $a F+b G$. It is easy to see that $a F+b G$ is irredundant for any a and b. Directed graphs $M=m F+m G$ and $M^{\prime}=(m-1) F+(m+1) G$ are non-isomorphic and both have order $4 m$. An obvious strategy for Duplicator in the Ehrenfeucht game on M and M^{\prime} shows that $\mathrm{D}\left(M, M^{\prime}\right) \geq m$.

Theorem 4.3 will be considerably strengthened in the next subsections. In particular, it will be surpassed by Theorem 4.11.

4.3.2 A further refinement

As we observed in the proof of Theorem 4.3, Spoiler's strategy designed in Section 4.1 ensures the bound

$$
\begin{equation*}
\mathrm{D}_{1}\left(M, M^{\prime}\right)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2 \tag{31}
\end{equation*}
$$

for M^{\prime} of any order under an additional condition imposed on M. We are able to describe exceptional pairs of non-isomorphic M and M^{\prime} for which (31) may not hold much more precisely. Assume that M^{\prime} has order $n^{\prime} \geq n$. As was already mentioned, the assumption that $n^{\prime}=n$ is used only in Case 3 of the concluding Phase $k+2$. Turning back to this case, we see that what is actually used is the existence of at least two useful classes in $\mathcal{C}\left(X_{k}\right)$. Thus, (31) may not hold in the only case that there is a unique useful class $C_{0} \in \mathcal{C}\left(X_{k}\right)$. Since actually $C_{0} \in \mathcal{C}\left(X_{k}\right) \backslash \mathcal{C}^{k+1}\left(X_{k}\right)$, we have $\left|C_{0}\right| \geq k+2$. By Lemma 3.12, the class C_{0} consists of pairwise \sim-equivalent elements.

Let C_{0}^{\prime} be the counterpart of C_{0} in $\mathcal{C}\left(X_{k}^{\prime}\right)$, i.e., $C_{0}^{\prime} \equiv_{\phi_{k}} C_{0}$. Given $B \subseteq C_{0}^{\prime}$ with $|B|=\left|C_{0}\right|$, let $M_{B}^{\prime}=M^{\prime}\left[V\left(M^{\prime}\right) \backslash\left(C_{0}^{\prime} \backslash B\right)\right]$. Consider an arbitrary map $\phi: V\left(M_{B}^{\prime}\right) \rightarrow V(M)$ extending ϕ_{k+1}^{-1}, mapping each $C^{\prime} \in \mathcal{C}\left(X_{k}^{\prime}\right) \backslash\left\{C_{0}^{\prime}\right\}$ onto its $\equiv_{\phi_{k}}$-counterpart in $\mathcal{C}\left(X_{k}\right)$, and mapping B onto C_{0}. As in Case 1 of Phase $k+2$, we see that Spoiler is able to win within the bound of (31) unless ϕ is an isomorphism from M_{B}^{\prime} to M. From here we easily arrive at the following conclusion.

Lemma 4.5 Let L be a vocabulary with maximum relation arity k. Let M and M^{\prime} be non-isomorphic L-structures of orders n and n^{\prime} respectively and $n \leq n^{\prime}$. Then the bound

$$
\mathrm{D}_{1}\left(M, M^{\prime}\right)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2
$$

may be false only if there is a set $C_{0} \subseteq V(M)$ with $\left|C_{0}\right| \geq k+2$ consisting of pairwise \sim-equivalent vertices and there is a partial isomorphism ψ from M to M^{\prime} defined on $V(M) \backslash C_{0}$ whose any injective extension is a partial isomorphism from M to M^{\prime}.

In the next subsection we make a constructive interpretation of the condition appearing in the lemma.

4.3.3 Cloning an element of a structure

Notation. Recall that, given a set V and a function π defined on V, we extend π over V^{l}, where $l \geq 1$, by $\pi \bar{u}=\left(\pi\left(u_{1}\right), \ldots, \pi\left(u_{l}\right)\right)$ for any $\bar{u}=\left(u_{1}, \ldots, u_{l}\right)$ with all u_{i} in V. In particular, this concerns the case that π is a permutation of elements of V. Recall also that, if $\pi=\left(v_{1} v_{2}\right)$ is a transposition, then we may write $\bar{u}^{\left(v_{1} v_{2}\right)}$ in place of $\pi \bar{u}$.

Definition 4.6 Given $v \in V(M)$, let $[v]_{M}=\{u \in V(M): u \sim v\}$ be the \sim-equivalence class of the element v.

We now introduce an operation of expanding a class $[v]_{M}$, i.e., adding to M new elements \sim-equivalent to v. This operation was considered in [14] in the particular case of uniform hypergraphs.

Let L be a vocabulary with maximum relation arity k. Below K and M are L-structures, v is an element of M, and t is a non-negative integer.
Definition A The notation $K=M \oplus t v$ means that the following conditions are fulfilled.

A1 $V(M) \subseteq V(K)$ and $|V(K)|=|V(M)|+t$.
A2 $K[V(M)]=M$.
A3 $\left|[v]_{M}\right| \geq k$.
$\mathbf{A 4}[v]_{K}=[v]_{M} \cup(V(K) \backslash V(M))$.
Definition B The notation $K=M \oplus t v$ means that the following conditions are fulfilled.

B1 $V(M) \subseteq V(K)$ and $|V(K)|=|V(M)|+t$.
B2 There is $C \subseteq[v]_{M}$ with $|C| \geq k$ such that every injective extension of $\operatorname{id}_{V(M) \backslash C}$ to a map $\psi: V(M) \rightarrow V(K)$ is a partial isomorphism from M to K.

Definition C The notation $K=M \oplus t v$ means that the following conditions are fulfilled.

C1 $V(M) \subseteq V(K)$ and $|V(K)|=|V(M)|+t$.
C2 $\left|[v]_{M}\right| \geq k$.
C3 Let R be an l-ary relation in L. If $\bar{u} \in V(M)^{l}$, then $R^{K} \bar{u}=R^{M} \bar{u}$.
$\mathbf{C 4}$ Let R be an l-ary relation in L. Assume that $\bar{u} \in V(K)^{l}$ and the set $\left\{u_{1}, \ldots, u_{l}\right\} \backslash$ $V(M)=\left\{w_{1}, \ldots, w_{p}\right\}$ is nonempty. Then $R^{K} \bar{u}=1$ iff there are pairwise distinct elements $v_{1}, \ldots, v_{p} \in[v]_{M} \backslash\left\{u_{1}, \ldots, u_{l}\right\}$ such that $R^{M} \pi \bar{u}=1$ for $\pi=\left(w_{1} v_{1}\right) \cdots\left(w_{p} v_{p}\right)$.

Lemma 4.7 Definitions A, B, and C are equivalent.
Proof. Conditions A1-A4 imply Conditions B1-B2. Since B1 coincides with A1, we only have to derive B2. We are actually able to prove B2 for an arbitrary $C \subseteq[v]_{M}$ with $|C| \geq k$ (there is at least one such C by A3). Let ψ be as specified in B2. For any l-ary relation R in L and $\bar{u} \in V(M)^{l}$, we have to check that $R^{M} \bar{u}=$ $R^{K} \psi \bar{u}$. Assume that in $\left\{\psi\left(u_{1}\right), \ldots, \psi\left(u_{l}\right)\right\}$ there are p elements from $V(K) \backslash V(M)$
and denote them by w_{1}, \ldots, w_{p}. Take arbitrary pairwise distinct $v_{1}, \ldots, v_{p} \in C \backslash$ $\left\{\psi\left(u_{1}\right), \ldots, \psi\left(u_{l}\right)\right\}$. Let $\tilde{u}=\pi \psi \bar{u}$ with $\pi=\left(w_{1} v_{1}\right) \cdots\left(w_{p} v_{p}\right)$. By A4, we have $v_{i} \sim w_{i}$ in K for all $i \leq p$. It follows that $R^{K} \psi \bar{u}=R^{K} \tilde{u}$. Since $\tilde{u} \in V(M)^{l}$, by A2 we have $R^{K} \tilde{u}=R^{M} \tilde{u}$. Notice now that \tilde{u} and \bar{u} coincide at the positions occupied by elements in $V(M) \backslash C$, while elements in C are permuted according to some permutation τ, i.e., $\tilde{u}=\tau \bar{u}$. Since τ is decomposable in a product of transpositions and elements of C are pairwise \sim-equivalent in M, we have $R^{M} \tilde{u}=R^{M} \bar{u}$, completing derivation of B2.

Conditions B1-B2 imply Conditions C1-C4. For C1 and C2 this is trivial. C3 immediately follows from B 2 if we take $\psi=\operatorname{id}_{V(M)}$. Let us focus on C 4 . Let \bar{u} and w_{1}, \ldots, w_{p} be as specified in this condition. Assume first that $R^{K} \bar{u}=1$. Take $v_{1}, \ldots, v_{p} \in C \backslash\left\{u_{1}, \ldots, u_{l}\right\}$ being pairwise distinct and define ψ by $\psi\left(v_{i}\right)=w_{i}$ for $i \leq p$ and $\psi(x)=x$ for all other $x \in V(M)$. Notice that $\psi^{-1} \bar{u}=\pi \bar{u}$ for $\pi=\left(w_{1} v_{1}\right) \cdots\left(w_{p} v_{p}\right)$. As ψ is a partial isomorphism by B 2 , we conclude that $R^{M} \pi \bar{u}=R^{K} \bar{u}=1$. This proves C 4 in one direction. Such a way of proving $R^{M} \pi \bar{u}=R^{K} \bar{u}$ will be referred to as ψ-argument.

For the other direction, assume that $R^{M} \pi \bar{u}=1$ for $\pi=\left(w_{1} v_{1}\right) \cdots\left(w_{p} v_{p}\right)$ with some $v_{1}, \ldots, v_{p} \in[v]_{M} \backslash\left\{u_{1}, \ldots, u_{l}\right\}$. If all v_{i} are in C, the equality $R^{K} \bar{u}=1$ follows from the ψ-argument with the same ψ as above. Otherwise, we can replace each v_{i} with some $v_{i}^{\prime} \in C$, where $v_{1}^{\prime}, \ldots, v_{p}^{\prime}$ are pairwise distinct elements of $C \backslash\left\{u_{1}, \ldots, u_{l}\right\}$ and $v_{i}^{\prime}=v_{i}$ whenever $v_{i} \in C$. For no i this replacement changes the initial value of $R^{M} \pi \bar{u}$ and, after all replacements are done, we have $R^{M} \pi^{\prime} \bar{u}=1$ with $\pi^{\prime}=$ $\left(w_{1} v_{1}^{\prime}\right) \cdots\left(w_{p} v_{p}^{\prime}\right)$. Defining ψ^{\prime} by $\psi^{\prime}\left(v_{i}^{\prime}\right)=w_{i}$ and $\psi^{\prime}(x)=x$ elsewhere on $V(M)$, we obtain $R^{K} \bar{u}=R^{M} \pi^{\prime} \bar{u}=1$ by the ψ^{\prime}-argument.

Conditions C1-C4 imply Conditions A1-A4. Since A1-A3 are virtually the same as C1-C3, our concern is A4. It is easy to see that $[v]_{K} \cap V(M)$ cannot be larger than $[v]_{M}$. Therefore, it suffices to show that in K we have $v \sim v^{\prime}$ for any $v^{\prime} \in$ $[v]_{M} \cup(V(K) \backslash V(M))$. Given an l-ary relation R in L and $\bar{u} \in V(K)^{l}$, we have to check that

$$
R^{K} \bar{u}=R^{K} \bar{u}^{\left(v v^{\prime}\right)} .
$$

We do it by routine examination of several cases. Note that, if neither v nor v^{\prime} occurs in \bar{u}, then there is nothing to prove.

To simplify notation, denote

$$
\hat{u}=\bar{u}^{\left(v v^{\prime}\right)} .
$$

Furthermore, let $U=\left\{u_{1}, \ldots, u_{l}\right\}$ and $U \backslash V(M)=\left\{w_{1}, \ldots, w_{p}\right\}$. Denote the set of elements in \hat{u} by \hat{U}.

Case 1: $v^{\prime} \in V(K) \backslash V(M)$.
Subcase 1.1: $v \in U, v^{\prime} \in U$.
Assuming $R^{K} \bar{u}=1$, we will infer $R^{K} \hat{u}=1$. This will give also the converse implication because \bar{u} is supposed arbitrary with occurrences of both v and v^{\prime} and we hence can take \hat{u} instead of \bar{u}. Without loss of generality, assume that $v^{\prime}=w_{p}$. By C4, there are $v_{1}, \ldots, v_{p} \in[v]_{M} \backslash U$ such that $R^{M} \pi \bar{u}$ with $\pi=\left(w_{1} v_{1}\right) \cdots\left(w_{p-1} v_{p-1}\right)\left(v^{\prime} v_{p}\right)$. As easily seen, $\pi \hat{u}=(\pi \bar{u})^{\left(v v_{p}\right)}$. Since $v_{p} \sim v$ in M, we have $R^{M} \pi \hat{u}=1$. Note that
$\hat{U}=U$ and hence $v_{1}, \ldots, v_{p} \in[v]_{M} \backslash \hat{U}$. By C4, we conclude that $R^{K} \hat{u}=1$, as desired.

Subcase 1.2: $v \in U, v^{\prime} \notin U$.
Note that $\hat{U} \backslash V(M)=\left\{w_{1}, \ldots, w_{p}, v^{\prime}\right\}$ and $[v]_{M} \backslash \hat{U}=\left([v]_{M} \backslash U\right) \cup\{v\}$. We first assume that $R^{K} \bar{u}=1$ and infer from here that $R^{K} \hat{u}=1$. Let v_{1}, \ldots, v_{p} be as ensured by Condition C 4 for \bar{u}, that is, $R^{M} \pi \bar{u}=1$ with $\pi=\left(w_{1} v_{1}\right) \cdots\left(w_{p} v_{p}\right)$. Let $\pi^{\prime}=\pi\left(v^{\prime} v\right)$. As easily seen, $\pi^{\prime} \hat{u}=\pi \bar{u}$. Thus, $R^{M} \pi^{\prime} \hat{u}=R^{M} \pi \bar{u}=1$ and, by C4, we conclude that $R^{K} \hat{u}=1$.

We now assume that $R^{K} \hat{u}=1$ and have to infer $R^{K} \bar{u}=1$. According to C4, there are pairwise distinct $v_{1}^{\prime}, \ldots, v_{p+1}^{\prime} \in[v]_{M} \backslash \hat{U}$ such that $R^{M} \pi^{\prime} \hat{u}=1$ with $\pi^{\prime}=$ $\left(w_{1} v_{1}^{\prime}\right) \cdots\left(w_{p} v_{p}^{\prime}\right)\left(v^{\prime} v_{p+1}^{\prime}\right)$. Choose pairwise distinct v_{1}, \ldots, v_{p} in $\left\{v_{1}^{\prime}, \ldots, v_{p+1}^{\prime}\right\} \backslash\{v\}$ and apply to \bar{u} the substitution $\pi=\left(w_{1} v_{1}\right) \cdots\left(w_{p} v_{p}\right)$. It is not hard to see that $\pi \bar{u}=\tau \pi^{\prime} \hat{u}$ for τ being a permutation of the set $V=\left\{v, v_{1}^{\prime}, \ldots, v_{p}^{\prime}, v_{p+1}^{\prime}\right\}$ taking v_{i}^{\prime} to v_{i} for $i \leq p$ and v_{p+1}^{\prime} to v. A such τ exists because elements in $\left\{v_{1}^{\prime}, \ldots, v_{p+1}^{\prime}\right\}$ and in $\left\{v_{1}, \ldots, v_{p}, v\right\}$ are pairwise distinct (the fact that the two sets may intersect does not matter). Since τ is decomposable in a product of transpositions of two elements from V and elements in V are pairwise \sim-equivalent in M, we have $R^{M} \pi \bar{u}=R^{M} \pi^{\prime} \hat{u}=1$. By C4, we conclude that $R^{K} \bar{u}=1$, as desired.

Subcase 1.3: $v \notin U, v^{\prime} \in U$.
This subcase reduces to Subcase 1.2 by considering \hat{u} in place of \bar{u}.
Case 2: $v^{\prime} \in[v]_{M}$.
Since in this case v and v^{\prime} are interchangeable, it suffices to assume that $v \in U$ and prove that $R^{K} \bar{u}=1$ implies $R^{K} \hat{u}=1$. Note that $\hat{U} \backslash V(M)=\left\{w_{1}, \ldots, w_{p}\right\}$.

Subcase 2.1: $v^{\prime} \in U$.
Note that $[v]_{M} \backslash \hat{U}=[v]_{M} \backslash U$. Let $v_{1}, \ldots, v_{p} \in[v]_{M} \backslash U$ be as ensured by Condition C 4 for \bar{u}, i.e., $R^{M} \pi \bar{u}=1$ with $\pi=\left(w_{1} v_{1}\right) \cdots\left(w_{p} v_{p}\right)$. Applying the same π to \hat{u}, we see that $\pi \hat{u}=(\pi \bar{u})^{\left(v v^{\prime}\right)}$. As $v \sim v^{\prime}$ in M, we have $R^{M} \pi \hat{u}=R^{M} \pi \bar{u}=1$ and hence, by C4, we obtain $R^{K} \hat{u}=1$.

Subcase 2.2: $v^{\prime} \notin U$.
Note that $[v]_{M} \backslash \hat{U}=\left(\left([v]_{M} \backslash U\right) \backslash\left\{v^{\prime}\right\}\right) \cup\{v\}$. Let v_{1}, \ldots, v_{p} and π be as in Subcase 2.1. The difference is that now the containment $v^{\prime} \in\left\{v_{1}, \ldots, v_{p}\right\}$ is possible. For $i \leq p$, set

$$
v_{i}^{\prime}= \begin{cases}v_{i} & \text { if } v_{i} \neq v^{\prime} \\ v & \text { if } v_{i}=v^{\prime}\end{cases}
$$

and apply to \hat{u} the substitution $\pi^{\prime}=\left(w_{1} v_{1}^{\prime}\right) \cdots\left(w_{p} v_{p}^{\prime}\right)$. It is not hard to see that $\pi^{\prime} \hat{u}=\tau \pi \bar{u}$ for τ being a permutation of the set $\left\{v, v_{1}, \ldots, v_{p}, v^{\prime}\right\}$ taking v_{i} to v_{i}^{\prime} for all $i \leq p$ and v to v^{\prime}. Similarly to the second part of Subcase 1.2, we conclude that $R^{M} \pi^{\prime} \hat{u}=R^{M} \pi \bar{u}=1$ and, by C4, we obtain $R^{K} \hat{u}=1$.

Lemma 4.8 Let L be a vocabulary with maximum relation arity k. Let M be an L-structure, $v \in V(M)$ with $\left|[v]_{M}\right| \geq k$, and $t \geq 0$. Then an L-structure K such that $K=M \oplus t v$ exists and is unique up to an isomorphism.

Proof. The existence follows from Definition C. To obtain K, we add t new elements to $V(M)$, keep all relations of M on $V(M)$, and add new relations involving at least one new element, being guided by Condition C4.

To prove the uniqueness, we use Definition B. Assume that $K_{1}=M \oplus t v$ and $K_{2}=M \oplus t v$ according to this definition. Let $\phi: V\left(K_{1}\right) \rightarrow V\left(K_{2}\right)$ be an arbitrary one-to-one map whose restriction on $V(M)$ is $\mathrm{id}_{V(M)}$. We claim that ϕ is an isomorphism from K_{1} to K_{2}. Given an l-ary relation R in L and $\bar{u} \in V\left(K_{1}\right)^{l}$, we have to check that $R^{K_{1}} \bar{u}=R^{K_{2}} \phi \bar{u}$. The case that $\bar{u} \in V(M)^{l}$ is trivial. Suppose that $\left\{u_{1}, \ldots, u_{l}\right\} \backslash V(M)=\left\{w_{1}, \ldots, w_{p}\right\}$ is nonempty. Note that $\left\{\phi\left(u_{1}\right), \ldots, \phi\left(u_{l}\right)\right\} \backslash$ $V(M)=\left\{\phi\left(w_{1}\right), \ldots, \phi\left(w_{p}\right)\right\}$ and $\left\{u_{1}, \ldots, u_{l}\right\} \cap V(M)=\left\{\phi\left(u_{1}\right), \ldots, \phi\left(u_{l}\right)\right\} \cap V(M)$. Let v_{1}, \ldots, v_{p} be pairwise distinct elements in C that do not occur in \bar{u} and hence in $\phi \bar{u}$. Define ψ_{1} by $\psi_{1}\left(v_{i}\right)=w_{i}$ for $i \leq p$ and $\psi_{1}(x)=x$ for all other x in $V(M)$. Define ψ_{2} similarly with the difference that $\psi_{2}\left(v_{i}\right)=\phi\left(w_{i}\right)$ for $i \leq p$. Obviously, $\psi_{2}^{-1} \phi \bar{u}=\psi_{1}^{-1} \bar{u}$. By B2, ψ_{1} and ψ_{2} are partial isomorphisms from M to K_{1} and K_{2} respectively. Therefore

$$
R^{K_{1}} \bar{u}=R^{M} \psi_{1}^{-1} \bar{u}=R^{M} \psi_{2}^{-1} \phi \bar{u}=R^{K_{2}} \phi \bar{u} .
$$

The proof is complete.
With using Definition B, the following lemma is a direct consequence of Lemma 4.5.

Lemma 4.9 Let L be a vocabulary with maximum relation arity k. Let M and M^{\prime} be non-isomorphic L-structures of orders n and n^{\prime} respectively and $n \leq n^{\prime}$. Then the bound

$$
\mathrm{D}_{1}\left(M, M^{\prime}\right)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2
$$

may be false only if $M^{\prime}=M^{*} \oplus\left(n^{\prime}-n\right) v$ for some structure M^{*} isomorphic with M and $v \in V\left(M^{*}\right)$.

4.3.4 An upper bound for $\mathrm{D}(M)$

The following result was obtained in [14] for graphs with the proof easily adaptable for any structures (see Lemma 4.2 and Remark 4.9 in [14]).

Lemma 4.10 ([14]) Let M be a structure of order n with maximum relation arity k, v be an element of M with $\left|[v]_{M}\right|=s \geq k$, and $M^{\prime}=M \oplus t v$ with $t \geq 1$. Then

$$
s+1 \leq \mathrm{D}\left(M, M^{\prime}\right) \leq \mathrm{D}_{1}\left(M, M^{\prime}\right) \leq s+k-1+\frac{n+1}{s+1}
$$

Putting Lemmas 4.9 and 4.10 together, we immediately obtain an upper bound for $\mathrm{D}(M)$. Recall that $\sigma(M)=\max _{v \in V(M)}\left|[v]_{M}\right|$.

Theorem 4.11 For a structure M of order n with maximum relation arity k, we have

$$
\mathrm{D}_{1}(M) \leq \max \left\{\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2, \sigma(M)+k\right\}
$$

Proof. Given M, let us summarize upper bounds we have for $\mathrm{D}_{1}\left(M, M^{\prime}\right)$ for various M^{\prime} non-isomorphic with M. Denote

$$
u_{k, n}=\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2 \text { and } f(s)=\left\lfloor s+k-1+\frac{n+1}{s+1}\right\rfloor .
$$

If $M^{\prime}=M^{*} \oplus t v$ for M^{*} an isomorphic copy of M, then

$$
\begin{equation*}
\mathrm{D}_{1}\left(M, M^{\prime}\right) \leq \max _{1 \leq s \leq \sigma(M)} f(s) \tag{32}
\end{equation*}
$$

by Lemma 4.10. Similarly, if $M=M^{*} \oplus t v$ for M^{*} an isomorphic copy of M^{\prime}, then

$$
\mathrm{D}_{1}\left(M, M^{\prime}\right) \leq \max _{1 \leq s \leq \sigma\left(M^{\prime}\right)} f(s)
$$

which is within the bound (32) because in this case $\sigma\left(M^{\prime}\right) \leq \sigma(M)$. For all other M^{\prime} we have

$$
\mathrm{D}_{1}\left(M, M^{\prime}\right)<u_{k, n}
$$

by Lemma 4.9 .
Notice now that

$$
\max _{1 \leq s \leq \sigma(M)} f(s) \leq \max \{f(1), f(\sigma(M))\}
$$

Furthermore,

$$
f(\sigma(M)) \leq \begin{cases}f(1) & \text { if } \sigma(M) \leq(n-1) / 2 \\ \sigma(M)+k & \text { if } \sigma(M) \geq n / 2\end{cases}
$$

and $f(1)<u_{k, n}$. Summing up, we conclude that

$$
\max _{M^{\prime}} \mathrm{D}_{1}\left(M, M^{\prime}\right) \leq \max \left\{u_{k, n}, \sigma(M)+k\right\}
$$

By Lemma 2.2, the proof is complete.
Note that, given M, the number $\sigma(M)$ is efficiently computable in the sense that computing $\sigma(M)$ reduces to verification if a transposition is an automorphism of the structure. Thus, Theorem 4.11 provides an efficiently computable non-trivial upper bound for $\mathrm{D}_{1}(M)$, whereas it seems plausible that the exact value of $\mathrm{D}(M)$ is incomputable.

We also can restate the obtained bounds as a dichotomy result telling us that either we have the bound $\mathrm{D}_{1}\left(M, M^{\prime}\right)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2$ or else M has a simple, easily recognizable property and, moreover, for all such exceptional M we are able to easily compute $\mathrm{D}(M)$ within an additive constant. Results of this sort are obtained in [14] for structures with maximum relation arity 2 and k-uniform hypergraphs.

Theorem 4.12 Let M be a structure of order n with maximum relation arity k. If

$$
\begin{equation*}
\sigma(M) \leq\left(1-\frac{1}{2 k}\right) n+(k-1)^{2}+1 \tag{33}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathrm{D}_{1}(M) \leq\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2 . \tag{34}
\end{equation*}
$$

Otherwise we have

$$
\begin{equation*}
\sigma(M)+1 \leq \mathrm{D}(M) \leq \mathrm{D}_{1}(M) \leq \sigma(M)+k \tag{35}
\end{equation*}
$$

Proof. If the condition (33) is met, the bound (34) follows directly from Theorem 4.11. If (33) does not hold, the upper bound in (35) again follows from Theorem 4.11. The lower bound in (35) follows from Lemma 4.10 as $\mathrm{D}(M) \geq \mathrm{D}(M, M \oplus 1 v) \geq$ $\sigma(M)+1$, where $v \in V(M)$ is such that $\left|[v]_{M}\right|=\sigma(M)$ and hence $\left|[v]_{M}\right|>k$.

5 Identifying finite structures by Bernays-Schönfinkel formulas

Theorem 5.1 Let L be a vocabulary with maximum relation arity k. If M is an L-structure of order n, then

$$
\begin{equation*}
\mathrm{BS}(M)<\left(1-\frac{1}{2 k^{2}+2}\right) n+k \tag{36}
\end{equation*}
$$

If $k=1$, a stronger bound $\mathrm{BS}(M) \leq n / 2+1$ holds true.
The case of $k=1$ is easy and included for the sake of completeness. The upper bound of $n / 2+1$ matches, up to an additive constant of 1 , a simple lower bound of $n / 2$ attainable by structures with a single unary relation. The proof of Theorem 5.1 for the case that $k \geq 2$ takes the rest of this section.

5.1 Notation

In addition to the notation introduced in Section 2.1, we will denote $[k]=\{1,2, \ldots$, $k\}$. If $\bar{z}=\left(z_{1}, \ldots, z_{l}\right)$ and τ is a map from $[k]$ to $[l]$, then $\bar{z}^{\tau}=\left(z_{\tau(1)}, \ldots, z_{\tau(k)}\right)$.

Recall that, given a partial isomorphism $\phi: X \rightarrow X^{\prime}$ from an L-structure M to another L-structure M^{\prime}, we have defined a relation \equiv_{ϕ} between elements in \bar{X} and elements in $\overline{X^{\prime}}$ (see Definition 3.6). Definition 3.8 extends this relation over classes in $\mathcal{C}(X)$ and $\mathcal{C}\left(X^{\prime}\right)$. We will need yet another extension of \equiv_{X} over subsets of \bar{X} and $\overline{X^{\prime}}$. Let $U \subseteq \bar{X}$ and $U^{\prime} \subseteq \overline{X^{\prime}}$. We will write $U \cong{ }_{\phi} U^{\prime}$ if ϕ extends to an isomorphism from $M[X \cup U]$ to $M^{\prime}\left[X^{\prime} \cup U^{\prime}\right]$.

We define $\mathrm{BS}_{q}(M)$ similarly to $\mathrm{BS}(M)$ with the only additional requirement that an identifying Bernays-Schönfinkel formula has at most q universal quantifiers. It is clear that $\mathrm{BS}(M) \leq \mathrm{BS}_{q+1}(M) \leq \mathrm{BS}_{q}(M)$.

5.2 A couple of useful formulas

If $\bar{x}=\left(x_{1}, \ldots, x_{l}\right)$ is a sequence of variables, let

$$
\operatorname{Dist}(\bar{x})=\bigwedge_{1 \leq i<j \leq l} x_{i} \neq x_{j} .
$$

Let M be a finite structure over vocabulary L and \bar{a} be a sequence of l pairwise distinct elements of $V(M)$. Then it is easy to construct a first order formula Iso $_{M, \bar{a}}\left(x_{1}, \ldots, x_{l}\right)$ such that, for every L-structure M^{\prime} and $\bar{a}^{\prime} \in V\left(M^{\prime}\right)^{l}, M^{\prime}, \bar{a}^{\prime} \models$ Iso $_{M, \bar{a}}(\bar{x})$ iff the component-wise correspondence between \bar{a} and \bar{a}^{\prime} is a partial isomorphism between M and M^{\prime}. Specifically, assume that $L=\left(R_{1}, \ldots, R_{m}\right)$, where R_{i} has arity k_{i}. Then

$$
\begin{aligned}
\operatorname{Iso}_{M, \bar{a}}(\bar{x})=\operatorname{Dist}(\bar{x}) \wedge & \bigwedge_{i=1}^{m} \\
& \left(\bigwedge_{\tau}\left\{R_{i}\left(\bar{x}^{\tau}\right) \mid \tau:\left[k_{i}\right] \rightarrow[l], R_{i}^{M}\left(\bar{a}^{\tau}\right)=1\right\}\right. \\
& \left.\wedge \bigwedge_{\tau}\left\{\neg R_{i}\left(\bar{x}^{\tau}\right) \mid \tau:\left[k_{i}\right] \rightarrow[l], R_{i}^{M}\left(\bar{a}^{\tau}\right)=0\right\}\right)
\end{aligned}
$$

5.3 The first way of identification

In this section we will exploit the relation \sim on $V(M)$ defined in Section 3.1 and the invariant $\sigma(M)$ introduced in Definition 4.2.

Proposition 5.2 Let L be a vocabulary with maximum relation arity k. For every L-structure M of order n, we have

$$
\mathrm{BS}_{k}(M) \leq n+k-\sigma(M)
$$

Proof. Suppose that $\sigma(M)=k+d$ with $d \geq 1$ (if $\sigma(M) \leq k$, the proposition is trivial). Let A be a \sim-equivalence class of elements of $V(M)$ such that $|A|=\sigma(M)$. Denote $B=\bar{A}$ and fix orderings $A=\left\{a_{1}, \ldots, a_{k+d}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n-k-d}\right\}$. Set $\bar{a}=\left(a_{1}, \ldots, a_{k}\right)$. We suggest the following formula Φ_{M} to identify M :

$$
\Phi_{M}=\exists y_{1} \ldots \exists y_{n-k-d} \forall x_{1} \ldots \forall x_{k} \Psi_{M}(\bar{y}, \bar{x}),
$$

where

$$
\Psi_{M}(\bar{y}, \bar{x})=\operatorname{Iso}_{M, \bar{b}}(\bar{y}) \wedge\left(\operatorname{Dist}(\bar{y}, \bar{x}) \rightarrow \operatorname{Iso}_{M, \bar{b}, \bar{a}}(\bar{y}, \bar{x})\right) .
$$

$\operatorname{Claim} A . M^{\prime} \models \Phi_{M}$ iff there is a partial isomorphism $\phi: B \rightarrow B^{\prime}$ from M to M^{\prime} such that every injective extension of ϕ over $B \cup\left\{a_{1}, \ldots, a_{k}\right\}$ is a partial isomorphism from M to M^{\prime}.

Claim B. $\quad M \models \Phi_{M}$.
Proof of Claim. On the account of Claim A, it suffices to show that the extension ϕ of id_{B} by $\phi\left(a_{1}\right)=a_{i_{1}}, \ldots, \phi\left(a_{k}\right)=a_{i_{k}}$, where i_{1}, \ldots, i_{k} is an arbitrary sequence of pairwise distinct indices in $[k+d]$, is a partial automorphism of M. This follows from the fact that every permutation of A, in particular, that taking each a_{j} for $j \leq k$ to
$a_{i_{j}}$, is decomposed into a product of transpositions $\left(a_{p} a_{q}\right)$ with $1 \leq p<q \leq k+d$. (Recall that the latter are automorphisms of M).

Claim C. If an L-structure M^{\prime} has order n and $M^{\prime} \models \Phi_{M}$, then M and M^{\prime} are isomorphic.
Proof of Claim. Let ϕ and B^{\prime} be as in Claim A. Fix an ordering $a_{1}^{\prime}, \ldots, a_{k+d}^{\prime}$ of the set $A^{\prime}=V\left(M^{\prime}\right) \backslash B^{\prime}$. According to Claim A, for every sequence i_{1}, \ldots, i_{k} of pairwise distinct indices in $[k+d]$, the extension of ϕ by $\phi\left(a_{j}\right)=a_{i_{j}}^{\prime}$ for $j \leq k$ is a partial isomorphism from M to M^{\prime}. From the proof of Claim B we know an analog of this fact for M itself: for every sequence i_{1}, \ldots, i_{k} of pairwise distinct indices in $[k+d]$, the extension ψ of id_{B} by $\psi\left(a_{j}\right)=a_{i_{j}}$ for $j \leq k$ is a partial automorphism of M. It follows, in particular, that for every sequence $1 \leq i_{1}<\ldots<i_{k} \leq k+d$, the extension of ϕ by $\phi\left(a_{i_{j}}\right)=a_{i_{j}}^{\prime}$ for $j \leq k$ is a partial isomorphism from M to M^{\prime}. Extend ϕ over the whole $V(M)$ by $\phi\left(a_{i}\right)=a_{i}^{\prime}$ for all $i \leq k+d$. We conclude that the restriction of ϕ on every k-element subset of $V(M)$ is a partial isomorphism from M to M^{\prime}. Since every relation of M has arity at most k, ϕ is an isomorphism from M to M^{\prime}.

5.4 The second way of identification

Definition 5.3 A set $B \subseteq V(M)$ is called a base of a structure M if the relations \equiv_{B} and \sim coincide on \bar{B}. The fineness of a base B is defined by $f(B)=$ $\max \{|C|: C \in \mathcal{C}(B)\}$. Furthermore, let $\rho(B)=|B|+\max \{f(B)+1, k\}$.

We define $\rho(M)$ to be the minimum $\rho(B)$ over all bases B of M.
Proposition 5.4 BS $(M) \leq \rho(M)$.
Proof. Given a base B of M, we construct a Bernays-Schönfinkel formula Φ_{M} with $\rho(B)$ quantifiers that identifies M. Let $p=|B|$ and $q=\max \{f(B)+1, k\}$. Assume that $p+q<n$ for otherwise we are done. Denote $A=\bar{B}$ and fix orderings $A=\left\{a_{1}, \ldots, a_{n-p}\right\}$ and $B=\left\{b_{1}, \ldots, b_{p}\right\}$. We set

$$
\Phi_{M}=\exists y_{1} \ldots \exists y_{p} \forall x_{1} \ldots \forall x_{q} \Psi_{M}(\bar{y}, \bar{x}),
$$

where

$$
\Psi_{M}(\bar{y}, \bar{x})=\operatorname{Iso}_{M, \bar{b}}(\bar{y}) \wedge\left(\operatorname{Dist}(\bar{y}, \bar{x}) \rightarrow \underset{\substack{\tau:[q] \rightarrow[n-p] \\ \tau \text { is injective }}}{\bigvee} \operatorname{Iso}_{M, \bar{b}, \overline{a^{\tau}}}(\bar{y}, \bar{x})\right)
$$

Claim A. Let M^{\prime} be another L-structure, $\bar{b}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{p}^{\prime}\right)$ be a sequence of elements of $V\left(M^{\prime}\right)$, and $A^{\prime}=V\left(M^{\prime}\right) \backslash\left\{b_{1}^{\prime}, \ldots, b_{p}^{\prime}\right\}$. Then $M^{\prime}, \bar{b}^{\prime} \models \forall x_{1} \ldots \forall x_{q} \Psi_{M}(\bar{y}, \bar{x})$ holds iff

- the component-wise correspondence ϕ between \bar{b} and \bar{b}^{\prime} is a partial isomorphism from M to M^{\prime} and
- for every $U^{\prime} \subseteq A^{\prime}$ with at most q elements there is a $U \subseteq A$ such that $U \cong{ }_{\phi} U^{\prime}$.

The proof is fairly obvious. The claim immediately implies that $M \models \Phi_{M}$.
Claim B. If $M^{\prime} \models \Phi_{M}$ and M^{\prime} has order n, then M and M^{\prime} are isomorphic.
Proof of Claim. Let $\bar{b}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{p}^{\prime}\right)$ be such that

$$
M^{\prime}, \bar{b}^{\prime} \models \forall x_{1} \ldots \forall x_{q} \Psi_{M}(\bar{y}, \bar{x}) .
$$

Set $B^{\prime}=\left\{b_{1}^{\prime}, \ldots, b_{p}^{\prime}\right\}$. By the definition of Ψ_{M}, there is a partial isomorphism $\phi: B \rightarrow B^{\prime}$ from M to M^{\prime}. By Claim A, for every $a^{\prime} \in A^{\prime}$ there is $a \in A$ such that $a \equiv_{\phi} a^{\prime}$. Hence for every $C^{\prime} \in \mathcal{C}\left(B^{\prime}\right)$ there is $C \in \mathcal{C}(B)$ such that $C \equiv{ }_{\phi} C^{\prime}$. Moreover, for every $C^{\prime} \in \mathcal{C}\left(B^{\prime}\right)$ and the respective $C \in \mathcal{C}(B)$ it holds $|C| \geq\left|C^{\prime}\right|$ (if $\left|C^{\prime}\right|>|C|$, then for any $(|C|+1)$-element set $U^{\prime} \subseteq C^{\prime}$ the second condition in Claim A fails). Since $|A|=\left|A^{\prime}\right|$ or, in other terms, $\sum_{C \in \mathcal{C}(B)}|C|=\sum_{C^{\prime} \in \mathcal{C}\left(B^{\prime}\right)}\left|C^{\prime}\right|$, for every C^{\prime} it actually holds the equality $|C|=\left|C^{\prime}\right|$. Thus, we have a one-to-one correspondence between $\mathcal{C}(B)$ and $\mathcal{C}\left(B^{\prime}\right)$ such that, if $C \in \mathcal{C}(B)$ and $C^{\prime} \in \mathcal{C}\left(B^{\prime}\right)$ correspond to one another, then $C \equiv_{\phi} C^{\prime}$ and $|C|=\left|C^{\prime}\right|$.

We are now prepared to exhibit an isomorphism from M^{\prime} to M. Fix an arbitrary extension ψ of ϕ^{-1} to a one-to-one map from $V\left(M^{\prime}\right)$ to $V(M)$ taking each C^{\prime} to the respective C. We will show that ψ is an isomorphism. Let R^{\prime} be an l-ary relation of M^{\prime} and R be the respective relation of M. Given an arbitrary l-tuple $\bar{u}^{\prime} \in V\left(M^{\prime}\right)^{l}$, we have to prove that

$$
\begin{equation*}
R \psi \bar{u}^{\prime}=R^{\prime} \bar{u}^{\prime} . \tag{37}
\end{equation*}
$$

Denote $U^{\prime}=\left\{u_{1}^{\prime}, \ldots, u_{l}^{\prime}\right\}$. Let $\psi_{U^{\prime}}$ be the extension of ϕ^{-1} to a partial isomorphism from M^{\prime} to M with $U^{\prime} \subseteq \operatorname{dom} \psi_{U^{\prime}}$ whose existence is guaranteed by Claim A. We have

$$
R \psi_{U^{\prime}} \bar{u}^{\prime}=R^{\prime} \bar{u}^{\prime} .
$$

To prove (37), it suffices to prove that

$$
\begin{equation*}
R \psi_{U^{\prime}} \bar{u}^{\prime}=R \psi \bar{u}^{\prime} . \tag{38}
\end{equation*}
$$

We proceed similarly to the proof of Claim E in Section 4.1. By Item 3 of Lemma 3.7, the partial map $\psi_{U^{\prime}}$ takes an element in a class C^{\prime} to an element in the respective class C. Suppose that $\psi_{U^{\prime}}$ is extended over the whole $V\left(M^{\prime}\right)$ with the latter condition obeyed. Since both $\psi_{U^{\prime}}$ and ψ extend ϕ^{-1}, the product $\psi_{U^{\prime}} \psi^{-1}$ moves only elements in A. Since both ψ and $\psi_{U^{\prime}}$ take an element in a class C^{\prime} to an element in the respective class C, the map $\psi_{U^{\prime}} \psi^{-1}$ preserves the partition $\mathcal{C}(B)$ of A. It follows that $\psi_{U^{\prime}} \psi^{-1}$ is decomposed into the product of permutations π_{C} over $C \in \mathcal{C}(B)$, where each π_{C} acts on the respective C. Since every π_{C} is decomposable into a product of transpositions, we have $\psi_{U^{\prime}} \psi^{-1}=\tau_{1} \tau_{2} \ldots \tau_{t}$ with τ_{i} being a transposition of two elements both in some C. It is easy to see that $\psi_{U^{\prime}} \bar{u}^{\prime}=\left(\ldots\left(\left(\psi \bar{u}^{\prime}\right)^{\tau_{t}}\right) \ldots\right)^{\tau_{1}}$. By Lemma 3.12, each application of τ_{i} does not change the initial value of $R \psi \bar{a}^{\prime}$. Therewith (38) is proved.

Remark 5.5 One can show that $\rho(M)$ provides us with an upper bound not only for $\mathrm{BS}(M)$ but also for $\mathrm{D}_{1}(M)$.

5.5 The third way of identification

Yet another way of identification that we here suggest is actually not new being a specification of Proposition 5.4 in the preceding section.

Definition 5.6 If M is a finite structure, let

$$
\delta(M)=\max \left\{|A|: A \subseteq V(M) \text { such that } a_{1} \not \equiv_{\bar{A}} a_{2} \text { for every } a_{1}, a_{2} \in A\right\}
$$

It is not hard to see that, in other terms, $\delta(M)=\max _{X \subseteq V(M)}|\mathcal{C}(X)|$.
Proposition 5.7 Let L be a vocabulary with maximum relation arity $k \geq 2$. For every L-structure M of order n, we have

$$
\mathrm{BS}_{k}(M) \leq n+k-\delta(M)
$$

Proof. As easily seen, if $A \subseteq V(M)$ is such that $a_{1} \not \equiv_{\bar{A}} a_{2}$ for every $a_{1}, a_{2} \in A$, then $\bar{A}=V(M) \backslash A$ is a base of M with fineness $f(\bar{A})=1$. Since $k \geq 2$, we have $\max \{f(\bar{A})+1, k\}=k$ and therefore $\rho(M) \leq n+k-\delta(M)$. Thus, the proposition directly follows from Proposition 5.4. We only have to note that the identifying formula constructed in the proof of Proposition 5.4 has $\max \{f(\bar{A})+1, k\}=k$ universal quantifiers.

5.6 Putting it together

We now complete the proof of Theorem 5.1. Assume that $k \geq 2$. We will employ all three possibilities of identifying M given by Propositions 5.7, 5.2, and 5.4. Using the last possibility, we will use the set X_{k+1} defined by Definition 3.11 that is a base of M according to Lemma 3.12.

By the bound (10) of Lemma 3.13 and the fact that $|\mathcal{C}(X)| \leq \delta(M)$ for every $X \subseteq V(M)$, we have

$$
\begin{equation*}
\left|X_{k+1}\right|=n-|Z| \leq 2 k^{2} \delta(M)-(k-1) . \tag{39}
\end{equation*}
$$

We now consider two cases.
Case 1: $Z=\emptyset$. By (39) we have $\delta(M) \geq \frac{n+k-1}{2 k^{2}}$. By Proposition 5.7, this implies that

$$
\mathrm{BS}(M)<\left(1-\frac{1}{2 k^{2}}\right) n+k
$$

Case 2: $Z \neq \emptyset$. In this case for the fineness of the base X_{k+1} we have $f\left(X_{k+1}\right) \geq$ $k+2$. Using (39), we obtain
$\rho\left(X_{k+1}\right) \leq 2 k^{2} \delta(M)-(k-1)+\max \left\{|C|: C \in \mathcal{C}\left(X_{k+1}\right)\right\}+1 \leq 2 k^{2} \delta(M)+\sigma(M)+2-k$.

Let $\lambda(M)=\max \{\delta(M), \sigma(M)\}$. By Propositions 5.7, 5.2, and 5.4, we have

$$
\begin{aligned}
\mathrm{BS}(M) & \leq \min \left\{n+k-\delta(M), n+k-\sigma(M), 2 k^{2} \delta(M)+\sigma(M)+2-k\right\} \\
& \leq \min \left\{n+k-\lambda(M),\left(2 k^{2}+1\right) \lambda(M)+2-k\right\} \\
& \leq \max _{1 \leq \lambda \leq n} \min \left\{n+k-\lambda,\left(2 k^{2}+1\right) \lambda+2-k\right\} \\
& \leq\left(1-\frac{1}{2 k^{2}+2}\right) n+k-\frac{k-1}{k^{2}+1}<\left(1-\frac{1}{2 k^{2}+2}\right) n+k .
\end{aligned}
$$

Since the latter bound holds in both the cases, the proof of Theorem 5.1 is for $k \geq 2$ complete.

In the case of $k=1$ we use Propositions 5.2 and 5.4. We use the fact that, for a structure M with all relations unary, the empty set is a base and $\rho(\emptyset)=\sigma(M)+1$. We therefore have $\mathrm{BS}(M) \leq \min \{n+1-\sigma(M), \sigma(M)+1\} \leq n / 2+1$.

6 Identifying finite structures by Bernays-Schönfinkel formulas with bounded number of universal quantifiers

Recall that $\mathrm{BS}_{q}(M)$ denotes the minimum total number of quantifiers in a BernaysSchönfinkel formula identifying M with at most q universal quantifiers. We now address the asymptotics of the maximum value of $\mathrm{BS}_{q}(M)$ over structures of order n under the condition that q is bounded by a constant. We first observe that less than k universal quantifiers are rather useless for identification of a structure with maximum relation arity k.

Proposition 6.1 If M is a structure of order n with maximum relation arity k and $n \geq k$, then $\mathrm{BS}_{k-1}(M)=n$.

Proof. We have to show that no formula $\Phi=\exists y_{1} \ldots \exists y_{p} \forall x_{1} \ldots \forall x_{q} \Psi(\bar{y}, \bar{x})$ with Ψ quantifier-free, $q \leq k-1$, and $p+q \leq n-1$ can identify M. Suppose that

$$
\begin{equation*}
M, \bar{b}, \bar{a} \models \Psi(\bar{y}, \bar{x}) \tag{40}
\end{equation*}
$$

for some $\bar{b} \in V(M)^{p}$ and all $\bar{a} \in V(M)^{q}$. Let $A=V(M) \backslash\left\{b_{1}, \ldots, b_{p}\right\}$. Since $q+1 \leq k, q+1 \leq n-p \leq|A|$, and $n \geq k$, there is a k-element $U \subseteq V(M)$ such that $|U \cap A| \geq q+1$. Let u_{1}, \ldots, u_{k} be an arbitrary ordering of U. Let R be a k-ary relation of M. Define a relation R^{\prime} so that $R^{\prime} \bar{u} \neq R \bar{u}$ and R^{\prime} coincides with R elsewhere. Let M^{\prime} be the modification of M with R^{\prime} instead of R. Clearly, M^{\prime} and M are non-isomorphic. It is easy to see that $M^{\prime}, \bar{b}, \bar{a} \models \Psi(\bar{y}, \bar{x})$ for the same \bar{b} as in (40) and all $\bar{a} \in V\left(M^{\prime}\right)^{q}$. Therefore $M^{\prime} \models \Phi$ and Φ fails to identify M.

If at least k universal quantifiers are available, some saving on the number of quantifiers is possible: It turns out that $\mathrm{BS}_{k}(M)<n-\sqrt{n}+k^{2}+k$ and this bound cannot be improved much if we keep the number of universal quantifiers constant.

Theorem 6.2 Let $\mathrm{BS}_{q}(n, k)$ denote the maximum $\mathrm{BS}_{q}(M)$ over structures M of order n and maximum relation arity k. Then

$$
\mathrm{BS}_{k}(n, k)<n-\sqrt{n}+k^{2}+k .
$$

On the other hand, if n is a square, then

$$
\mathrm{BS}_{q}(n, k) \geq n-(q-1) \sqrt{n}+q
$$

for every $q \geq 2$ and $k \geq 2$.
The upper bound of Theorem 6.2 is provable by the techniques from Section 5 . Let M be a structure of order n with maximum relation arity k. By Propositions 5.7 and 5.2,

$$
\mathrm{BS}_{k}(M) \leq n+k-\max \{\delta(M), \sigma(M)\}
$$

It remains to prove the following bound.
Lemma 6.3 max $\{\delta(M), \sigma(M)\}>\sqrt{n}-k^{2}$.
Proof. By the bound (10) of Lemma 3.13,

$$
n+k-1 \leq 2 k \sum_{i=1}^{k-1}\left|\mathcal{C}^{k+1}\left(X_{i}\right)\right|+(k+1)\left|\mathcal{C}^{k+1}\left(X_{k}\right)\right|+(k-1)\left|\mathcal{C}\left(X_{k}\right)\right|+|Z| .
$$

We bound each term $|\mathcal{C}(X)|$ from above by $\delta(M)$. Furthermore, we bound $|Z|$ from above by the number of $\equiv_{X_{k+1}}$-equivalence classes inside Z multiplied by the maximum number of elements in such a class. By Lemma 3.12 it follows that $|Z| \leq \delta(M) \sigma(M)$. We therefore conclude that

$$
n+k-1 \leq \delta(M)\left(2 k^{2}+\sigma(M)\right)
$$

This implies

$$
\max \{\delta(M), \sigma(M)\} \geq \min _{1 \leq \sigma \leq n} \max \left\{\sigma, \frac{n+k-1}{2 k^{2}+\sigma}\right\}>\sqrt{n}-k^{2}
$$

as required.
Remark 6.4 The bound of Lemma 6.3 is essentially optimal because, for any graph G of order m^{2} whose vertex set is partitioned into $m \sim$-equivalence classes of m element each, it holds $\sigma(G)=m$ and $\delta(G) \leq m$. Such G can be constructed from any graph H of order m whose automorphism group contains no transposition by replacing each vertex $v \in V(H)$ with m pairwise (non-)adjacent vertices \sim-related to v in H.

We now prove the lower bound of Theorem 6.2. It suffices to do it for graphs. The example of G with large $\mathrm{BS}_{q}(G)$ will be the same as in Remark 6.4. This example can be lifted to a higher arity k by adding $k-2$ dummy coordinates to the adjacency relation with no affect to its truth value.

Proposition 6.5 Let G_{m} be graph of order m^{2} whose vertex set is partitioned into $m \sim$-equivalence classes of m element each. Let $q \geq 2$. Then $\mathrm{BS}_{q}\left(G_{m}\right) \geq$ $m^{2}-(q-1) m+q$.

Proof. It is enough to show that, if G_{m} is identified by a Bernays-Schönfinkel formula Φ with q universal quantifiers, then Φ contains at least $m^{2}-(q-1) m$ existential quantifiers. If $q \geq m+1$, this is trivial. Assume that $q \leq m$.

Suppose on the contrary that G_{m} is identified by a Bernays-Schönfinkel formula $\Phi=\exists y_{1} \ldots \exists y_{p} \forall x_{1} \ldots \forall x_{q} \Psi(\bar{y}, \bar{x})$ with $p<m^{2}-(q-1) m$. Let $\bar{b} \in V\left(G_{m}\right)^{p}$ be such that $G_{m}, \bar{b} \models \forall x_{1} \ldots \forall x_{q} \Psi(\bar{y}, \bar{x})$. Equivalently,

$$
\begin{equation*}
G_{m}, \bar{b}, \bar{a} \models \Psi(\bar{y}, \bar{x}) \text { for all } \bar{a} \in V\left(G_{m}\right)^{q} \text {. } \tag{41}
\end{equation*}
$$

Let $A=V\left(G_{m}\right) \backslash\left\{b_{1}, \ldots, b_{p}\right\}$. We have $|A| \geq(q-1) m+1$. The condition imposed on G_{m} implies that there are two \sim-equivalence classes, C_{1} and C_{2}, such that $\left|A \cap C_{1}\right| \geq$ q and $\left|A \cap C_{2}\right| \geq 1$. Let us modify G_{m} by removing one vertex from $A \cap C_{2}$ and adding a new vertex v^{\prime} to C_{1} so that $v^{\prime} \sim v$ for all $v \in C_{1}$. The modified graph, G^{\prime}, is clearly non-isomorphic to G_{m}. We show that, nevertheless, $G^{\prime} \models \Phi$.

It suffices to show that $G^{\prime}, \bar{b}, \bar{a}^{\prime} \models \Psi(\bar{y}, \bar{x})$ for every $\bar{a}^{\prime} \in V\left(G^{\prime}\right)^{q}$. In view of (41), we are done if for every $\bar{a}^{\prime} \in V\left(G^{\prime}\right)^{q}$ we are able to find an $\bar{a} \in V\left(G_{m}\right)^{q}$ such that the component-wise correspondence between \bar{b}, \bar{a} and $\bar{b}, \bar{a}^{\prime}$ is a partial isomorphism between G_{m} and G^{\prime}. If \bar{a}^{\prime} does not contain any occurrence of v^{\prime}, we obviously can take $\bar{a}=\bar{a}^{\prime}$. If \bar{a}^{\prime} contains an occurrence of v^{\prime}, let v be a vertex in $A \cap C_{1}$ that does not occur in \bar{a}^{\prime} and let \bar{a} be the result of substituting v in place of v^{\prime} everywhere in \bar{a}^{\prime}. It is not hard to see that the obtained \bar{a} is as required.

7 The case of graphs

For a binary structure M, Theorem 4.1 implies $\mathrm{I}(M)<0.75 n+4$ and Theorem 5.1 implies $\mathrm{BS}(M)<0.9 n+2$. In the case of graphs, both these bounds can be improved. In [14] we obtain an almost optimal bound $\mathrm{I}(G) \leq(n+3) / 2$ (there are simple examples of graphs with $\mathrm{I}(G) \geq(n+1) / 2)$. Combining the approach from [14] and the techniques from Section 5, we are able to prove a better bound for $\mathrm{BS}(G)$ as well. We are also interested in knowing the smallest n starting from which for G of order n we have the bound at least $\mathrm{BS}(G) \leq n-1$, an improvement on the trivial bound of n.

Theorem 7.1 Let G be a graph of order n.

1) We have $\mathrm{BS}(G) \leq 3 n / 4+3 / 2$.
2) If $n \geq 5$, we have $\mathrm{BS}_{2}(G) \leq n-1$ with the only exception of the graph H on 5 vertices with 2 adjacent edges for which, nevertheless, we have $\mathrm{BS}_{3}(H) \leq 4$.

Proof. Given a graph G, let $X=E(\emptyset)$, where the transformation E is introduced in Section 3.2. We state two properties of the X established in [14]:

Property 1. $|\mathcal{C}(X)| \geq|X|+1$.
Property 2. Let $Y=Y(X)$ and $Z=V(G) \backslash(X \cup Y)$. Every class in $\mathcal{C}(X \cup Y)$ consists of pairwise \sim-equivalent vertices.

Note that $|\mathcal{C}(X)| \leq \delta(G)$. By Property 1 we conclude that

$$
\begin{equation*}
|X|+|Y| \leq|X|+|\mathcal{C}(X)| \leq 2|\mathcal{C}(X)|-1 \leq 2 \delta(G)-1 \tag{42}
\end{equation*}
$$

Property 2 means that $X \cup Y$ is a base of G.
We now consider two cases.
Case 1: $Z=\emptyset$. In this case $n=|X|+|Y|$. By (42), $\delta(G) \geq(n+1) / 2$. Using Proposition 5.7, we obtain $\mathrm{BS}_{2}(G) \leq n / 2+3 / 2$.

Case 2: $Z \neq \emptyset$. In this case $\rho(X \cup Y) \leq|X|+|Y|+\sigma(G)+1$. By (42) we have $\rho(X \cup Y) \leq 2 \delta(G)+\sigma(G)$. Denote $\lambda(G)=\max \{\delta(G), \sigma(G)\}$. By Propositions 5.7, 5.2 , and 5.4, we have

$$
\begin{aligned}
\mathrm{BS}(G) & \leq \min \{n+2-\delta(G), n+2-\sigma(G), 2 \delta(G)+\sigma(G)\} \\
& \leq \min \{n+2-\lambda(G), 3 \lambda(G)\} \\
& \leq \max _{1 \leq \lambda \leq n} \min \{n+2-\lambda, 3 \lambda\}=3 n / 4+3 / 2
\end{aligned}
$$

Since this bound holds true in both the cases, Item 1 of the theorem is proved.
To prove Item 2, we estimate $\max \{\delta(G), \sigma(G)\}$. Since $n=|X|+|Y|+|Z| \leq$ $2 \delta(G)-1+\delta(G) \sigma(G)$, we have

$$
\begin{equation*}
n+1 \leq \delta(G)(2+\sigma(G)) \tag{43}
\end{equation*}
$$

It follows that

$$
\max \{\delta(G), \sigma(G)\} \geq \min _{1 \leq c \leq n} \max \left\{c, \frac{n+1}{2+c}\right\}=\sqrt{n+2}-1
$$

and hence

$$
\begin{equation*}
\max \{\delta(G), \sigma(G)\} \geq 3 \tag{44}
\end{equation*}
$$

whenever $n>7$.
Claim A. The bound (44) holds for all G of order 6 .
This claim is proved by the direct brute force analysis. Making it, it suffices to consider graphs on 6 vertices with at most 7 edges. The reason is that $\delta(\bar{G})=\delta(G)$ and $\sigma(\bar{G})=\sigma(G)$, where \bar{G} denotes the complement of a graph G, i.e., the graph with the same vertex set and exactly those edges absent in G.
Claim B. The bound (44) holds for all G of order 7.
Proof of Claim. Given three vertices x, y, and z, we say that x separates y and z if x is adjacent to exactly one of y and z. Note that $y \sim z$ iff no x separates these vertices.

Let a graph G have 7 vertices. If $\sigma(G)=1$, then $\delta(G) \geq 3$ by (43). Our task is therefore to deduce $\delta(G) \geq 3$ from the assumption that $\sigma(G)=2$.

Let u and v be \sim-equivalent vertices of G. Suppose that they are adjacent. We do not lose the generality because it suffices to prove the claim for one of G or \bar{G}. Let us remove u, that is, consider the graph $G-u=G[V(G) \backslash\{u\}]$. As it is easy to see, $\delta(G) \geq \delta(G-u)$. Thus, if $\delta(G-u) \geq 3$, we are done. Otherwise, by Claim A, we have $\sigma(G-u) \geq 3$.

Let a, b, and c be pairwise \sim-equivalent vertices in $G-u$. Assume for a while that $v \notin\{a, b, c\}$. Since $u \sim v$ in G, the vertex u does not separate a, b, and c because v does not. Thus, these three vertices are pairwise \sim-equivalent in G, contradicting our assumption that $\sigma(G)=2$. We conclude that $v \in\{a, b, c\}$.

Without loss of generality, assume that $v=c$. Since v cannot be \sim-equivalent with a or b in G and only u can separate v from a and from b, the vertex u must be non-adjacent to a and to b. The same is true for the \sim-equivalent vertex v. Thus, $\{u, a\},\{u, b\},\{v, a\}$, and $\{v, b\}$ all are non-edges. Since $\{a, v\}$ is a non-edge, $\{a, b\}$ is a non-edge too because $v=c \sim b$ in $G-u$. Note that $a \sim b$ in G because this is so in $G-u$ and u does not separate these two vertices.

Apply now the same trick with removal of a instead of u. If we are not done, then $G-a$ has a \sim-equivalence class $\{b, s, t\}$. Our argument is completely symmetric with the difference that a and b are now non-adjacent vertices. We hence should switch over all (non)adjacencies and conclude that $\{a, s\},\{a, t\},\{b, s\},\{b, t\}$, and $\{s, t\}$ all are edges of G. Furhtermore, $s \sim t$ in G.

Notice that s, t, u, and v are pairwise distinct. Indeed, since u separates b and v, we have $v \notin\{s, t\}$. Similarly, $u \notin\{s, t\}$.

We apply the same trick once again, now with removal of s. As above, unless we are done, $G-s$ has a \sim-equivalence class A containing t and at least 2 more vertices. As above, the vertices a and b cannot belong to A. It follows that A contains at least one of u and v. Actually A must contain both u and v because these vertices are \sim-equivalent. As A is not a \sim-class in G, the vertex s must separate t from u and from v. Therefore $\{s, u\}$ and $\{s, v\}$ are non-edges. As $t \sim s,\{t, u\}$ and $\{t, v\}$ are non-edges too. But now the triple a, s, u shows that $\delta(G) \geq 3$. Indeed, v separates u from a and from s while b separates a and s.

Thus, if G has order at least 6 , we have the bound (44) and the theorem follows from Propositions 5.7 and 5.2 . For graphs of order 5 the estimate (44) holds with the only exception for the specified graph H. This graph is identified by formula

$$
\exists y_{1} \forall x_{1} \forall x_{2} \forall x_{3}\left(\operatorname{Dist}\left(y_{1}, x_{1}, x_{2}, x_{3}\right) \rightarrow \neg E\left(x_{1}, x_{2}\right) \wedge \bigvee_{i=1}^{3} E\left(y_{1}, x_{i}\right) \wedge \bigvee_{i=1}^{3} \neg E\left(y_{1}, x_{i}\right)\right)
$$

where E is the adjacency relation.

Remark 7.2 Item 2 of Theorem 7.1 does not hold true for graphs of order $n=4$: It is not hard to prove that $\mathrm{BS}(F)=4$ for the graph F on 4 vertices with 1 edge.

Remark 7.3 In [11] we address the first order definability of a random graph G on n vertices. It is proved that, with probability $1-o(1)$,

$$
\log _{2} n-2 \log _{2} \log _{2} n \leq \mathrm{I}(G) \leq \log _{2} n-\log _{2} \log _{2} n+\log _{2} \log _{2} \log _{2} n+O(1)
$$

One of the ingredients of the proof is that, with high probability, $\delta(G) \geq n-(2+$ $o(1)) \log _{2} n$. Since $\mathrm{I}(G) \leq \mathrm{BS}_{2}(G) \leq n+2-\delta(G)$, we conclude that, with high probability,

$$
\log _{2} n-2 \log _{2} \log _{2} n \leq \mathrm{BS}_{2}(G) \leq(2+o(1)) \log _{2} n
$$

8 Open problems

1. Let $\mathrm{I}(n, k)$ (resp. $\left.\mathrm{I}_{l}(n, k) ; \mathrm{BS}(n, k)\right)$ be the maximum $\mathrm{I}(M)$ (resp. $\mathrm{I}_{l}(M)$; $\mathrm{BS}(M)$) over structures of order n with maximum relation arity k. We now know that

$$
\begin{gather*}
\frac{n}{2} \leq \mathrm{I}(n, k) \leq \mathrm{I}_{1}(n, k) \leq \mathrm{BS}(n, k)<\left(1-\frac{1}{2 k^{2}+2}\right) n+k \tag{45}\\
\text { and } \mathrm{I}_{1}(n, k)<\left(1-\frac{1}{2 k}\right) n+k^{2}-k+2
\end{gather*}
$$

Note that $\mathrm{I}(n, k) \leq \mathrm{I}(n, k+1)$ and that the lower bound of $n / 2$ is actually for I $(n, 1)$. Make the gap between the lower and upper bounds in (45) closer.

The case of $k=2$ is essentially solved in [14], where the bounds

$$
\frac{n+1}{2} \leq \mathrm{I}(n, 2) \leq \mathrm{I}_{1}(n, 2) \leq \frac{n+3}{2}
$$

are proved. If $k=3$, we are able to improve on (45) by showing that $\mathrm{I}_{1}(n, 3) \leq$ $\frac{2}{3} n+O(1)$ (in [14] this bound was obtained for 3-uniform hypergraphs).
2. Can one prove a non-trivial upper bound for $\mathrm{I}_{0}(n, k)$? The weakest question is if $\mathrm{I}_{0}(n, k) \leq n-1$. It is easy to show that $\mathrm{I}_{0}(n, 1) \leq(n+1) / 2$. In [14] we prove that $\mathrm{I}_{0}(G) \leq(n+5) / 2$ for graphs of order n.
3. What happens if we restrict the number of existential rather than universal quantifiers in an identifying Bernays-Schönfinkel formula?

References

[1] J.-Y. Cai, M. Fürer, N. Immerman. An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4):389-410 (1992).
[2] H.-D. Ebbinghaus, J. Flum. Finite Model Theory. Springer Verlag, 2nd rev. ed. (1999).
[3] A. Ehrenfeucht. An application of games to the completeness problem for formalized theories. Fundam. Math. 49:129-141 (1961).
[4] R. Fagin. Finite-model theory - a personal perspective. Theoretical Computer Science 116:3-31 (1993).
[5] R. Fraïssé. Sur quelques classifications des systems de relations. Publ. Sci. Univ. Alger 1:35-182 (1954).
[6] M. Grohe, Fixed-point logics on planar graphs. In: Proc. of the Ann. Conf. on Logic in Computer Science 6-15 (1998).
[7] M. Grohe, Isomorphism testing for embeddable graphs through definability. In: Proc. of the 32nd ACM Ann. Symp. on Theory of Computing (STOC) 63-72 (2000).
[8] N. Immerman. Descriptive complexity. Springer-Verlag (1999).
[9] N. Immerman, D. Kozen. Definability with bounded number of bound variables. Information and Computation 83:121-139 (1989).
[10] N. Immerman, E. Lander, Describing graphs: a first-order approach to graph canonization. In: Complexity Theory Retrospective, A. Selman Ed., SpringerVerlag, 59-81 (1990).
[11] J. H. Kim, O. Pikhurko, J. Spencer, O. Verbitsky. How complex are random graphs in first order logic? In preparation (2003).
[12] E. Pezzoli. Computational complexity of Ehrenfeucht-Fraïssé games on finite structures. In: Proc. of the CSL'98 Conf., G. Gottlob, K. Seyr Eds. Lecture Notes in Computer Science 1584, Springer-Verlag, 159-170 (1999).
[13] O. Pikhurko, J. Spencer, O. Verbitsky. Succinct definitions in first order graph theory. In preparation (2003).
[14] O. Pikhurko, H. Veith, O. Verbitsky. First order definability of graphs: tight bounds on quantifier rank. (2003), available at http://arxiv.org/abs/math.CO/0311041
[15] J. Spencer. The strange logic of random graphs. Springer Verlag (2001).

[^0]: *Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 152133890. Web: http://www.math.cmu.edu/~~pikhurko/
 ${ }^{\dagger}$ Dept. of Mechanics and Mathematics, Kyiv University, Ukraine. E-mail: oleg@ov.litech.net

[^1]: ${ }^{1}$ In fact, we do not state this explicitly. However, it is easy to derive from the estimate (39) that every structure has a base with less than $\left(1-\frac{1}{2 k^{2}+1}\right) n$ elements. On the other hand, there are structures whose all bases have at least $n / 2$ elements. A simple example is given by the graph with m pairwise non-adjacent edges.

[^2]: ${ }^{2}$ The double use of the character u here should not be confusing: We will often use u to denote a single element of a sequence \bar{u}.

