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A LOGIC FOR METRIC AND TOPOLOGY

FRANK WOLTER AND MICHAEL ZAKHARYASCHEV

Abstract. We propose a logic for reasoning about metric spaces with the induced

topologies. It combines the ‘qualitative’ interior and closure operators with ‘quantitative’

operators ‘somewhere in the sphere of radius r,’ including or excluding the boundary. We

supply the logic with both the intended metric space semantics and a natural relational

semantics, and show that the latter (i) provides finite partial representations of (in general)

infinite metric models and (ii) reduces the standard ‘ε-definitions’ of closure and interior

to simple constraints on relations. These features of the relational semantics suggest a

finite axiomatisation of the logic and provide means to prove its EXPTIME-completeness

(even if the rational numerical parameters are coded in binary). An extension with metric

variables satisfying linear rational (in)equalities is proved to be decidable as well. Our logic

can be regarded as a ‘well-behaved’ common denominator of logical systems constructed

in temporal, spatial, and similarity-based quantitative and qualitative representation and

reasoning. Interpreted on the real line (with its Euclidean metric), it is a natural fragment

of decidable temporal logics for specification and verification of real-time systems. On

the real plane, it is closely related to quantitative and qualitative formalisms for spatial

representation and reasoning, but this time the logic becomes undecidable.

§1. Introduction. The concept of a metric space with the induced topology
is obviously fundamental for any serious course in mathematics or computer
science. Standard exercises an undergraduate student is confronted with look as
follows. Let 〈V, d〉 be a metric space, X ⊆ V and a > 0.

(1) Is the set A = {y ∈ V | ∃x ∈ X d(x, y) < a} open?
(2) If y ∈ V belongs to the topological closure of the set A above, does it mean

that there exists x ∈ X such that d(y, x) ≤ a?

A proof of (1) usually involves an arbitrarily small ε > 0. A counterexample for
(2) can only be found in the class of infinite metric spaces.

The main aim of this paper is to find out to which extent this kind of reasoning
can be mechanised—e.g., is it decidable? what is its computational complexity?—
and whether reasoning with the ‘arbitrarily small ε > 0’ and infinite spaces can
be performed using finitely many logical rules and finite models. In this per-
spective, our direction of research can be regarded as a ‘metric extension’ of
Tarski’s programme of the algebraisation of topology (“of creating an algebraic
apparatus adequate for the treatment of portions of point-set topology,” to be
more precise) [29]; see also [34, 25, 6, 30, 1].
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There is another idea underpinning this paper. As is well-known, reasoning
about metric and topology is fundamental in various areas of computer science.
For example:

• Temporal logics for specification and verification of real-time systems deal
with the real line R and the standard Euclidean metric (see, e.g., [4, 23]).
Using their qualitative temporal operators such as ‘since’ and ‘until’ in-
terpreted by the metric of R, one can define the topological closure and
interior over R. For example, a point x is in the topological closure of a set
X if and only if there is no point y > x until which ‘not X’ and there is no
point y < x since which ‘not X.’

• Spatial representation and reasoning uses various topological and metric
relations between regions [29, 16, 21, 7, 31, 1]. The intended models
are based on—among others and in the decreasing order of abstractness—
arbitrary topological spaces, metric spaces with their topologies, and the
two-dimensional Euclidean space R2 (see, e.g., [36, 14]).

• Similarity measures that are used to classify various sets of objects (e.g.,
proteins or viruses in bio-informatics) give rise to reasoning about metric
spaces not related at all to the standard Euclidean spaces [13]. [18, 19]
suggest a combination of topological relations between regions in spaces
with similarity measures for classifying and identifying objects. Logics for
reasoning about similarity have been developed in the field of approximate
reasoning [15, 17].

In this respect, we are looking for a logic which can be regarded as a sort of
‘common denominator’ of the formalisms constructed in these fields and which
reveals most important expressivity and complexity issues that arise in special
purpose temporal, spatial, and similarity logics. (In modal logic, such a position
is occupied by the minimal logic K which is a ‘common denominator’ of various
‘qualitative’ temporal, description, spatial, epistemic, dynamic, etc. logics.)

The logic we construct here is a natural combination of the logic of metric
spaces from [35] which comes equipped with the operators

• ∃<a for ‘somewhere in the sphere of radius a excluding its boundary,’ where
a ∈ Q+,

• ∃≤a for ‘somewhere in the sphere of radius a including the boundary,’ where
a ∈ Q+,

and the well established logic S4u of topological spaces which has the operators
of the standard modal logic S4, namely,

• 2 for topological interior and
• 3 for topological closure,

as well as the ‘universal modalities’

• ∀ for ‘everywhere in the space’ and
• ∃ for ‘somewhere in the space.’

Besides the intended metric space models, we supply the logic with a natural
relational semantics and show that it (i) provides finite partial representations
of (in general) infinite metric models and (ii) reduces the standard ‘ε-definitions’
of closure and interior to simple constraints on relations. Using these features of
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the relational semantics, we give a finite axiomatisation of the logic and prove
its EXPTIME-completeness (even if the numerical parameters are coded in bin-
ary). An extension with metric variables satisfying linear rational (in)equalities
is proved to be decidable as well.

§2. Semantics and syntax.
Intended models. A metric model is a structure of the form

M =
〈
V, d, PM

1 , PM
2 , . . .

〉
,

where the PM
i are subsets of a nonempty set V and d is a function from V × V

into the set R+ of non-negative real numbers such that 〈V, d〉 is a metric space—
i.e., it satisfies the standard metric axioms

d(x, y) = 0 iff x = y,

d(x, z) ≤ d(x, y) + d(y, z),

d(x, y) = d(y, x)

for all x, y, z ∈ V . Remember that each metric space 〈V, d〉 induces the interior
operator Id on V : for all X ⊆ V ,

Id(X) = {u ∈ X | ∃ε > 0 ∀v (d(u, v) < ε→ v ∈ X)}.
〈V, Id〉 is called the topological space induced by the metric space 〈V, d〉. The
closure operator Cd in this space is dual to Id, that is, Cd(X) = V − Id(V −X);
in other words,

Cd(X) = {u ∈ V | ∀ε > 0 ∃v ∈ X d(u, v) < ε}.
Thus, the intended models of the logic we are looking for are of the form

M =
〈
V, d, Id, P

M
1 , PM

2 , . . .
〉
, (1)

where
〈
V, d, PM

1 , PM
2 , . . .

〉
is a metric model and Id is the interior operator in-

duced by 〈V, d〉. These structures will be called topometric models.
Language I. There are many approaches to devising languages that are cap-

able of speaking about topometric models. The first natural choice would be
the appropriate (fragment of) two-sorted first-order logic, with one sort for the
elements of the metric space 〈V, d〉, another one for the distances in R+, and
countably many unary predicates interpreted over the domain V , ternary predic-
ates d(x, y) < z, where x, y ∈ V , z ∈ R+, and additional constants and operators
like 0 and + with their standard interpretation over R. However, as was shown
in [26], even the two-variable fragment of monadic predicate logic with only one
sort for the domain of the metric space and binary predicates d(x, y) < a, a a
natural number between 0 and 80, is undecidable. It was also proved in [26] that
propositional operators ‘somewhere in the open sphere of radius a but not in
its centre’ give rise to an undecidable logic. On the other hand, we know from
[35] that the (propositional) logic of metric spaces with operators ‘somewhere
in the open/closed sphere of radius a’ is decidable and finitely axiomatisable.
To speak about the topological component we take the standard language of S4
[29] extended with the universal and existential modalities over the space (which
turned out to be very useful in spatial representation and reasoning [7, 1]).
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Thus, the basic languageMT we propose to use for speaking about topometric
models is built from atomic terms Pi, i < ω, with the help of the following rule:

τ ::= Pi | ¬τ | τ1 u τ2 | ∃<aτ | ∃≤aτ | 2τ | ∃τ,

where a is an arbitrary positive rational number, i.e., a ∈ Q+. We call τ an
MT -term or simply a term. We remind the reader of the definitions of standard
‘topological fragments’ of MT . The language ML of S4 is defined by

τ ::= Pi | ¬τ | τ1 u τ2 | 2τ

and the language MLu of S4u is

τ ::= Pi | ¬τ | τ1 u τ2 | 2τ | ∃τ.

For a topometric model M of the form (1), the extension τM of a term τ is
computed inductively as follows:

(τ1 u τ2)M = τM
1 ∩ τM

2 ,

(¬τ1)M = V − τM
1 ,

(∃<aτ1)M = {u ∈ V | ∃v ∈ τM
1 d(u, v) < a},

(∃≤aτ1)M = {u ∈ V | ∃v ∈ τM
1 d(u, v) ≤ a},

(2τ1)M = Id(τM
1 ),

(∃τ1)M =

{
V if τM

1 6= ∅,
∅ otherwise.

Say that a term τ is satisfied in M if τM 6= ∅; τ is true in M if τM = V .
We denote by ∀<a, ∀≤a, 3, and ∀ the operators dual to ∃<a, ∃≤a, 2, and ∃,
respectively. For instance,

(∀<aτ)M = {u ∈ V | ∀v ∈ V (d(u, v) < a→ v ∈ τM)}

and 3 is interpreted by the closure operator Cd.
The following examples illustrate the expressive capabilities of MT .

Example 1. (i) Set τ1 t τ2 = ¬(¬τ1 u¬τ2). Then the term ∀(¬τ1 t τ2) is true
in a topometric model M if and only if τM

1 ⊆ τM
2 holds in M. So we use the

subsumption τ1 v τ2 as an abbreviation for ∀(¬τ1 t τ2), and write τ1 = τ2 for
the conjunction of τ1 v τ2 and τ2 v τ1.

(ii) The terms τ = 2τ , τ = 3τ and τ = 32τ mean then that (the extension
of) τ is open, closed and regular closed, respectively. The exercises mentioned in
the introduction can be formalised as follows:

2∃<aX = ∃<aX and 3∃<aX 6v ∃≤aX.

(iii) The topology induced by a finite metric space is trivial (every set is both
open and closed). Thus, even the term P u 3¬P (which is clearly satisfiable,
say, in every Euclidean space) is not satisfiable in any finite topometric model.

(iv) The Hausdorff distance between two closed sets is bounded by a if every
point of one set is within distance a from some point in the other set. It is
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used, e.g., to measure the approximate matching between images [24]. We write
dH(τ1, τ2) ≤ a to abbreviate the conjunction

(3τ1 v ∃≤a3τ2) u (3τ2 v ∃≤a3τ1)

(which formalises the definition of Hausdorff distance); dH(τ1, τ2) = a is an
abbreviation for

(dH(τ1, τ2) ≤ a) u ((3τ1 6v ∃<a3τ2) t (3τ2 6v ∃<a3τ1)).

Note that, in contrast to the standard definition via infimum, dH(τ1, τ2) = a
implies that there is a point in one set which is within distance ≥ a from any
point in the other set.

(v) The min-distance between two sets is bounded by a if there exists a point
in one set which is within distance ≤ a from a point in the other set. This
definition can be formalised as follows

dmin(τ1, τ2) ≤ a iff τ1 u ∃≤aτ2 6= ⊥,
where ⊥ stands for the empty set, say, P u ¬P .

(vi) TheRCC-8 (aka Egenhofer-Franzosa) relations [16, 21] between nonempty
regular closed sets can be expressed in the language MLu of S4u [7, 31]. So they
are expressible in MT as well. The Hausdorff and min-distances introduced
above suggest natural metric extensions of these relations.

(vii) MT is not compact in the sense that there is an infinite set Γ of terms
such that, for every finite Γ′ ⊆ Γ, there exists a model M with

⋂
τ∈Γ′ τM 6= ∅,

but there exists no model M for which
⋂

τ∈Γ τ
M 6= ∅. An example is given by

the set of terms {¬3P} ∪ {∃< 1
nP | n ∈ N+}.

(viii) The term (3τ1 = τ2)u ∃τ2 u¬∃2τ1 says that τ1 is dense in a nonempty
τ2, but has no interior.

Logics in language I. Given a class M of topometric models, let L(M), the
logic of M, be the set of those MT -terms that are true in all models from M.
By MT we denote the logic of the class of all topometric models. In this paper
we investigate in detail the minimal logic MT as well as the logics of the real
line and plane, L(R) and L(R2) (that is the logics of the classes of topometric
models based on R and R2, respectively).

Note that the topological fragments of these logics are well known. The frag-
ments of MT, L(R) and L(R2) in the language ML coincide with the modal
logic S4 [29], which is PSPACE-complete [27]. The fragment of MT in the lan-
guage MLu is the modal logic S4u, which is also PSPACE-complete [5]. The
fragments of L(R) and L(R2) in MLu coincide with the logic of all connected
topological spaces (induced by metric spaces); it can be obtained from S4u by
adding the ‘connectivity axiom’ of [32]

∃2P1 u ∃2P2 u ∀(2P1 t2P2) v ∃(2P1 u2P2). (2)

Language II. In the language MT we can formalise metric relations, but we
cannot compare two distances without specifying their absolute values. To enable
reasoning about relations between distances, we extend MT with numerical
variables. More precisely, let MT [V] be the language that is defined similarly to
MT , with the only difference being that instead of the parameters from Q+ we
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use variables from the list V = {x0, x1, . . . }. Given an assignment a : V → Q+

and an MT [V]-term τ , we denote by τa the MT -term that results from τ by
replacing each xi with a(xi).

Let Γ be a set of constraints for the variables in V, say, a set of rational
linear inequalities over V or a polynomial equation. An MT [V]-term τ is called
satisfiable relative to Γ if there exists an assignment a such that it solves Γ and τa

is satisfiable in a topometric model. Here are two simple examples of constraint
systems Γ:
• Γ consists of equalities xi = ai, where ai ∈ Q+. In this case anMT [V]-term
τ is satisfiable relative to Γ iff τa is satisfiable for a : xi 7→ ai.

• Γ consists of strict inequalities x0 < x1, x1 < x2, etc. In this case no
absolute value for variables is fixed.

Example 2. (i) The terms dH(τ1, τ2) = x, dH(τ3, τ4) = y under the constraint
x ≥ 2y say that the Hausdorff distance between τ1 and τ2 is at least two times
larger than the Hausdorff distance between τ3 and τ4.

(ii) We can express incomplete knowledge about distances by using interval
constraints a1 ≤ x ≤ a2.

(iii) Comparative distance statements can be used within quantifiers, e.g.,
∀<xτ under the constraint x = dH(τ1, τ2).

In the remaining three sections of the paper we consider in turn the logic
formalisms defined above.

§3. The logic MT. The purpose of this section is a comprehensive analysis
of the logic MT. With every MT -term τ we associate a finite set of axiom
schemata from which τ is derivable iff τ ∈ MT. We also introduce a sound
and complete relational semantics for MT with respect to which MT has the
finite model property (remember that, according to Example 1 (iii), MT does
not enjoy the finite model property relative to the intended topometric models).
Using this relational semantics, we prove EXPTIME-completeness of MT (for
binary coding of the parameters). Let us begin by introducing the notation we
need.

Parameter set. Suppose that M ⊆ Q+ is such that
(+) if a, b ∈M and a+ b ≤ γM , then a+ b ∈M ,
(−) if a, b ∈M and a− b > 0, then a− b ∈M ,
where γM = supM if M is bounded and γM = ∞ otherwise. Then M is called
a parameter set. We also let εM = infM .

Given anMT -term τ , we definite a finite parameter setM [τ ] ⊆ Q+ containing
all parameters from τ . Suppose that the numerical parameters occurring in τ
comprise the set

N(τ) =
{
a1

b1
, . . . ,

an

bn

}
⊆ Q+,

where ai, bi are mutually prime for 1 ≤ i ≤ n. Let γτ = aj

bj
be the maximal

number in N(τ) and let

ετ = 1/(b1 × · · · × bn),
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ξτ = aj × b1 × · · · × bj−1 × bj+1 × · · · × bn,

M [τ ] = {n× ετ | n ∈ N+, 1 ≤ n ≤ ξτ}.

It is an easy exercise to check that M [τ ] is closed under (+) and (−), and so is
a finite parameter set. Note that the closure under (+) and (−) of a finite set of
real numbers can be infinite.

Length of term. Let us agree on how to measure the length `(τ) of a term
τ . Given a positive rational number c = a/b, where a and b are relatively prime
integers, let `(c) denote the smallest natural number exceeding 1+ log2(a+1)+
log2(b+ 1). Then the length `(τ) of a term τ is defined inductively in the usual
way (say, as the number of subterms of τ) with the only exception:

`(∃<cτ) = `(∃≤cτ) = `(τ) + 1 + `(c).

In other words, the parameters in τ are assumed to be represented in binary. It
is not hard to see that

log2(|M [τ ]|) ≤ log2(
n∏

i=1

ai × bi) ≤ `(τ),

where the ai/bi are elements of N(τ). It follows that |M [τ ]| ≤ 2`(τ).
Axiom system. Given a parameter setM , denote by AxMT[M ] the following

axiomatic system. First, it contains some set of axiom schemata and inference
rules (say, modus ponens) of classical propositional logic. Second, it has the
standard axiom schemata and rules of the minimal multi-modal logic K with
the ‘necessity operators’ op of the form 2, ∀, ∀<a, a ∈ M , and ∀≤a, a ∈ M ,
namely,

op (τ → ρ) → (op τ → op ρ) and
τ

op τ
,

where τ → ρ is an abbreviation for ¬(¬τ u ρ). Third, to ensure that 2 is an
S4-operator and ∀ is an S5-operator quantifying over the whole metric space,
we include the well-known axiom schemata

2τ → τ, 2τ → 22τ, ∀τ → τ, ∀τ → ∀∀τ, τ → ∀∃τ, ∀τ → ∀≤aτ,

for a ∈ M . Finally, the following axiom schemata govern the metric operators
and their interaction with topology (here a and b range over M):

τ → ∀≤a∃≤aτ, (3)

τ → ∀<a∃<aτ, (4)

∀≤aτ → τ, (5)

∀<aτ → τ, (6)

∃<aτ → ∃≤aτ, (7)

∃≤aτ → ∃<bτ, for a < b, (8)

∃≤a∃≤bτ → ∃≤a+bτ, if a+ b ∈M, (9)

∃≤a∃<bτ → ∃<a+bτ, if a+ b ∈M, (10)

∃<a∃<bτ → ∃<a+bτ, if a+ b ∈M, (11)
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3τ → ∃<aτ, (12)

∃<a3τ → ∃<aτ. (13)

Axioms (3) and (4) ensure symmetry of metric, (5) and (6) guarantee the condi-
tion d(x, x) = 0, and (9)–(11) the triangle inequality. Axioms (7) and (8) reflect
the relation between open and closed spheres. (12) and (13) are the only axioms
we need to grasp the interaction between metric and topology.

Relational semantics. AnMT [M ]-frame, for a parameter set M , is a struc-
ture of the form

F =
〈
W,R, (D≤a )a∈M , (D<

a )a∈M

〉
, (14)

where W is a nonempty set and R, D≤a , D<
a (a ∈M) are binary relations on W

satisfying the following properties (qoR)–(D<R) for all u, v, w ∈W and a, b ∈M :

(qoR) R is reflexive and transitive (a quasi-order),

(rsD) D<
a and D≤a are symmetric and reflexive,

(D<D≤) D<
a ⊆ D≤a ,

(D≤<) if uD≤a v and a < b, then uD<
b v,

(trD≤) if uD≤a vD
≤
b w and a+ b ∈M , then uD≤a+bw,

(trD≤D<) if uD≤a vD
<
b w and a+ b ∈M , then uD<

a+bw,

(trD<D≤) if uD<
a vD

≤
b w and a+ b ∈M , then uD<

a+bw,

(RD<) if uRv, then uD<
a v for all a > 0,

(D<R) if uD<
a vRw, then uD<

a w.

An MT [M ]-model is a structure

K =
〈
F, PK

1 , P
K
2 , . . .

〉
, (15)

where F is an MT [M ]-frame of the form (14) and the PK
i are subsets of W . The

value τK of an MT [M ]-term τ in K is defined inductively: the values of the Pi

are given by the model, the Boolean cases are standard, and

(∃<aτ)K = {u ∈W | ∃v ∈ τK uD<
a v},

(∃≤aτ)K = {u ∈W | ∃v ∈ τK uD≤a v},
(2τ)K = {u ∈W | ∀v ∈W (uRv → v ∈ τK)},

(∃τ)K =

{
W if τK 6= ∅,
∅ otherwise.

We say that τ is satisfied in an MT [M ]-model K if τK 6= ∅; τ is true in K if
τK = W .

Throughout this paper we shall often use a number of simple properties of
MT [M ]-frames that can be easily derived from conditions (qoR)–(D<R). We
formulate them in the following lemma, where s = x0RDxn is an arbitrary finite
sequence of the form x0S0x1S1 . . . Sn−1xn such that each Si is one of R, D<

a or
D≤a , for some a ∈ M , and the sum as of the numerical parameters occurring in
s belongs to M :
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Lemma 3. (a) if uD≤a v and a ≤ b, then uD≤b v,
(b) if uRvD≤a w and a < b, then uD<

b w,
(c) if uD<

a vD
<
b w and a+ b ∈M , then uD<

a+bw,
(d) if uD<

a v and uRw, then wD<
a v,

(e) if uD<
a v (or vD<

a u), s = vRDw and a+ as ∈M , then uD<
a+as

w,
(f) if s = uRDv and a = εM + as ∈M , then uD<

a v,
(g) if s = vRDw, s′ = vRDw′, and a = εM + as + as′ ∈M , then wD<

a w
′.

Proof. We only show how to prove (b) and (g), and leave the remaining
(equally easy) cases to the reader.

(b) Suppose that uRvD≤a w and a < b. By (RD<), we then have uD<
εM
vD≤a w.

Since M is closed under (−) and (+), εM ≤ b−a and εM +a ∈M . It follows by
(trD<D≤) that uD<

εM+aw. If εM + a = b then we are done. And if εM + a < b,
then we use (D<D≤) and (D≤<) which also give uD<

b w.
(g) Suppose that s = vRDw, s′ = vRDw′, and a = εM + as + as′ ∈ M . By

(f), vD<
εM+as

w, and so, by symmetry, wD<
εM+as

v, from which, by (e), we obtain
wD<

a w
′. a

Remark 4. Intuitively, uD≤a v (uD<
a v) in F says that the distance between u

and v is ≤ a (respectively, < a); uRv means that u belongs to the topological
closure of {v}. In fact, the truth-condition for 2 means that 2 is interpreted by
the interior operator IG of the topological space TG = 〈W, IG〉 induced by the
quasi-order G = 〈W,R〉—i.e., by

IG(X) = {x ∈ X | ∀y ∈W (xRy → y ∈ X)}.
Such spaces are known as Aleksandrov spaces. Alternatively they can be defined
as topological spaces where arbitrary (not only finite) intersections of open sets
are open; for details see [2, 11].

The constraints on the relations in MT [M ]-frames reflect the connection
between metric and topology: (qoR) corresponds to the S4-axioms for 2, and
(rsD)–(D<R) to axioms (3)–(13). In fact, it is an easy exercise to check that
the axioms of AxMT[M ] are true in all MT [M ]-models and that these models
preserve the inference rules for every parameter set M . Note, however, that the
topological interpretation of R differs drastically from the topology induced by
metric spaces: for example, in a metric space every singleton {x} is closed, while
every MT [M ]-frame with a non-trivial R contains a non-closed singleton.

Given a term τ , we write AxMT[τ ] for AxMT[M [τ ]] andMT [τ ] forMT [M [τ ]].
We are now in a position to formulate our main result about the basic logic

MT of metric and topology:

Theorem 5. (i) The following conditions are equivalent for every MT -term
τ :

1. τ ∈ MT.
2. τ is derivable in AxMT[Q+].
3. τ is derivable in AxMT[τ ].
4. τ is true in all MT [τ ]-models.
5. τ is true in all finite MT [τ ]-models.

(ii) The decision problem for MT is EXPTIME-complete.
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Before going into details of the proof, we separate the conceptually interesting
part from the ‘folklore’ or trivial observations. Clearly, (3) ⇒ (2) ⇒ (1). By
Sahlqvist’s completeness theorem (see, e.g., [9, Theorem 4.42]), we also have
(4) ⇔ (3). Indeed, AxMT[τ ] can be regarded as a normal multi-modal logic with
Sahlqvist axioms. So AxMT[τ ] is determined by its Kripke frames which clearly
coincide with MT [τ ]-frames. In other words, a term τ is derivable in AxMT[τ ]
iff τ is true in all MT[τ ]-models.

Thus, to complete the proof of (i), it remains to show the implications (5) ⇒
(4) and (1) ⇒ (5). The former one—which means that MT has the finite
model property (fmp, for short) with respect to MT [M ]-models—as well as the
EXPTIME-completeness of MT will be proved in Section 3.1. The core part of
Theorem 5 is the latter implication to be proved in Section 3.2. It states that
every term τ satisfiable in a finite MT [M ]-model (with M [τ ] ⊆M) is satisfiable
in a topometric model. Actually, we show that every finite MT [M ]-model is a p-
morphic image (in the natural sense to be defined below) of some (almost always
infinite) topometric model. Thus, MT [M ]-models can be regarded as a sort of
partial descriptions of scenarios which can be realised in topometric models. In
the algebraic setting, which is closer to Tarski’s programme mentioned in the
introduction, this can be reformulated as follows: every Boolean algebra with
operators for 2, ∀<a, ∀≤a (a ∈M), ∀, that is induced by a finite MT [M ]-frame,
can be embedded into the Boolean algebra with operators induced by some to-
pometric model. The reader familiar with algebraic semantics of modal logics
and duality theory should not have problems with reformulating these results in
the algebraic manner (consult, e.g., [20]).

Remark 6. It is to be noted that the axiomatic system AxMT[τ ] is not com-
plete if we do not include in it the axioms for all parameters from the closure
of N(τ) under both (+) and (−). For example, 3∃≤2P v ∃<3P is not derivable
from the axioms formulated for M = {2, 3} only.

3.1. The fmp and EXPTIME-completeness.

Theorem 7. (i) If an MT -term τ is satisfiable in an MT [τ ]-model, then it
is satisfiable in a finite MT [τ ]-model.

(ii) The satisfiability problem for MT -terms in MT -models is decidable in
exponential time in the length of the term.

Proof. The proof of both (i) and (ii) is based on the standard elimination
method used, e.g., for PDL [22]. Roughly, it works as follows. Given a term
τ , take a suitable closure cl(τ) (the Fischer–Ladner closure in case of PDL) of
the set of subterms of τ , form a set Γτ of appropriate types over cl(τ), define
appropriate relations for 2, ∀<a, ∀≤a, a ∈ M [τ ], on Γτ and, finally, eliminate
recursively all of those types from Γτ that contain terms of the form ¬2ρ, ¬∀<aρ,
or ¬∀≤aρ having no ‘witnesses’ in Γτ (i.e., properly located types with ¬ρ). Then
we show that τ is satisfiable iff the elimination procedure terminates with a set
containing a type with τ . (This is done by proving that if τ is satisfiable then τ is
satisfiable in a finite model constructed from the resulting set of types.) Finally,
we show that this procedure is ‘only’ exponential in `(τ) by proving that Γτ is
‘only’ exponential in `(τ).
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Given the simple first-order form of the constraints on MT [τ ]-models, it is
not too difficult to implement this scheme for MT—provided that we use the
unary coding of the numerical parameters. The main novelty of the proof is the
additional ingredients required to devise an EXPTIME algorithm in `(τ), i.e.,
under binary coding.

Without loss of generality we may assume that τ is constructed using the
Booleans, the metric operators ∀<a, ∀≤a, the interior operator 2, and the uni-
versal quantifier ∀. Since M [τ ] is exponential in `(τ), a näıve adoption of, say,
the Fischer–Ladner closure would result in our case in 22|`(τ)|

types. To avoid
this, we add to the language new operators ∀≤a+

, a ∈ M [τ ], with the following
semantics. Given an MT [τ ]-model K of the form (15), we have x ∈ (∀≤a+

ρ)K iff
y ∈ ρK whenever s = xRDy and as ≤ a, where s = xRDy is an arbitrary finite
sequence of the form xS0x1S1 . . . Sny such that each Si is one of R, D<

b or D≤b ,
for some b ∈ M [τ ], and the sum as of the numerical parameters occurring in s
belongs to M [τ ].

Denote by sub(τ) the set of all subterms of τ and by cl(τ) the closure under
single negation of the set

sub(τ) ∪ {2ρ | ∀<bρ ∈ sub(τ) or ∀≤bρ ∈ sub(τ)} ∪

{∀<aρ,∀≤aρ,∀≤a+
ρ | (∀<bρ ∈ sub(τ) or ∀≤bρ ∈ sub(τ)) and a ∈M [τ ]}.

Say that a subset T of cl(τ) is a τ -type if it satisfies the following conditions,
where b ∈M [τ ]:
(t1) ¬ρ ∈ T iff ρ 6∈ T , for all ¬ρ ∈ cl(τ);
(t2) ρ1 u ρ2 ∈ T iff ρ1, ρ2 ∈ T , for all ρ1 u ρ2 ∈ cl(τ);
(t3) if 2ρ ∈ T then ρ ∈ T ;
(t4) if ∀≤a+

ρ ∈ T and b ≤ a, then ∀≤b+ρ,∀≤bρ ∈ T ;
(t5) if ∀≤aρ ∈ T and b ≤ a, then ∀≤bρ,∀<bρ ∈ T ;
(t6) if ∀<aρ ∈ T and b ≤ a, then ∀<bρ,2ρ ∈ T ;
(t7) if ∀<aρ ∈ T and a− ετ > 0 then ∀≤(a−ετ )+ρ ∈ T .
(t8) if ∀ρ ∈ T then ρ ∈ T .

A typical example of a τ -type is the set

T (u) = {ρ ∈ cl(τ) | u ∈ ρK}
generated by any point u ∈W , where K is an MT [τ ]-model of the form (15).

Lemma 8. The number of distinct τ -types does not exceed 2c·`(τ)2 , for some
constant c > 0.

Proof. Every τ -type T is uniquely determined by the set of subterms ρ of τ
it contains and, for every subterm ρ of τ , by the maximal a ∈ M [τ ] such that
∀≤a+

ρ ∈ T , the maximal a ∈ M [τ ] such that ∀≤aρ ∈ T , the maximal a ∈ M [τ ]
such that ∀<aρ ∈ T , and, finally, whether or not 2ρ ∈ T . This follows from
the conditions (t1) and (t4)-(t6) for τ -types. Therefore, the number of distinct
τ -types does not exceed

2|sub(τ)| × 2|sub(τ)| × |M [τ ]|3·|sub(τ)| ≤ 22·`(τ) × 23·`(τ)2 ,

as required a
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Now we are going to show that, if τ is satisfiable at all, then a certain subset
T of the set of all τ -types can serve as the domain of a model satisfying τ . The
points u in this model will coincide with the τ -types they generate. The relations
R and D≤

a and D<
a in this model will be the restrictions to T of the following

relations →R, ↔≤a and ↔<a, for a ∈M [τ ], defined on the set of all τ -types.
• Let T1 →R T2 iff conditions (R1)–(R5) are satisfied:

(R1) if 2ρ ∈ T1 then 2ρ ∈ T2,
(R2) if ∀≤a+

ρ ∈ T1 then ∀≤a+
ρ ∈ T2,

(R3) if ∀<aρ ∈ T1 and a > ετ then ∀≤(a−ετ )+ρ ∈ T2,
(R4) if ∀<ετ ρ ∈ T1 then 2ρ ∈ T2,
(R5) if ∀<aρ ∈ T2 then ∀<aρ ∈ T1.

• Let T1 ↔≤a T2 iff the following four conditions hold for i = 1, 2, where
1 = 2, 2 = 1 and a ∈M [τ ]:

(≤1) if ∀≤aρ ∈ Ti then ρ ∈ Ti,
(≤2) if ∀≤bρ ∈ Ti and b > a then ∀≤b−aρ ∈ Ti,
(≤3) if ∀<bρ ∈ Ti and b > a then ∀<b−aρ ∈ Ti,
(≤4) if ∀≤b+ρ ∈ Ti and b > a then ∀≤(b−a)+ρ ∈ Ti.

• Let T1 ↔<a T2 iff, for i = 1, 2:
(<1) if ∀<aρ ∈ Ti then 2ρ ∈ Ti,
(<2) if ∀<bρ ∈ Ti and b > a then ∀≤(b−a)+ρ ∈ Ti.

Given a set U = {∀τ1, . . . ,∀τr} ⊆ sub(τ), denote by SU the set of all τ -types
T such that, for all subterms of τ of the form ∀ρ, we have

∀ρ ∈ T iff ∀ρ ∈ U .
That is to say, T ∈ SU if and only if the set of terms of the form ∀ρ in T coincides
with U . Clearly, the cardinality of the set of distinct SU is exponential in `(τ).

Now, to decide whether τ is satisfiable, we enumerate all SU and perform on
each SU the following elimination procedure which checks whether it induces a
model for τ or not. Form the sequence

SU = T0 ⊇ T1 ⊇ · · ·
of sets of τ -types as follows. Suppose Ti is defined. Delete all those types T from
Ti for which one of the following conditions holds:
• there is ¬∀≤aρ ∈ T such that there is no T ′ ∈ Ti with ¬ρ ∈ T ′ and
T ↔≤a T

′,
• there is ¬∀<aρ ∈ T such that there is no T ′ ∈ Ti with ¬ρ ∈ T ′ and
T ↔<a T

′,
• there is ¬∀ρ ∈ T such that there is no T ′ ∈ Ti with ¬ρ ∈ T ′,
• there is ¬2ρ ∈ T such that there is no T ′ ∈ Ti with ¬ρ ∈ T ′ and T →R T ′,
• there is some ¬∀≤a+

ρ ∈ T for which there is no sequence S = T →R↔ T ′ of
τ -types such that aS ≤ a and ¬ρ ∈ T ′ (where S = T →R↔ T ′ and aS are
defined similarly to s = xRDy and as using the relations →R,↔≤a,↔<b).

Observe that, for every set U of the form {∀τ1, . . . ,∀τr} ⊆ sub(τ), this elimin-
ation procedure terminates after at most exponentially many in `(τ) steps. As
there are at most exponentially many in `(τ) different U , we can find out in
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exponential time whether for at least one U the elimination procedure applied
to SU terminates with a set of τ -types at least one of which contains τ .

Lemma 9. If τ is satisfiable then there exists a set U of the form

{∀τ1, . . . ,∀τr} ⊆ sub(τ)

such that the elimination procedure applied to SU terminates with a set T of
τ -types at least one of which contains τ .

Proof. Suppose τ is satisfied in a model

K =
〈
F, PK

1 , P
K
2 , . . .

〉
, where

F =
〈
W,R, (D≤a )a∈M [τ ], (D<

a )a∈M [τ ]

〉
.

Let

U = {∀ρ ∈ sub(τ) | ρK = W},
TK = {T (u) | u ∈W}.

We show that the elimination procedure applied to SU terminates with some set
T ⊇ TK. Assume that the elimination procedure generates a sequence

SU = T0 ⊇ T1 ⊇ · · ·
Then it is sufficient to prove that (i) T0 ⊇ TK and (ii) for all i ≥ 0, if Ti ⊇ TK,
then Ti+1 ⊇ TK. Claim (i) follows from the observation that ∀ρ ∈ T (u) if and
only if ρK = W , for all u ∈ W and ∀ρ ∈ sub(τ). For (ii) we consider the five
elimination rules for all T = T (u) such that u ∈W .
• Suppose that¬∀≤aρ ∈ T (u). Then there exists v ∈ W such that uD≤a

a v
and v /∈ ρK, from which we obtain T (u) ↔≤a T (v) and ¬ρ ∈ T (v).

• Suppose ¬∀<aρ ∈ T (u). Then there is v ∈W such that uD<a
a v and v /∈ ρK.

Therefore, T (u) ↔<a T (v) and ¬ρ ∈ T (v).
• Suppose ¬∀ρ ∈ T (u). Then there is v ∈ W such that v /∈ ρK, and so
¬ρ ∈ T (v).

• Suppose ¬2ρ ∈ T (u). Then there is v ∈ W such that uRv and v /∈ ρK,
from which T (u) →R T (v) and ¬ρ ∈ T (v).

• Suppose ¬∀≤a+
ρ ∈ T (u). Then there exists a sequence uS0u1S1 . . . Snun

such that each Si is one of R, D<
a or D≤a , for some a ∈ M [τ ] such that

aS ≤ a, where aS is the sum of the numerical parameters of this sequence,
and un 6∈ ρK. It follows that there is a sequence S = T (u) →R↔ T (un)
such that aS ≤ a and ¬ρ ∈ T (un).

This completes the proof of the lemma. a

Lemma 10. Suppose that the elimination procedure starts on input SU and
terminates with T . If τ ∈ T , for some T ∈ T , then τ is satisfiable.

Proof. Define an MT [τ ]-model K =
〈
F, PK

1 , P
K
2 , . . .

〉
by taking

F =
〈
W,R, (D≤a )a∈M [τ ], (D<

a )a∈M [τ ]

〉
,

where
• W = T ,
• PK

i = {T ∈W | Pi ∈ T}, for i < ω,
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• TRT ′ iff T →R T ′,
• TD≤a T

′ iff T ↔≤a T
′,

• TD<
a T

′ iff T ↔<a T
′.

We show that (i) F is an MT [τ ]-frame and that (ii) for every ρ ∈ cl(τ) and every
T ∈W , T ∈ ρK iff ρ ∈ T .

Let us start with (i) and check conditions (qoR)–(D<R).
(qoR) That R (i.e., →R) is reflexive and transitive follows immediately from

the definition, (t6) and (t7).
(rsD) That D≤a (that is ↔≤a) is reflexive and symmetric follows from the

definition and (t4)–(t6).
(D<D≤) follows from the definition and (t3)–(t5).
(D≤<) Let T1 ↔≤a T2 and a < b. If ∀<bρ ∈ T1 then, by (≤3), ∀<b−aρ ∈ T2

and, by (t6), 2ρ ∈ T2. Thus we have (<1). Now, if ∀<cρ ∈ T1, for c > b, then by
(≤3), ∀<c−aρ ∈ T2. As c − b < c − a, we can use (t7) (together with (t4), (t5))
and the definition of M [τ ] to obtain ∀≤(c−b)+ρ ∈ T2, which proves (<2).

The properties (trD≤), (trD≤D<), (trD<D≤), (RD<) are easy and left to the
reader.

(D<R) Suppose T0 ↔<a T1 →R T2. We need to show that T0 ↔<a T2. If
∀<aρ ∈ T0 then 2ρ ∈ T1, and so, by (R1), 2ρ ∈ T2. If ∀<bρ ∈ T0 and b > a, then
we have ∀≤(b−a)+ρ ∈ T1. Therefore, by (R2), ∀≤(b−a)+ρ ∈ T2. Now suppose that
∀<aρ ∈ T2. Then, by (R5), ∀<aρ ∈ T1, and so 2ρ ∈ T0. Finally, if ∀<bρ ∈ T2

and b > a, then, by (R5), ∀<bρ ∈ T1, and hence ∀≤(b−a)+ρ ∈ T0.

Now we show (ii) by induction on the construction of ρ. If ρ is an atomic term,
then (ii) follows from the definition. The steps for the Boolean connectives can
be proved using conditions (t1) and (t2) for τ -types. We now consider the ‘modal’
connectives.

Let ρ = 2ρ0 and T /∈ (2ρ0)K. Then there exists T ′ ∈W such that TRT ′ and
T ′ /∈ ρK

0 . By the induction hypothesis, ρ0 /∈ T ′. But then, by (R2), 2ρ0 /∈ T .
Conversely, suppose 2ρ0 /∈ T . T is not eliminable. Therefore, by the fourth
elimination rule, there exists T ′ ∈ W such that T →R T ′ and ρ0 /∈ T ′. By the
induction hypothesis, T ′ /∈ ρK

0 . Hence, T /∈ (2ρ0)K.
The case ρ = ∀≤aρ0 can be proved using condition (≤1) and the first elimina-

tion rule.
The case ρ = ∀<aρ0 can be proved using condition (<1), property (t3) of

τ -types, and the second elimination rule.
The case ρ = ∀ρ0 can be proved using property (t8) of τ -types, the fact that

all T ∈ W contain the same terms of the form ∀ρ0 (as SU ⊇ W ), and the third
elimination rule. a

This proves Theorem 7. a
Our next theorem establishes the corresponding lower bound even without

using the interior and closure operators:

Theorem 11. The following problems are EXPTIME-hard:
(i) decide whether an MT -term built using only the Booleans and the operators

∀≤1 and ∀ belongs to MT;
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(ii) decide whether an MT -term built using only the Booleans and the operat-
ors ∀≤n, n ∈ N+, belongs to MT.

Proof. The proofs are by reduction of the global K-consequence relation that
is known to be EXPTIME-hard [33]. We remind the reader that the language
LK of modal logic K extends propositional logic (with propositional variables
p1, p2, . . . ) by means of one unary operator 3. LK is interpreted in models of
the form

N =
〈
V, S, pN

1 , p
N
2 , . . .

〉
,

where V is a nonempty set, S ⊆ V × V and pN
i ⊆ V . The value ϕN ⊆ V of an

LK-formula ϕ in N is defined inductively as follows:
• (ϕ ∧ ψ)N = ϕN ∩ ψN;
• (¬ϕ)N = V − ϕN;
• (3ϕ)N = {v ∈ V | ∃w (vSw ∧ w ∈ ϕN)}.

Say that ϕ1 follows globally from ϕ2 and write ϕ2 ` ϕ1 if, for every model N,
ϕN

1 = V whenever ϕN
2 = V . The problem of deciding whether ϕ2 ` ϕ1 holds is

EXPTIME-hard [33].
We define a translation ] from LK into the set of MT -terms built from the

Booleans and the operator ∃≤1. For out translation, the important difference
between models for LK andMT -models for the operator ∃≤1 is that the 3 of LK

is interpreted by an arbitrary relation S while the relation D≤1 interpreting ∃≤1

is symmetric and reflexive. Thus, the translation has to ‘encode’ an arbitrary
relation S by means of a symmetric and reflexive relation. We achieve this by
interpreting the points of the model for LK by means of the extension τK

0 of a
term τ0 and using ‘colours’ τK

1 and τK
2 to encode the relation S. Going from

τK
0 to τK

0 by traversing τK
1 and then τK

2 gives the required arbitrary relation S.
More precisely, take atomic terms Y0, Y1 and define τ0 = Y0 uY1, τ1 = Y0 u¬Y1,
τ2 = ¬Y0 u ¬Y1. Now we set inductively

p]
i = Pi u τ0,

(ϕ ∧ ψ)] = ϕ] u ψ],

(¬ϕ)] = ¬ϕ] u τ0,
(3ϕ)] = τ0 u ∃≤1(τ1 u ∃≤1(τ2 u ∃≤1(τ0 u ϕ]))).

(i) We show that for any ϕ1, ϕ2 ∈ LK,

ϕ2 ` ϕ1 iff (τ0 ∧ ∀(τ0 → ϕ]
2)) → ϕ]

1 ∈ MT.

The direction from left to right is easy and left to the reader. Conversely,
suppose ϕ2 6` ϕ1 We may assume that ϕN

2 = V and r 6∈ ϕN
1 , for a model

N =
〈
V, S, pN

1 , . . .
〉

such that 〈V, S〉 is an intransitive irreflexive tree with root r.
Now, for any x ∈ V − {r}, take its predecessor xp and insert two points (x, 1),
(x, 2) between x and xp. In other words, define an MT [{1}]-frame

F =
〈
W,R,D≤1 , D

<
1

〉
by taking

W = V ∪ ((V − {r})× {1}) ∪ ((V − {r})× {2}),



16 FRANK WOLTER AND MICHAEL ZAKHARYASCHEV

R and D<
1 to be the identity relation on W , and D≤1 the reflexive and symmetric

closure of the relation containing, for any x ∈ V − {r}, the pairs (xp, (x, 1)),
((x, 1), (x, 2)), and ((x, 2), x). Define an MT [{1}]-model K based on F by taking

PK
i = pN

i ,

Y K
0 = V ∪ ((V − {r})× {1}),
Y K

1 = V.

It is not difficult to see that r ∈ (τ0 ∧ ∀(τ0 → ϕ]
2))

K but r 6∈ (ϕ]
1)

K. Therefore,
(τ0 ∧ ∀(τ0 → ϕ]

2)) → ϕ]
1 6∈ MT.

(ii) Call an LK-formula ϕ valid if ϕN = V , for every model N. It is proved in
[12] that, for any ϕ1, ϕ2 ∈ LK,

ϕ2 ` ϕ1 iff (ϕ2 ∧2ϕ2 ∧ · · · ∧22`(ϕ1)+`(ϕ2)
ϕ2) → ϕ1

is valid, where `(ϕi) is the number of subformulas of ϕi. Now, it follows imme-
diately from the reduction (i) that

ϕ2 ` ϕ1 iff (τ0 u ∀≤3·2(`(ϕ1)+`(ϕ2))
(τ0 → ϕ]

2)) → ϕ]
1 ∈ MT.

This proves (ii). a
Note that, as follows from (i), the complexity of MT does not depend on

whether we use binary or unary coding. This contrasts with real-time logics
where, for example, LTL is PSPACE complete, but being extended with the op-
erators ‘after n ticks of the clock,’ n coded in binary, it becomes an EXPSPACE-
complete logic (of the same expressive power, of course) [4]. Theorem 11 (ii) is
of interest because it states that the universal modalities can be simulated by
distance operators with sufficiently large parameters.

3.2. Representation theorem. Now we show how to prove the implication
(1) ⇒ (5). The proof actually extends a representation theorem of McKinsey
and Tarski [29] (see also [32, 8, 1] for more recent proofs) which they use to show
the implication (1) ⇒ (5) for the topological fragment ML of our language.
To start with, we formulate their representation theorem for the metric space
consisting of the real line R with the standard Euclidean metric. Let IR denote
the standard interior operator on R. For a quasi-order F = 〈W,R〉 and X ⊆W ,
set

2X = {u ∈ X | ∀v ∈W (uRv → v ∈ X)}. (16)

A map f from R onto W is called a topological morphism from R to F if, for all
X ⊆W ,

f−1(2X) = IRf
−1(X).

A point r ∈W is called a root of F if W = {w | rRw}.

Theorem 12 (McKinsey and Tarski). If F is a finite quasi-order with root r,
then there exists a topological morphism f from R to F such that f(0) = r.

This result yields the following topological variant of the implication (1) ⇒ (5):

Corollary 13 (McKinsey and Tarski). If an ML-term ϕ is satisfiable in a
finite rooted quasi-order, then it is satisfiable in 〈R, IR〉.
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We now introduce the concepts we need to extend this result (with R replaced
by arbitrary metric spaces) to our language of metric and topology.

Let D = 〈V, d, Id〉 be a metric space with the induced interior operator Id. Let
F = 〈W,R, (D≤a )a∈M , (D<

a )a∈M 〉 be an MT [M ]-frame, for some parameter set
M . Define the operator 2 as in (16). We say that a surjective map f : V → W
is an M -morphism from D to F if the following conditions are satisfied for all
x, y ∈ V , all a ∈M , and all X ⊆W :

(M1) f−1(2X) = Idf
−1(X);

(M2) if d(x, y) ≤ a then f(x)D≤a f(y);
(M3) if d(x, y) < a then f(x)D<

a f(y);
(M4) if f(x)D≤a f(y) then there exists a z ∈ V such that d(x, z) ≤ a and

f(z) = f(y);
(M5) if f(x)D<

a f(y) then there exists a z ∈ V such that d(x, z) < a and
f(z) = f(y).
The following proposition is easy and left to the reader (it corresponds to the
well-known p-morphism theorem from modal logic; see, e.g., [12, Theorem 3.15]
or [9, Theorem 3.14]):

Proposition 14. (i) Let M =
〈
D, PM

1 , PM
2 , . . .

〉
be a topometric model and

K =
〈
F, PK

1 , P
K
2 , . . .

〉
an MT [M ]-model. If there is an M -morphism f : D → F

such that PM
i = f−1(PK

i ) for all i < ω, then τM = f−1(τK) for every MT -term
τ with M [τ ] ⊆M .

(ii) Suppose D, F and τ are as above. If τ is satisfied in an MT [M ]-model
based on F and there is an M -morphism f : D → F, then τ is satisfied in a
topometric model based on D.

Thus, in view of (ii) above, to achieve our aim and show the implication
(1) ⇒ (5), it suffices to prove the following fundamental representation theorem:

Theorem 15. Given a finite MT [M ]-frame

F =
〈
W,R, (D≤a )a∈M , (D<

a )a∈M

〉
with a finite parameter set M , one can construct a (possibly infinite) metric space
D = 〈V, d, Id〉 and an M -morphism f : D → F.

Proof. The metric space D is constructed by means of a sort of ‘unravelling’
of F into a tree-like metric space. However, instead of taking the set W+ of all
finite nonempty sequences over W as the domain of the new space (which is the
standard construction), we define the domain V of D as

V = (R×W )+,

i.e., as the set of nonempty sequences (r1, v1) . . . (rn, vn), n < ω, over R ×W .
Elements of V are denoted by ~x, ~y, ~z, etc., with end(~x) being the last element
of ~x. This generalisation of the standard unravelling construction by means of
copies of the real line R allows us to represent the ‘local topologies’ within F.
More precisely, for every w ∈ W , let Ww = {u ∈ W | wRu} and Rw = R � Ww.
The pair 〈Ww, Rw〉 is known as a subframe of the S4-frame 〈W,R〉 generated
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by w. Note that, since 〈W,R〉 is a quasi -order, it is possible that Wu = Wv for
u 6= v.

According to Theorem 12, for every subframe Fv = 〈Wv, Rv〉 of 〈W,R〉, there
exists a surjective map fv : R →Wv such that, for all X ⊆Wv,

f−1
v (2vX) = IRf

−1
v (X) and fv(0) = v.

Here 2vX = {w ∈ Wv | ∀u ∈ Wv(wRvu → u ∈ X)}. Notice, however, that
2X = 2vX for every X ⊆ Wv because 〈Wv, Rv〉 is generated by v. Fix such a
map fv for each v ∈W . We are going to introduce a metric on V in such a way
that the map f : V →W defined by taking

f(~x(r, v)) = fv(r), (17)

for all ~x ∈ V ∪{λ}, (r, v) ∈ R×W , is the required M -morphism. (Here λ denotes
the empty string.)

We begin by introducing a notion of F-distance dF(w,w′) between w,w′ ∈W .
Let M− = {a− | a ∈M}. Three cases are possible:

Case 1: if there is a ∈ M such that wD≤a w
′ but wD<

a w
′ does not hold, then

dF(w,w′) = a.

Case 2: if there is a ∈M such that wD<
a w

′ but wD≤b w
′ does not hold for any

b < a, b ∈M , then dF(w,w′) = a−.

Case 3: if wD≤a w
′ does not hold for any a ∈M , then dF(w,w′) = ∞.

It is not hard to see that dF : W ×W → M ∪M− ∪ {∞} is a well-defined
function.

In fact, the F-distance dF(w,w′) is just a convenient way of speaking about
the relations D<

a and D≤a . Indeed, dF(w,w′) = a ∈ M means that the distance
encoded by these two relations is exactly a, and dF(w,w′) = a− means that this
distance is between a and b, where b is the maximal number in M such that
b < a. In the latter case we cannot yet fix a number for the distance between w
and w′.

With every pair (r, v) ∈ R×W we associate a non-negative real number op(r, v)
in the following way. Suppose that fv(r) = w and Ww $ Wv (equivalently, not
wRv). Then

op(r, v) = inf{
∣∣r − r′

∣∣ | r′ /∈ f−1
v (Ww)}.

As 〈Ww, Rw〉 is the subframe of 〈Wv, Rv〉 generated by w, we have

Ww = 2wWw = 2vWw = 2Ww.

Note that op(r, v) > 0 since r ∈ f−1
v (Ww) = f−1

v (2Ww), and so f−1
v (Ww) $ R

is open. If Ww = Wv then we set op(r, v) = γM (in particular, op(0, v) = γM ).
Intuitively, we need the number op(r, v) to ensure that points outside the interval
[r−op(r, v), r+op(r, v)] are ‘sufficiently far away’ from points in different copies
of R. Take some

ε < min{εM , a1 + a2 − γM | a1, a2 ∈M, a1 + a2 > γM}
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and assign to each element ~x of V a real number dist(~x) by taking inductively:

dist((r, v)) =
1
2

min{op(r, v), ε},

dist(~x(r, v)) =
1
2

min{dist(~x), op(r, v)}.

We are now in a position to define a metric function d on V . The definition
consists of five cases. The important ones are I and II, whereas the remain-
ing cases ensure that we obtain a tree-like metric space by taking as distances
between points the sum of the already defined distances over the shortest path
connecting them. The maximal distance between any two points in V will be
γM + εM . One can easily define a tree metric space without introducing this
bound, but having it minimises the number of case distinctions required.

Case I. Suppose that ~y = ~x(r1, v) and ~z = ~x(r2, v) for some r1, r2 ∈ R and
some ~x ∈ V ∪ {λ}, where λ is the empty string. Then

d(~y, ~z) = min{γM + εM , |r1 − r2|}.

That is to say, on each copy of the real line R, the metric function d coincides
with the Euclidean distance ‘cut’ at γM + εM . Notice that neither the behaviour
of the interior operator IR nor the behaviour of the operators ∃<a and ∃≤a,
a ∈M , are affected by ‘cutting’ the distance function at γM + εM .

Case II. Suppose that ~y = ~x(r1, v). For each w′ ∈W , we define d(~y, ~y(0, w′)).
This is the subtlest case in the definition of d: given the point r1 in a copy of R
corresponding to 〈Wv, Rv〉, we define the distance d between this point and the
0s in the ‘successor copies’ of R corresponding to 〈Ww′ , Rw′〉, for w′ ∈ W . Let
w = fv(r1). So w is the point in Wv to which r1 corresponds. Thus, the distance
d(~y, ~y(0, w′)) should depend on the value of dF(w,w′). The definition is clear for
dF(w,w′) ∈M ∪ {∞}:

If dF(w,w′) = ∞, then d(~y, ~y(0, w′)) = γM + εM .

If dF(w,w′) = a, then d(~y, ~y(0, w′)) = a.

Now suppose that dF(w,w′) = a−. Then d(~y, ~y(0, w′)) should be between a
and the maximal b ∈ M such that b < a. In other words, it should be between
a − εM and a. Second, we want to make sure that for a = εM the distance
d(~y, ~y(0, w′)) is at least 1

2εM because points in other copies of R should not
influence the topology on the present copy of R. Finally, we have to ensure that
for any r′ which is on the same copy of R as r1 and which corresponds to a
w′′ ∈Wv −Ww,

|r1 − r′|+ d(~y, ~y(0, w′)) > a.

We can ensure this by having d(~y, ~y(0, w′) > a − op(r1, v). Actually, a bit
more is required. We have to ensure that this inequality also holds for sums of
such distances over paths from the root of the constructed tree metric space to ~y.
Taking this into account, we end up with the definition d(~y, ~y(0, w′)) = a− dist(~y)

2 .

We extend d to the remaining pairs ~x, ~y ∈ V × V by taking the appropriate
sums of the distances defined so far:
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Case III. Let ~y = ~x(r1, v1)(r2, v2) . . . (rn, vn) and end(~x) = (r0, v0). Then

d(~x, ~y) = min
{
γM + εM ,

n∑
i=1

|ri|+
n−1∑
i=0

d(~x(r1, v1) . . . (ri, vi), ~x(r1, v1) . . . (ri, vi)(0, vi+1))
}
.

Case IV. Suppose now that

~x = ~z(r0, v0)(r1, v1)(r2, v2) . . . (rn, vn),
~y = ~z(r′0, v0)(r

′
1, v

′
1)(r

′
2, v

′
2) . . . (r

′
m, v

′
m)

and either r0 6= r′0 or r0 = r′0 and v1 6= v′1. Then set

d(~x, ~y) = min{γM + εM , |r0 − r′0|+ d(~z(r0, v0), ~x) + d(~z(r′0, v0), ~y)}.

Case V. Finally, set d(~x, ~y) = d(~y, ~x) whenever d(~y, ~x) is defined, while d(~x, ~y)
is not defined yet. For the remaining undefined d(~x, ~y) set d(~x, ~y) = γM + εM .

Straightforward yet tedious computations show that the defined function d is
indeed a metric on V (this is left for the reader). Thus we have

Lemma 16. 〈V, d〉 is a metric space.

Now define a map f : V →W by taking

f(~x(r, v)) = fv(r)

for all ~x ∈ V ∪ {λ}, (r, v) ∈ R ×W . To show that f is an M -morphism, we
require the following auxiliary lemma.

Lemma 17. Suppose that ~y = ~x(r1, v1) . . . (rn, vn) and end(~x) = (r0, v0). Sup-
pose also that, for 0 ≤ i ≤ n− 1,

dF(fvi
(ri), vi+1) ∈ {ai, a

−
i } ⊆M ∪M−, a =

∑
0≤i<n

ai, b = a+ εM .

Let ~x′ ∈ V be the result of replacing the last element (r0, v0) of ~x with (r′0, v0).
Finally, suppose d(~x, ~y) ≤ γM . Then the following hold true:

(1) if b ≤ γM , then f(~x)D<
b f(~y) and f(~x′)D<

b f(~y),
(2) d(~x, ~y) > a− dist(~x),
(3) a ≤ γM ,
(4) if dF(f(~x), v1) = a−0 , then f(~x)D<

a f(~y),
(5) d(~x, ~y) > a− 1

2op(r0, v0) and d(~x, ~y) > a− 1
2ε,

(6) d(~x′, ~y) > a+ 1
2op(r0, v0) if |r′0 − r0| ≥ op(r0, v0),

(7) if |r′0 − r0| < op(r0, v0), w ∈ W and c ∈ M , then f(~x)D<
c w implies

f(~x′)D<
c w.

Proof. (1) By the definition of f and dF, we have

v0Rf(~x)D≤a0
v1Rfv1(r1)D

≤
a1
v2 . . . D

≤
an−1

vnRf(~y). (18)

So, by Lemma 3 (f), f(~x)D<
b f(~y). And since v0Rf(~x′), by Lemma 3 (g), we

obtain f(~x′)D<
b f(~y).
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(2) We have ∑
0≤i<n

dist(~yi)
2

≤
∑

0≤i<n

dist(~x)
2i+1

< dist(~x),

where ~yi = ~x(v1, r1) . . . (vi, ri), for 0 ≤ i < n. Since d(~x, ~y) ≤ γM , we conclude,
using the definition of d in cases III and II, that

d(~x, ~y) ≥ a−
∑

0≤i<n

dist(~yi)
2

and therefore d(~x, ~y) > a− dist(~x).
(3) Suppose a > γM . Then a − ε > γM . It follows that a − dist(~x) > γM ,

contrary to (2) and d(~x, ~y) ≤ γM .
(4) As f(~x)D<

a0
v1, by Lemma 3 (e) and (1) we then obtain f(~x)D<

a f(~y).
(5) follows from (2), since dist(~x) ≤ 1

2op(r0, v0) and dist(~x) ≤ 1
2ε.

(6) We have, by case IV and (5),

d(~x′, ~y) = d(~x, ~y) + |r′0 − r0|
≥ d(~x, ~y) + op(r0, v0)

> a− 1
2
op(r0, v0) + op(r0, v0)

≥ a+
1
2
op(r0, v0).

(7) Suppose fv0(r0) = u. As |r′0 − r0| < op(r0, v0), we have r′0 ∈ f−1
v0

(Wu). It
follows that fv0(r

′
0) ∈Wu, i.e., f(~x)Rf(~x′). It remains to use Lemma 3 (d). a

We are now in a position to prove that f is an M -morphism from 〈V, d, Id〉
onto F. Obviously, f is surjective.

(M1) Let X ⊆W . Then

~x(r, v) ∈ Idf
−1(X) iff

iff ∃ε > 0∀~y ∈ V (d(~x(r, v), ~y) < ε→ f(~y) ∈ X)
iff ∃ε ∈ (0, εM/2)∀~y ∈ V (d(~x(r, v), ~y) < ε→ f(~y) ∈ X)
iff ∃ε ∈ (0, εM/2)∀~y ∈ {~x(s, v) | s ∈ R}

(d(~x(r, v), ~y) < ε→ f(~y) ∈ X)

iff ~x(r, v) ∈ Idf
−1
v (X)

iff ~x(r, v) ∈ f−1
v (2X)

iff ~x(r, v) ∈ f−1(2X).

(Here (0, εM/2) = {ε ∈ R | 0 < ε < εM/2}.) Note that the fourth equivalence
follows from the observation that the distance between any two points in different
copies of R is at least 1

2εM . This was ensured by the definition of d in case II.
(M4) Suppose that f(~x)D≤a f(~y). Let w = f(~y). Then d(~x, ~x(0, w)) ≤ a and

f(~x(0, w)) = fw(0) = w. Thus, z = ~x(0, w) is as required.
(M5) Suppose that f(~x)D<

a f(~y). Let w = f(~y). Then d((~x), ~x(0, w)) < a and
f(~x(0, w)) = fw(0) = w. Thus, z = ~x(0, w) is as required.

(M3) Suppose d(~x, ~y) < a. Consider all cases I–V.
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Case I. Suppose that ~x = ~z(r1, v) and ~y = ~z(r2, v) for some ~z ∈ V ∪ {λ},
r1, r2 ∈ R. Then f(~x) = fv(r1) and f(~y) = fv(r2). Therefore, vRf(~x) and
vRf(~y). By Lemma 3 (g), f(~x)D<

c f(~y) for all c ∈M . In particular, f(~x)D<
a f(~y).

Case II. Suppose ~x = ~z(r1, v) and ~y = ~z(r1, v)(0, v′). Then f(~x)D<
a f(~y)

follows by definition.

Case III. By induction on n we show that, for every a ∈M , if d(~x, ~y) < a and
~y = ~x(r1, v1) . . . (rn, vn), then f(~x)D<

a f(~y). The case n = 0 is clear.
Let ~y = ~x(r1, v1) . . . (rn, vn)(rn+1, vn+1), end(~x) = (r0, v0), and d(~x, ~y) < a,

a ∈ M . We find ai ∈ M such that, for 0 ≤ i ≤ n, dF(fvi
(ri), vi+1) ∈ {ai, a

−
i }.

Set a′ =
∑

0≤i≤n ai.
By Lemma 17 (5), we have a > a′ − εM because

a′ − εM < a′ − 1
2
ε < d(~x, ~y) < a.

If a ≥ a′ + εM then, by Lemma 17 (1), f(~x)D<
a f(~y), and we are done. So it

suffices to consider the case a = a′.
Let f(~x)D<

a0
v1. Then, by Lemma 17 (4), f(~x)D<

a f(~y), and we are done.
Suppose now that f(~x)D<

a0
v1 does not hold. Then f(~x)D≤a0

v1, d(~x, ~x(0, v1)) = a0,
and therefore d(~x(0, v1), ~y) < a − a0. It follows that d(~x(r1, v1), ~y) < a − a0

and, by Lemma 17 (6), |0 − r1| < op(r1, v1). By the induction hypothesis,
f(~x(r1, v1)D<

a−a0
f(~y). So, by Lemma 17 (7), f(~x(0, v1))D<

a−a0
f(~y). But then

f(~x)D≤a0
v1D

<
a−a0

f(~y), and by (trD≤D<), we obtain f(~x)D<
a f(~y).

Case IV. Suppose now that

~x = ~z(r0, v0)(r1, v1)(r2, v2) . . . (rn, vn),
~y = ~z(r′0, v0)(r

′
1, v

′
1)(r

′
2, v

′
2) . . . (r

′
m, v

′
m)

and either r0 6= r′0 or r0 = r′0 and v1 6= v′1. Let

d(~x, ~y) = |r0 − r′0|+ d(~z(r0, v0), ~x) + d(~z(r′0, v0), ~y) < a,

b1 =
∑

0≤i<n

ai, b2 =
∑

0≤i<m

a′i,

where

dF(fvi
(ri), vi+1) ∈ {ai, a

−
i }, dF(fv′i

(r′i), v
′
i+1) ∈ {a′i, (a′i)−}

(v′0 = v0). Set b = b1 + b2. By Lemma 17 (5),

d(~z(r0, v0), ~x) > b1 −
1
2
ε, d(~z(r′0, v0), ~y) > b2 −

1
2
ε.

So, d(~x, ~y) > b− ε > b− εM . If a ≥ b+ εM , then f(~x)Saf(~y), by Lemma 3 (g),
since fv0(0)Rf(~z(r0, v0)) and fv0(0)Rf(~z(r′0, v0)).

Thus, it suffices to consider the case a = b.
Let d(~z(r0, v0), ~x) < b1 and |r0 − r′0| < op(r0, v0). Then, by (III) above,

f(~z(r0, v0))D<
b1
f(~x) and, by Lemma 17 (7), f(~z(r′0, v0))D

<
b1
f(~x). Therefore, by

Lemma 3 (e), f(~x)D<
b f(~y).

The case d(~z(r′0, v0), ~y) < b2, |r0− r′0| < op(r′0, v0) is dual to the previous one.
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Let |r0 − r′0| ≥ op(r0, v0) and |r0 − r′0| ≥ op(r′0, v0). We may assume that
op(r0, v0) ≥ op(r′0, v0). Now, by Lemma 17 (6),

d(~z(r′0, v0), ~x) > b1 +
1
2
op(r0, v0)

and, by Lemma 17 (5),

d(~z(r′0, v0), ~y) > b2 −
1
2
op(r′0, v0).

Therefore, d(~x, ~y) > b1 + b2, which is a contradiction.
The case d(~z(r0, v0), ~x) ≥ b1, d(~z(r′0, v0), ~y) ≥ b2 leads to a contradiction as

well.
Let d(~z(r0, v0), ~x) ≥ b1 and |r0 − r′0| ≥ op(r′0, v0). Then d(~z(r0, v0), ~y) ≥ b2,

by Lemma 17 (6), which is a contradiction.
The case d(~z(r′0, v0), ~x) ≥ b2, |r0− r′0| ≥ op(r0, v0) is dual to the previous one.
Case V is trivial.
(M2) Suppose d(~x, ~y) ≤ a. Again we check cases I–V.
Case I. As we know, ~x = ~z(r1, v) and ~y = ~z(r2, v) imply ~xD<

a ~y for all a ∈M .
So, ~xD≤a ~y for all a ∈M .

Case II follows from the definition.
Case III. We show by induction on n that, for every a ∈M , if d(~x, ~y) ≤ a and

~y = ~x(r1, v1) . . . (rn, vn), then f(~x)D≤a f(~y). The case n = 0 is trivial. Suppose
now that ~y = ~x(r1, v1) . . . (rn, vn)(rn+1, vn+1), end(~x) = (r0, v0) and d(~x, ~y) ≤
a ∈M . We can find ai ∈M such that, for 0 ≤ i ≤ n, dF(fvi(ri), vi+1) ∈ {ai, a

−
i }.

Set a′ =
∑

0≤i≤n ai. As for (M3), it suffices to consider the case a = a′.

Let f(~x)D<
a0
v1. Then, by Lemma 17 (4), f(~x)D<

a f(~y). Therefore f(~x)D≤a f(~y),
and we are done.

Assume now that f(~x)D<
a0
v1 does not hold. Then we have f(~x)D≤a0

v1 and
d(~x, ~x(0, v1)) = a0. Therefore,

d(~x(0, v1), ~y) ≤ a− a0.

If op(r1, v1) ≤ |r1 − 0|, then

d(~x(0, v1), ~y) > a− a0 +
1
2
op(r1, v1)

(by Lemma 17 (6)) and

d(~x, ~y) ≥ a+
1
2
op(r1, v1),

which is a contradiction.
Suppose now that op(r1, v1) > |r1 − 0|.
Let r1 = 0. Then d(~x(0, v1), ~y) = d(~x(r1, v1)) ≤ a− a0, and by the induction

hypothesis, f(~x(0, v1)) = f(~x(r1, v1))D
≤
a−a0

f(~y). Then we have f(~x)D≤a f(~y) by
(trD≤).

Let r1 6= 0. As d(~x, ~y) ≤ a, we have d(~x(r1, v1), ~y) < a − a0. By (M3),
f(~x(r1, v1))D<

a−a0
f(~y). By Lemma 17 (7), f(~x, (0, v1))D<

a−a0
f(~y). Therefore, by

(trD≤D<), f(~x)D<
a f(~y), and so f(~x)D≤a f(~y).



24 FRANK WOLTER AND MICHAEL ZAKHARYASCHEV

Case IV. Suppose now that

~x = ~z(r0, v0)(r1, v1)(r2, v2) . . . (rn, vn),
~y = ~z(r′0, v0)(r

′
1, v

′
1)(r

′
2, v

′
2) . . . (r

′
m, v

′
m)

and either r0 6= r′0 or r0 = r′0 and v1 6= v′1. Let

d(~x, ~y) = |r0 − r′0|+ d(~z(r0, v0), ~x) + d(~z(r′0, v0), ~y) ≤ a,

b1 =
∑

0≤i<n

ai, b2 =
∑

0≤i<m

a′i,

where

dF(fvi
(ri), vi+1) ∈ {ai, a

−
i }, dF(fv′i

(r′i), v
′
i+1) ∈ {a′i, (a′i)−}

(v′0 = v0). Set b = b1 + b2. As in (M3), it suffices to consider the case a = b.
Let d(~z(r0, v0), ~x) < b1 and |r0 − r′0| < op(r0, v0). By (M3), f(~x)D<

b f(~y), and
so f(~x)D≤a f(~y).

The case d(~z(r′0, v0), ~y) < b2 and |r0 − r′0| < op(r′0, v0) is dual to the previous
one.

The case |r0−r′0| ≥ op(r0, v0) and |r0−r′0| ≥ op(r′0, v0) leads to a contradiction
as in (M3).

Let d(~z(r0, v0), ~x) ≥ b1 and d(~z(r′0, v0), ~y) ≥ b2. Then r0 = r′0, d(~z(r0, v0), ~x) =
b1 and d(~z(r′0, v0), ~y) = b2. So, by (III), we obtain f(~z(r0, v0)D

≤
b1
f(~x) and

f(~z(r0, v0))D
≤
b2
f(~y). f(~x)D≤a f(~y) follows from the symmetry of D≤b1 and (trD≤).

Let d(~z(r0, v0), ~x) ≥ b1 and |r0 − r′0| ≥ op(r′0, v0). Then, by Lemma 17 (6),

d(~z(r0, v0), ~y) ≥ b2 +
1
2
op(r′0, v0),

which is a contradiction.
The case d(~z(r′0, v0), ~x) ≥ b2 and |r0 − r′0| ≥ op(r0, v0) is dual to the previous

one.
This completes the proof of Theorem 15. a

Remark 18. It is worth noting that this result does not hold for infinite para-
meter sets. For example, take the MT [Q+]-model

M =
〈
{0, 1}, R, (D<

a )a∈Q+ , (D≤
a )a∈Q+ , PM

〉
,

where R = ≤, D<
a = D≤

a = {0, 1} × {0, 1}, PM = {1}. Then the underlying
frame of M is not a Q+-morphic image of any topometric space, since otherwise
the set {¬3P} ∪ {∃< 1

nP | n ∈ N+} from Example 1 (vi) would be satisfiable.

§4. The logics of the real line and plane.
The logic of R. Let us consider now the satisfiability problem for MT -terms

in topometric models based on the real line, i.e., the one-dimensional Euclidean
space 〈R, d〉 with d(r, r′) = |r − r′|. This problem can be shown to be decidable
by a straightforward embedding into the quantitative monadic logic of order
QMLO introduced in [23].

The language of QMLO is built from atoms x1 < x2, x1 = x2, Pi(x), using
the Booleans, first-order quantifiers and the following rule: if ϕ(x) is a formula
of QMLO with only one free (first-order) variable x, then
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• (∃x)<x0+1
>x0

ϕ ::= ∃x (x0 < x < x0 + 1 ∧ ϕ(x)),
• (∃x)>x0−1

<x0
ϕ ::= ∃x (x0 − 1 < x < x0 ∧ ϕ(x))

are also formulas of QMLO. The following result is proved in [23]:

Theorem 19 (Hirshfeld and Rabinovich). Validity of formulas of QMLO in
R is decidable.

Hirshfeld and Rabinovich [23] also prove that
• (∃x)≤x0+n

≥x0
ϕ and (∃x)≥x0−n

≤x0
ϕ,

• (∃x)<x0+n
≥x0

ϕ and (∃x)>x0−n
≤x0

ϕ

are expressible by QMLO-formulas, for n ∈ N.
To show that the satisfiability problem for MT -terms over 〈R, d〉 is decidable,

we observe first that this problem is reducible to satisfiability of MT [N]-terms
over 〈R, d〉 (of course, this holds for satisfiability in many other classes of topo-
metric models): given an MT [N]-term with parameters a1

b1
, . . . , an

bn
, replace any

ai

bi
in τ by ai × b1 × · · · × bi−1 × bi+1 × · · · × bn. Then the resulting term is

satisfiable if and only if τ is satisfiable.
Now define inductively a translation ] from the set of MT [N]-terms into the

language of QMLO by taking

P ]
i = Pi(x),

(∃<nτ)] = (∃y)<x+n
≥x τ ](y) ∨ (∃y)>x−n

≤x τ ](y),

(∃≤nτ)] = (∃y)≤x+n
≥x τ ](y) ∨ (∃y)≥x−n

≤x τ ](y),

(3τ)] = ∀y (y > x→ ∃z(x ≤ z < y ∧ τ ](z))) ∨
∀y (y < x→ ∃z(y < z ≤ x ∧ τ ](z))),

(∃τ)] = ∃y (x = x ∧ τ ](y)).

It is readily seen that, for every MT [N]-term τ , we have a ∈ τM for some a ∈ R
and some topometric model M over 〈R, d〉 iff τ ][a] holds in some QMLO-model.
Thus, we obtain from Theorem 19:

Theorem 20. The logic L(R) is decidable.

The computational complexity of L(R) in unknown. It should be clear that the
language of QMLO is more expressive than MT . For example, the QMLO-
formula ∃x (x > y ∧ P (x)) cannot be expressed by means of an MT -term
(interpreted in 〈R, d〉). More interestingly, by extending MT with the operators
∃<a

>0 , a ∈ N, such that

(∃<a
>0τ)

M = {u ∈ V | ∃v (0 < d(u, v) < a ∧ v ∈ τM)},
we obtain an undecidable logic over the class of all topometric models even
without the topological operators [26]. However, when interpreted over 〈R, d〉,
the extended language gives rise to a decidable logic because it is clearly em-
beddable into QMLO. Thus, there are natural metric operators that are ‘too
expressive’ on arbitrary metric spaces and yet ‘harmless’ on the real line.

On the other hand, it is known that the ‘punctuality’ operators ∃=a (‘at dis-
tance = a’) yield undecidable logics on R (both with and without finite variability
constraints on the interpretations) [3], but it is an open problem whether the
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extension of MT with the punctuality operators is decidable over the class of
topometric models.

The logic of R2. The situation becomes quite different if we consider the sat-
isfiability problem forMT -terms in topometric model based on the 2D Euclidean
space. We consider points of R×R, i.e., pairs x = (x1, x2), where x1, x2 ∈ R, as
standard Euclidean vectors of length

‖x‖ =
√
x2

1 + x2
2.

A metric space 〈W,d〉 is a subspace of the Euclidean space R× R if there is an
injective map f : W → R× R such that, for any two x, y ∈W ,

d(x, y) = ‖f(x)− f(y)‖.

Theorem 21. The satisfiability problem for MT [{1, 2}]-terms (even contain-
ing no topological operators 2 and 3) in topometric models over subspaces of
R× R or over R× R itself is undecidable.

Proof. The proof is by reduction of the undecidable Z × Z tiling problem
(see [10] and references therein), which is formulated as follows. Given a finite
set T = {T0, . . . , Tl} of tile types (i.e., 1 × 1-squares Ti with colours left(Ti),
right(Ti), up(Ti), and down(Ti) on their edges), decide whether the grid Z × Z
can be covered with tiles, each of a type from T , in such a way that the colours of
adjacent edges on adjacent tiles match, or, more precisely, whether there exists
a function f : Z× Z → T such that, for all n,m ∈ Z, we have

right(f(n,m)) = left(f(n+ 1,m)),
up(f(n,m)) = down(f(n,m+ 1)).

So suppose that a set T = {T0, . . . , Tl} of tile types is given. Our aim is to
construct an MT [{1, 2}]-term τT which is satisfiable in a subspace of R2 (or in
R2 itself) iff T can tile Z× Z.

Define τT to be the conjunction of the following terms, where X0, . . . , X3,
Y0, . . . , Y3, Z0, . . . , Zl are atomic terms, 0 ≤ i, j ≤ 3, 0 ≤ n,m, k ≤ l, and +4

and −4 denote addition and subtraction modulo 4:

X0 u Y0 6= ⊥, (19)

Xi u Yj v ∃≤1(Xi+41 u Yj), (20)

Xi u Yj v ∃≤1(Xi−41 u Yj), (21)

Xi u Yj v ∃≤1(Xi u Yj+41), (22)

Xi u Yj v ∃≤1(Xi u Yj−41), (23)

Yj v ∀<2¬Yj+42, (24)

Xi v ∀<2¬Xi+42, (25)

Xi u Yj v
l

(i′,j′) 6=(i,j)

¬∃<1(Xi′ u Yj′), (26)

⊔
i,j≤3

Xi u Yj =
⊔
k≤l

Zk, (27)
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Zm v ∀<1¬Zn (for n 6= m), (28)

Xi u Yj u Zk v ∀≤1(¬Xi+41 t ¬Yj t
⊔

right(Tk)=left(Tm)

Zm), (29)

Xi u Yj u Zk v ∀≤1(¬Xi t ¬Yj+41 t
⊔

up(Tk)=down(Tm)

Zm). (30)

The intended meaning of the conjuncts of τT will become clear from the fol-
lowing consideration. Suppose that τT is satisfied in a model

B =
〈
W,d,XB

0 , . . . , X
B
3 , Y

B
0 , . . . , Y B

3 , ZB
0 , . . . , Z

B
l

〉
,

where W ⊆ R × R and d is the restriction of the Euclidean metric to W . The
terms of the form Xi u Yj , for 0 ≤ i, j ≤ 3, will be used to simulate the grid
Z× Z in 〈W,d〉 in the following way.

Let Ai = XB
i , Bj = Y B

j , for 0 ≤ i, j ≤ 3. By (19), there is some r ∈ A0 ∩B0.
Vector r will represent the point (0, 0) of Z × Z. By (20), there is a point
x1 ∈ X1∩Y0 such that d(r,x1) = ‖r−x1‖ ≤ 1. But in fact, by (26), d(r,x1) = 1.
So we can regard x1 as representing (1, 0). Using again (20) and (26), we can
find x2 ∈ X2 ∩ Y0 such that d(x1,x2) = 1. Now, observe that in view of (25),
d(r,x2) ≥ 2, while by the triangular inequality, d(r,x2) ≤ 2. Thus, d(r,x2) = 2
and we can regard x2 as representing (2, 0). Using the same kind of argument
we can find x3 ∈ X3 ∩ Y0 such that d(x2,x3) = 1 and d(x1,x3) = 2. Now, since
the metric d is Euclidean, we conclude that d(r,x3) = 3, and so x3 can represent
(3, 0). Then we find x4 ∈ X0 ∩ Y0 for which d(r,x4) = 4; that will be (4, 0). All
four points r,x1,x2,x3 lie on the same straight line. (Observe that if 〈W,d〉 is
not assumed to be a subspace of R2 then we could have, say, d(r,x3) = 1 and
r = x4.)

More generally, it follows from (19), (20), (21), (25), and (26) that there exists
a vector a such that ‖a‖ = 1 and, for every i ≤ 3,

{r + (4n+ i) · a | n ∈ Z} ⊆ Ai ∩B0.

This gives us points of the form (n′, 0) from the grid Z× Z.
Similarly, using (19), (22)–(24) and (26), we can find a vector b such that

‖b‖ = 1 and, for all j ≤ 3,

{r + (4m+ j) · b | m ∈ Z} ⊆ A0 ∩Bj (31)

which gives us points of the form (0,m′) from Z × Z. Note that, according to
(26), a and b are linearly independent.

We claim now that in general, for all i, j ≤ 3,

{r + (4m+ j) · b + (4n+ i) · a | m,n ∈ Z} ⊆ Ai ∩Bj , (32)

which gives all points (n′,m′) from Z × Z. To prove this claim, we first show
that, for j ≤ 3,

{r + (4m+ j) · b + a | m ∈ Z} ⊆ A1 ∩Bj . (33)

We know that r+a ∈ A1∩B0. Using the same argument as above, we can show
that there is a vector v such that ‖v‖ = 1 and

{r + (4m+ j) · v + a | m ∈ Z} ⊆ A1 ∩Bj . (34)
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So, we have to prove that v = b. Assume first that v and b are linearly
independent. Since ‖v‖ = ‖b‖ = 1, for every vector x, there exist n,m ∈ Z such
that

‖n · b +m · v − x‖ < 1.

It follows then from (31) and (34), that there are c ∈ A0 ∩Bj and d ∈ A1 ∩Bj′ ,
for some j, j′ ≤ 3, such that ‖c−d‖ < 1, contrary to (26). Therefore, b and v are
linearly dependent. So it remains to show b 6= −v. Suppose otherwise. But then
r+b ∈ A0∩B1 and r+a+b ∈ A1∩B3, contrary to (24). (Here we again used the
fact that the metric is Euclidean. Without it we could not ensure, for example,
the existence of a point c ∈ A1 ∩B1 such that d(r + a, c) = d(r + b, c) = 1.)

Thus we have (33) and then obtain (32) by a straightforward induction.
This provides us with an encoding of the grid Z×Z. We use the atomic terms

Zi to encode the tile types Ti: (27) says that every point on the grid is covered
with a tile, (28) ensures that this tile is unique, while (29) and (30) guarantee
that the colours of adjacent edges on adjacent tiles match.

Consider now a map f : Z × Z → T defined by taking, for all n,m ∈ Z and
i, j ≤ 3,

f(4n+ i, 4m+ j) = Tk iff r + (4n+ i)a + (4m+ j)b ∈ ZB
k .

It is not hard to check that f is a tiling we need.
Conversely, suppose that f : Z × Z → T tiles Z × Z. Consider the model B

based on the Euclidean metric space R×R in which, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ l,

XB
i = {(i+ 4n,m) | (n,m) ∈ Z× Z},

Y B
i = {(m, i+ 4n) | (n,m) ∈ Z× Z},
ZB

k = {(n,m) | f(n,m) = Tk}.

It is readily checked that (τT )B 6= ∅. a

§5. Reasoning with numerical variables. The main aim of this section is
to show that reasoning with the languageMT [V ] (containing numerical variables
that satisfy some rational linear inequalities) is decidable:

Theorem 22. It is decidable whether an MT [V ]-term τ is satisfiable relative
to a finite set of rational linear inequalities.

To formulate the decision procedure, we require the following notation. Sup-
pose that an MT [V ]-term τ and a set Γ of rational linear inequalities over
X = {x1, . . . , xn} are given. Without loss of generality we may assume that Γ
contains (among others) the constraints

{0 < x1, x1 < x2, x2 < x3, . . . , xn−1 < xn}.

(Obviously, the general decidability problem can be reduced to n! decidability
problems of this type.) Denote by SΓ the set of all assignments a : X → Q+

solving Γ. Our problem is to decide whether there is a ∈ SΓ such that τa is
satisfiable. Since SΓ is usually infinite, it is not clear a priori that this can be
done effectively. The main step towards an algorithm solving this problem is to
show that if there exists an a ∈ SΓ such that τa is satisfiable, then there exists an
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assignment which comes from a finite and effectively computable set of solutions
to Γ.

Intuitively, the finite set of solutions a we need consists of those solutions that
minimise the number of constraints on MT [τa]-models. More precisely, given
an assignment a, denote by L(a) the set of all inequalities of the form∑

xi∈Z

kxi
xi ≤ xj and

∑
xi∈Z

kxi
xi < xj ,

where the kxi are positive natural numbers, Z ⊆ X , xj ∈ X , and∑
xi∈Z

kxia(xi) ≤ a(xj) or
∑
xi∈Z

kxia(xi) < a(xj),

respectively.
Each L(a) is a finite set of rational linear inequalities. However, there may

exist infinitely many L(a), a ∈ SΓ. But it turns out that the set of ⊆-minimal
members of {L(a) | a ∈ SΓ} is finite and provides enough information. Let

MΓ = {L(a) | a ∈ SΓ & ¬∃b ∈ SΓ L(b) $ L(a)}.

Lemma 23. MΓ is finite and can be computed effectively from Γ.

Proof. Finiteness follows from the observation that

〈{L(a) | a ∈ SΓ},⊆〉

is a well partial order (it is easily embeddable into an appropriate (Nm,≤), where
(n1, . . . , nm) ≤ (n′1, . . . , n

′
m) iff ni ≤ n′i for all i ≤ m.) Recall that it can be

checked effectively whether, for a given a, Γ ∪ L(a) is solvable. If the answer is
‘yes’ then a solution can be computed. So, we can check effectively (i) whether
L(a) is a member of MΓ, for a given a, and (ii) whether X = MΓ holds, for a
given X ⊆MΓ. a

Now the algorithm runs as follows:
1. Determine MΓ and take, for every L ∈MΓ, a b ∈ SΓ such that L = L(b).
2. If there exists a b in this list such that τb is satisfiable, then τ is satisfiable

relative to Γ. Otherwise τ is not satisfiable relative to Γ.
Obviously, all this can be done effectively. The soundness of this algorithm is
clear. Completeness is a consequence of the following lemma:

Lemma 24. Suppose a, b ∈ SΓ. Then
(i) if L(a) ⊆ L(b), then τa is satisfiable whenever τb is satisfiable;
(ii) if L(a) = L(b), then τa is satisfiable iff τb is satisfiable.

Proof. We begin by introducing the notions required for the proof. Suppose
that τ is an MT -term and, as before, N(τ) is the set of numerical parameters
occurring in τ . Suppose also that a frame

T =
〈
W,R, (D≤a )a∈N(τ), (D<

a )a∈N(τ)

〉
is such that 〈

W,R ∪
⋃

a∈N(τ)

(D≤a ∪D<
a )

〉
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is a (possibly infinite) forest of (disjoint) intransitive and irreflexive trees (so
here we do not assume that (qoR)–(D<R) hold). Then a structure of the form

S =
〈
T, PS

1 , P
S
2 , . . .

〉
,

where PS
i ⊆ W for i < ω, is called a τ -skeleton. The value ρS of a subterm ρ

of τ in S is defined in precisely the same way as for the standard MT -models.
The term τ is satisfied in S if τS 6= ∅.

The expansion of a τ -skeleton S is the MT [τ ]-model

S∗ =
〈
T∗, PS

1 , P
S
2 , . . .

〉
, with (35)

T∗ =
〈
W,R∗, (E≤a )a∈M [τ ], (E<

a )a∈M [τ ]

〉
, (36)

where the T∗ is the result of closing T under the rules (qoR)–(D<R) for M [τ ].
Say that a τ -skeleton S is expandable if, for every subterm ρ of τ , we have

ρS = ρS∗
.

Lemma 25. An MT -term τ is satisfiable iff it is satisfiable in some expandable
τ -skeleton.

Proof. The implication (⇐) follows from definition.
(⇒) Suppose that τK 6= ∅ for some finite MT [τ ]-model

K =
〈
F, PK

1 , P
K
2 , . . .

〉
, with

F =
〈
W,R, (D≤a )a∈M [τ ], (D<

a )a∈M [τ ]

〉
.

Consider the reduction

F′ =
〈
W,R, (D≤a )a∈N(τ), (D<

a )a∈N(τ)

〉
of F to N(τ) and apply to it the standard unravelling procedure (see, e.g., [9]).
More precisely, take some minimal subset roots = {w1, . . . , wk} of W such that,
for every w′ ∈W − roots, there is a path

wiS1u1S2u2S3 . . . Snun, (37)

where un = w′, each Si is one of R, D≤a , D<
a , a ∈ N(τ), and wi ∈ roots. Now

construct the frame

T =
〈
Ŵ , R̂, (D̂≤a )a∈N(τ), (D̂<

a )a∈N(τ)

〉
,

where Ŵ consists of all finite sequences of the form (wi, u1, . . . , un) for which
(37) holds, and for each relation Ŝ ∈ {R̂, D̂≤a , D̂<

a | a ∈ N(τ)}, we have

(wi, u1, . . . , un)Ŝ(wj , v1, . . . , vm)

iff m = n+ 1, i = j, ui = vi for i = 1, . . . , n, and unSvm holds in F′. Let

S =
〈
T, PS

1 , P
S
2 , . . .

〉
where (wi, u1, . . . , un) ∈ PS

j iff un ∈ PK
j . It should be clear that S is a τ -skeleton

such that, for every subterm ρ of τ ,

(wi, u1, . . . , un) ∈ ρS iff un ∈ ρK. (38)

Thus, it remains to show that S is expandable.
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Let S∗ be the expansion of S based on the MT -frame T∗ as defined in
(35), (36). We claim that, for every subterm ρ of τ , we have ρS = ρS∗

. The
claim is proved by induction on the construction of ρ. Here we only show that
(∃<aρ)S = (∃<aρ)S∗

. The inclusion ⊆ is trivial. To prove the converse, suppose
(wi, u1, . . . , un) ∈ (∃<aρ)S∗

. Then there is (wj , v1, . . . , vm) ∈ ρS∗
such that

(wi, u1, . . . , un)E<
a (wj , v1, . . . , vm). Using Lemma 3 (e), (g) and the definition

of unravelling, it is not hard to see that we then have unD
<
a vm. By the induc-

tion hypothesis, (wj , v1, . . . , vm) ∈ ρS, and so, by (38), vm ∈ ρK. Therefore,
un ∈ (∃<

a ρ)
K and, again by (38), (wi, u1, . . . , un) ∈ (∃<aρ)S. a

Now, clearly, (ii) follows from (i). To prove (i) suppose that L(a) ⊆ L(b) and
set N1 = {a(xi) | 1 ≤ i ≤ n}, N2 = {b(xi) | 1 ≤ i ≤ n}. Denote by M1 and M2

the closure under (+) and (−) of N1 and N2, respectively, and set ε1 = minM1,
ε2 = minM2.

Suppose τb is satisfiable. By Lemma 25, we can satisfy τb in an expandable
τb-skeleton

S2 =
〈
T2, P

S2
1 , PS2

2 , . . .
〉
,

where
T2 =

〈
W,R, (D≤

b )b∈N2 , (D
<
b )b∈N2

〉
.

Denote by R∗, E≤
b , E<

b , b ∈ M2, the relations in the expansion S∗
2 of S2. Our

aim is to construct an M1-expandable τa-skeleton satisfying τa.
Let

S1 =
〈
T1, P

S1
1 , PS1

2 , . . .
〉
,

where PS1
i = PS2

i , for i < ω, and

T1 =
〈
W,R, (F≤

a )a∈N1 , (F
<
a )a∈N1

〉
,

where, for 1 ≤ i ≤ n,

F≤
a(xi)

= D≤
b(xi)

, F<
a(xi)

= D<
b(xi)

.

Denote by R∗, G≤
a , G<

a , a ∈M1, the relations in the expansion S∗
1 of S1.

We claim that, for all u, v ∈W and 1 ≤ i ≤ n,
(1) G<

a(xi)
⊆ E<

b(xi)
,

(2) G≤
a(xi)

⊆ E≤
b(xi)

.

Here we only show (1) and leave (2) to the reader. Let us write s = uRFv if s is
a sequence of the form u = x0S0x1S1 . . . Sn−1xn such that each Si is one of R,
F<

a or F≤
a , a ∈ N1. As before, as denotes the sum of the parameters that occur

in s. By s = uRDv we denote sequences that use relations R, D<
b and D≤

b , for
b ∈ N2.

Given a sequence s = uRFv, denote by w(s) the sequence of the form uRDv

that results from s by replacing all F<
a(xi)

and F≤
a(xi)

with D<
b(xi)

and D≤
b(xi)

,
respectively.

Suppose (u, v) ∈ G<
a(xj)

. Recall that〈
W,R ∪

⋃
a∈N1

F≤
a ∪

⋃
a∈N1

F<
a

〉
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is an intransitive and irreflexive tree. Therefore, the following cases (which do
not necessarily exclude each other) are possible:

Case 1. If u = v then (u, v) ∈ E<
b(x1)

, and the claim follows.

Case 2. There exists s = uRFv such that as < a(xj). But then we obtain
as+ε1 ≤ a(xj). So w(s) = uRDv and, since L(a) ⊆ L(b), we have aw(s) < b(xj).
Now, ε2 ≤ b(xj) − aw(s), and, therefore, aw(s) + ε2 ≤ b(xj). This implies
aw(s) < b(xj), and so we derive (u, v) ∈ E<

b(xj)
.

Case 3. There exists s = vRFu such that as < a(xj). Then swap v and u and
proceed as in Case 2.

Case 4. There exists s = uRFv such that s contains an F<
a and at least

one F<
a occurs before any R in s and as ≤ a(xj). Then aw(s) ≤ b(xj), since

L(a) ⊆ L(b), and so (u, v) ∈ E<
b(xj)

.

Case 5. As in Case 4 but with u and v swapped. Then proceed as in Case 4.
Case 6. There exist s1 = u0RFu, s2 = u0RFv and as1 + as2 < a(xj). Then

as1 +as2 +ε1 ≤ a(xj). Again, using L(a) ⊆ L(b), we obtain aw(s1)+aw(s2)+ε2 ≤
b(xj), and so (u, v) ∈ E<

b(xj)
.

Case 7. There exist s1 = u0RFu, s2 = u0RFv such that at least one of
s1, s2 contains an F<

a which occurs before any R and as1 + as2 ≤ a(xj). Using
L(a) ⊆ L(b), we obtain aw(s1) + aw(s2) ≤ b(xj) and, therefore, (u, v) ∈ E<

b(xj)
.

This finishes the proof of the claim.
Obviously, for any subterm ρ of τ , we have

(ρa)S1 = (ρb)S2 .

It remains to show by induction that, for any subterm ρ of τ ,

(ρa)S∗
1 = (ρb)S∗

2

The interesting steps are ρ = ∀<xiρ0 and ρ = ∀≤xiρ0. We only consider the
former.

Suppose u /∈ (ρa)S∗
1 . Then there is v such that (u, v) ∈ G<

a(xi)
and v 6∈ (ρa

0)
S∗

1 .
By the induction hypothesis, v 6∈ (ρb

0)
S∗

2 . By the claim above, (u, v) ∈ E<
b(xi)

.
Therefore, u 6∈ (ρb)S∗

2 .
Suppose u 6∈ (ρb)S∗

2 . It follows that u /∈ (ρb)S2 , and so u /∈ (ρa)S1 . But then,
by the induction hypothesis, we obtain u /∈ (ρa)S∗

1 . a
In general, it is not known whether there is an elementary upper bound for

the complexity of this procedure. However, in some cases it can be considerably
simplified:

Corollary 26. (i) Suppose that Γ consists of ‘pure’ strict inequalities

{0 < x1, x1 < x2, x2 < x3, . . . , xn−1 < xn}
and τ is an MT [V ]-term with variables {x1, . . . , xn}. Then τ is satisfiable re-
lative to Γ iff τa is satisfiable, where a(x1) = 1 and, for 1 < i ≤ n, a(xi) =
1 + 1

n+2−i .
(ii) Suppose that Γ consists of inequalities

{x2 ≥ a1x1, x3 ≥ a2x2, . . . , xn ≥ an−1xn−1},
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where the ai > 1 are natural numbers, and τ is an MT [V ]-term with vari-
ables {x1, . . . , xn}. Then τ is satisfiable relative to Γ iff τa is satisfiable, where
a(x1) = 1 and, inductively, a(xi+1) = ai · a(xi).

In both cases the satisfiability problem for τ relative to Γ is EXPTIME-complete.

Proof. In both cases the set MΓ contains just one set of inequalities L and
L(a) = L. a

§6. Conclusion. In this paper we have defined and investigated a new frame-
work for integrating qualitative and quantitative aspects of reasoning about met-
ric spaces and their induced topologies. A number of interesting open problems
arise within this framework if we (i) consider satisfiability of MT -formulas in
various important classes of metric spaces and/or (ii) weaken or strengthen the
expressive power of MT .

• For example, it would be of interest to investigate the logic determined by
metric spaces whose induced topological spaces are connected. We conjec-
ture that this logic can be axiomatised by adding the connectivity axiom
(2) to MT and that results similar to those for MT can be obtained.

• We have proved that L(R) is decidable. Does there exist a transparent
axiomatisation of this logic? What is the computational complexity of
L(R)?

• Although the logic of R2 (and its subspaces) is undecidable, we do not know
whether it is recursively enumerable. Nor is it known what happens if we
omit the operators ∃≤a.

• What is the computational complexity of satisfiability of MT [V ]-terms in
metric spaces?

• In [26], we have investigated the (non-topological) metric language with
operators ∃≤a and ∃>a (‘somewhere outside the closed sphere of radius a’)
and proved the decidability of satisfiability in arbitrary metric spaces. Is
the satisfiability problem for the extension of this language with topological
(interior and closure) operators decidable as well?

• The addition of nominals (atomic terms interpreted as singleton sets) would
make the language powerful enough for reasoning about concepts, similar-
ities, and prototypes in combinations with, e.g., description logics [18, 28].
It is an interesting open problem whether the resulting language is still
decidable. Note that the nominals would require new axioms like

3{n} = {n}, 3∃<a{n} v ∃≤a{n},

where n is a nominal.
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