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FORCING INDESTRUCTIBILITY OF SET-THEORETIC

AXIOMS

BERNHARD KÖNIG

Abstract. Various theorems for the preservation of set-theoretic
axioms under forcing are proved, regarding both forcing axioms
and axioms true in the Levy-Collapse. These show in particular
that certain applications of forcing axioms require to add generic
countable sequences high up in the set-theoretic hierarchy even be-
fore collapsing everything down to ℵ1. Later we give applications,
among them the consistency of MM with ℵω not being Jonsson
which answers a question raised during Oberwolfach 2005.

1. Introduction

It was a widely held intuition in the early days of proper forcing that
a typical application of the Proper Forcing Axiom makes use of a poset
of the form σ-closed ∗ ccc. The usual argument was to collapse the
size of all objects to ℵ1, then use a ccc-poset to force the desired prop-
erty to these objects and finally pull everything back into the ground
model with the help of the forcing axiom. Later it was realized that
forcing axioms have a lot more applications than that. These new de-
velopments were heading into two different directions, on the one hand
there was the development of semiproper forcing in [15] which lead to
the Semiproper Forcing Axiom and later to Martin’s Maximum in [5].
On the other hand, even for PFA it was soon realized that there is a
large variety of proper forcings that are not of the form σ-closed ∗ ccc.
Interesting examples here are posets that are not ω-proper and it was
demonstrated first in [15] and later in [13] that these can be used to
good account. The point we are trying to make is slightly different and
includes both proper and semiproper forcing notions. We give examples
to show that certain applications of forcing axioms can require adding
reals or countable sequences even before we collapse the size of the rel-
evant objects to ℵ1. The intuition here is that if we collapse without
adding countable sequences then our object will have an enumeration
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2 BERNHARD KÖNIG

of order-type ω1 whose initial segments are in the ground model. But
certain applications exclude such a possibility, most prominently the
negation of approachability properties. We just sketched the general
direction of this article. Section 2 introduces a wide range of forcing
properties that will become important later for the indestructibility
theorems. In Section 3 we will give various indestructibility results
for forcing axioms, but also indestructibility results for axioms true
in the Levy-Collapse of a large cardinal, most notably the axiom of
Game Reflection from [7]. Section 4 is a way of applying this technique
to Jonsson cardinals and related model-theoretic transfer properties.
Among other things, it is shown there that MM is consistent with ℵω

not being Jonsson which shoots down a lingering conjecture.
The reader is assumed to have a strong background in set theory.

As a general reference we recommend [11] and as a reference regarding
proper and semiproper forcing we suggest [2] and [16]. The remaining
paragraphs of the introduction will be used to give a short summary
of the most important Lemmas and Definitions used in this paper.

1 Definition. If Γ is a class of posets then MA(Γ) denotes the state-
ment that whenever P ∈ Γ and Dξ (ξ < ω1) is a collection of dense sub-
sets of P then there exists a filter G ⊆ P such thatDξ intersects G for all
ξ < ω1. In particular, PFA is MA(proper) and MM is MA(preserving
stationary subsets of ω1). The interested reader is referred to [2] and
[5] for more history on these forcing axioms.

2 Definition. We would like to remind the reader of the notion of a
bounded forcing axiom. Assume that λ is a cardinal and Γ a class of
posets, then the following are equivalent (see [1] and [17]):

(1) For every P ∈ Γ and a collection Dξ (ξ < ω1) of dense subsets
of P of size ≤ λ there is a filter G ⊆ P such that Dξ intersects
G for all ξ < ω1.

(2) For every A ⊆ λ and every Σ1-formula ϕ(x), if there is some
P ∈ Γ such that 
P ϕ(A) then there are stationarily many
M ≺ Hλ+ of size ℵ1 containing A such that Hλ+ |= ϕ(πM(A)),
where πM is the transitive collapse of M .

So let us denote the equivalent statements (1) and (2) by MA(Γ, λ)
and for simplicity we write PFA(λ) for MA(proper, λ) and MM(λ) for
MA(preserving stationary subsets of ω1, λ). The axioms PFA(ω1) and
MM(ω1) are often denoted by BPFA and BMM respectively. If Γ is
any class of posets, we also write PFA(Γ) for MA(proper and in Γ)
and similarly with MM(Γ).

3 Definition. The approachability property for κ (APκ) is the state-
ment that there is a sequence (Cα : α < κ+) such that for any α < κ+:
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(a) Cα ⊆ κ+, otp Cα ≤ κ,

and there is a club C ⊆ lim(κ+) such that for every γ ∈ C:

(b) Cγ ⊆ γ is club,
(c) the initial segments of Cγ are enumerated before γ,

i.e. ∀α < γ ∃β < γ Cγ ∩ α = Cβ.

A straightforward argument shows that APκ follows from either �κ or
from the cardinal arithmetic κ<κ = κ.

We use an abbreviation in the context of elementary embeddings:
j : M −→ N means that j is a non-trivial elementary embedding from
M into N such that M and N are transitive. The critical point of such
an embedding, i.e. the first ordinal moved by j, is denoted by cp(j).
We write jx for j(x) in a context where too many parentheses might be
confusing. Let us remind ourselves of the well-known extension Lemma
for elementary embeddings first noticed by Silver:

4 Lemma (Extension Lemma). Let j : M −→ N and assume that

G ⊆ P is generic over M and K ⊆ j(P) generic over N . If j′′G ⊆ K
then there is a unique extension j∗ : M [G] −→ N [K] of j such that

j∗(G) = K.

Proof. For each P-name τ̇ simply let j∗(τ̇ [G]) = j(τ̇)[K]. �

5 Definition. Recall that the model-theoretic transfer property

(λ1, λ0) ։ (κ1, κ0)

means that every structure (λ1, λ0, fi)i<ω has an elementary substruc-
ture of the form (A1, A0, fi)i<ω, where |A1| = κ1 and |A2| = κ0. The
relation (ω2, ω1) ։ (ω1, ω) is usually called Chang’s conjecture. A car-
dinal µ is called κ-Rowbottom if for all λ < µ we have (µ, λ) ։ (µ,< κ).
A cardinal µ is called Jonsson if every algebra of size µ has a proper
subalgebra of size µ.

We also need the following well-known Lemmas:

6 Lemma. Let λ be regular and assume that P is a σ-closed poset

of size λℵ0 that collapses λℵ0 to ℵ1. Then P is forcing-isomorphic to

Col(ℵ1, λ). �

7 Lemma. Assume that P is strategically σ-closed and λ ≥ |P|. Then
P completely embeds into Col(ℵ1, λ).

Proof. Clearly, P completely embeds into P × Col(ℵ1, λ). Results in
[4] imply that P × Col(ℵ1, λ) is σ-closed. Finally, Lemma 6 concludes
that P × Col(ℵ1, λ) ∼= Col(ℵ1, λ) and we are done. �
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2. ω2-closure properties

In this section we introduce five different properties of forcings which
all entail that no new ω1-sequences be added. We give a small overview
before defining them one by one, the following list is increasing in logical
strength:

(1) ω2-distributive
(2) weakly (ω1 + 1)-game-closed
(3) strongly (ω1 + 1)-game-closed
(4) ω2-closed
(5) ω2-directed-closed

So let us start with distributivity. A poset P is called κ-distributive
if the intersection of less than κ many dense open subsets is again
dense open. Note that this is equivalent to saying that P adds no
new sequences of length less than κ. It will become clear later why
we are mostly interested in the case κ = ω2. We have the following
proposition:

8 Lemma. Let λ ≥ ℵ1. The bounded forcing axiom MM(λ) is pre-

served by λ+-distributive forcings. Moreover, PFA(λ) is preserved by

proper λ+-distributive forcings.

Proof. This follows simply from the fact that λ+-distributive forcings
add no new elements to Hλ+ , so check that (2) of Definition 2 holds
in any (proper) λ+-distributive extension. For the MM(λ)-argument,
note that λ+-distributive forcings preserve stationary subsets of ω1. �

Now recall longer versions of the Banach-Mazur game on a partial
ordering P:

Empty p0 p2 . . . pξ . . .
Nonempty p1 p3 . . . pξ+1 . . .

where pξ (ξ < α) is descending in P and Nonempty wins the game of
length α if he can play α times.

9 Definition. A poset P is called weakly α-game-closed if Player Non-
empty has a winning strategy in the Banach-Mazur game of length α,
where Nonempty is allowed to play at limit stages. P is called strongly

α-game-closed if Player Nonempty has a winning strategy in the same
game except where Empty is allowed to play at limit stages.

It is clear that strongly (κ + 1)-game-closed posets are also weakly
(κ + 1)-game-closed. Remember that the standard forcing to add a
�κ-sequence with initial segments is weakly (κ + 1)-game-closed. An
APκ-sequence can be added with a considerably milder forcing. The
following crucial fact is originally from [20]:
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10 Lemma. For all cardinals κ there is a strongly (κ+1)-game-closed

forcing Aκ that adds an APκ-sequence. �

11 Definition. Assume for the following that P is strongly (ω1 + 1)-
game-closed. Let us fix a winning strategy σ for Nonempty in the
Banach-Mazur game on P. Instead of forcing with P, we could also
add a play of the game generically. Then this play induces a generic
filter for P. Define

R = {〈pξ : ξ ≤ γ〉 : γ < ω1 and pξ (ξ ≤ γ) is a partial σ-play}.

If s = 〈pξ : ξ ≤ γ〉 ∈ R is such a partial play, we also denote the
maximal condition pγ by ps. The ordering on R is usual extension.
Note that R is σ-closed and contains P as a complete subalgebra by
the projection mapping i(s) = ps. Yet, it is a much stronger forcing:
R will typically collapse the cardinality of P to ℵ1.

12 Lemma. Using the notation of Definition 11, if G ⊆ P is generic

then R/P = {s ∈ R : ps ∈ G} is σ-closed.

Proof. Suppose sn (n < ω) is a descending sequence in R/P and γ the
length of the union

⋃
n<ω sn. Then q = infn<ω psn is in G and

s =
⋃

n<ω

sn ∪ {(γ, q)}

is still a partial play according to σ. �

13 Lemma. Assume P is strongly (ω1+1)-game-closed and λ ≥ |P|ℵ0.

Then Col(ω1, λ)/P is σ-closed.

Proof. Let R be as before in Definition 11. The Lemma follows from
the following calculation:

Col(ℵ1, λ)/P ∼= (R× Col(ℵ1, λ))/P (by Lemma 6)
∼= (R/P)× Col(ℵ1, λ)

and this last product is σ-closed by Lemma 12. �

Lemma 13 points out the crucial difference between strongly and
weakly game-closed forcings: the quotient Col(ℵ1, λ)/P will generally
not be σ-closed if P is only weakly (ω1 + 1)-game-closed.
Finally, we introduce the two remaining notions listed at the begin-

ning of the section. For an infinite cardinal κ, P is called κ-closed if
any P-descending chain of length less than κ has a lower bound in P.
The poset P is called κ-directed-closed if it is closed under directed sub-
sets of size less than κ. [8] proves that PFA is preserved by ω2-closed
forcings and [12] that MM is preserved by ω2-directed-closed forcings.
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3. Indestructibility of set-theoretic axioms

a. Forcing axioms. This section should be seen as a continuation of
work started in [8]. There it was shown that PFA implies failure of
the approachability property at ℵ1. While we do not repeat the full
proof here, it is interesting to mention that PFA is applied to a poset
Q0 ∗ Q1 ∗ Q2 in this argument, where Q0 adds a Cohen real, Q1 is
a collapse with countable conditions, and Q2 is specializing a tree of
size ℵ1. The curious fact about the proof is that it seems necessary
for technical reasons to add the Cohen real right at the start. In the
following, we want to argue that the Cohen real is absolutely necessary.
We introduce the notion of a Σ-collapsing poset Q which means that
Q can be split up into two parts, where the first collapses everything in
sight without adding countable sequences, while the second is arbitrary.
Almost all known applications of PFA or MM are using Σ-collapsing
posets. This section wants to point out the few arguments where the
forcing axiom for Σ-collapsing posets is not enough even though the
full forcing axiom suffices. In other words, in the presented examples
it is absolutely necessary to add countable sequences before collapsing
everything to ℵ1.

14 Definition. A poset Q is called Σ-collapsing if it is of the form
Q = Q0 ∗Q1, where

(1) Q0 is ℵ1-distributive and
(2) 
Q0

|Q1| ≤ ℵ1.

The class of Σ-collapsing posets that preserve stationary subsets of ω1

is denoted by ΓΣ.

The point of this definition is that a Σ-collapsing poset will typically
collapse its own cardinality to ℵ1 without adding countable sequences.
The final segment Q1 is allowed to be anything of size at most ℵ1

though. Notice that, in the context of forcing axioms, the class ΓΣ in
particular contains all posets that are

• ℵ1-distributive (take Q1 to be trivial).
• proper not adding reals (this implies ℵ1-distributivity).
• σ-closed ∗ ccc (since we can assume the ccc-poset to be of size
at most ℵ1 [11, p.62]).

For example, PFA(ΓΣ) implies the axiom MRP from [13] and MM(ΓΣ)
implies SRP (see e.g. [19]). As mentioned in the introduction, many
classical applications of PFA are actually consequences of the forcing
axiom for posets of the form σ-closed ∗ ccc and all these are also in-
cluded in PFA(ΓΣ). Before we prove the main theorem of this section,
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we reproduce the following Lemma. The proof is actually a nice exer-
cise but can also be looked up in [10].

15 Lemma. Let λ be regular uncountable. Assume that R is λ-closed,
A a relation on λ and ϕ a Σ1

1-sentence. If there is a condition r ∈ R

such that r 
R ”(λ,A) |= ϕ” then (λ,A) |= ϕ. �

Let us prove the main preservation result. We show that strongly
(ω1 + 1)-game-closed forcings preserve the fragment of MM that con-
tains all the Σ-collapsing posets. This will later be used for interesting
new independence results.

16 Theorem. Assume that V |= MM(ΓΣ) and P is strongly (ω1 + 1)-
game-closed. Then V P |= MM(ΓΣ).

Proof. Assume that

(3.1) 
P ”Q is Σ-collapsing and preserves stationary subsets of ω1,”

where Q0 ∗Q1 witnesses that Q is Σ-collapsing and Q is a P-name for
a partial ordering. Let τ̇ξ (ξ < ω1) be a sequence of P-names for dense
subsets of Q and define the dense subsets of P ∗Q:

(3.2) Dξ = {(p, q) : p 
P q ∈ τ̇ξ}.

Now remember from the definitions that

(3.3) 
P∗Q0
|Q1| ≤ ℵ1

and recall the poset R from Definition 11 which is induced by P. It
was shown in Lemma 12 that R/P is σ-closed.

16.1 Claim. Q1, as a forcing notion in V P∗Q0, preserves all stationary

subsets of ω1 in V P.

Proof. This simply follows from the fact that Q = Q0 ∗ Q1 preserves
all stationary subsets of ω1 in V P by (3.1). �

16.2 Claim. The iteration P∗Q0∗R/P∗Q1 preserves stationary subsets

of ω1.

Proof. Let E ⊆ ω1 be stationary. Clearly, the stationarity of E is
preserved in the three-step iteration P∗Q0∗P/R. Now assume towards
a contradiction that Q1, as a forcing notion in V P∗Q0∗R/P, would destroy
the stationarity of E. Then in V P∗Q0

(3.4) 
R/P ”there is a Q1-name Ċ for a club disjoint from E.”

Using density arguments, it is straightforward to check that the quoted
statement in (3.4) is Σ1

1 over the structure (ω1 ∪Q1,∈, E,≤Q1
). So we

can apply Lemma 15 and conclude that in V P∗Q0

(3.5) there is a Q1-name Ċ for a club disjoint from E.
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But (3.5) says that Q1, as a forcing notion in V P∗Q0, destroys the sta-
tionarity of E. This contradicts Claim 16.1 so we finished the proof of
Claim 16.2. �

Now use the forcing axiom in the ground model to get a filter

(3.6) G ∗H0 ∗K ∗H1 ⊆ P ∗Q0 ∗ R/P ∗Q1

that is sufficiently generic, in particular for all dense sets Dξ (ξ < ω1).

16.3 Claim. The filter G extends to a condition q in P.

Proof. This is using the fact that K yields a play of the Banach-Mazur
game of length ω1 + 1 that exhausts G in the sense that all elements
of G are refined during that play. But this play, given by K, follows
Nonempty’s winning strategy so there is a condition q stronger than
every condition in G. �

Claim 16.3 finishes the proof since

(3.7) q 
P ”H0 ∗H1 ⊆ Q0 ∗Q1 is generic for τ̇ξ (ξ < ω1).”

�

To illustrate the significance of Theorem 16, we turn to the following
theorem of Magidor (see [3]).

17 Theorem. MM implies the failure of APℵω
. �

In his proof, Magidor applies a forcing that shoots a new ω-sequence
through ℵω. A Corollary of Theorem 16 explains why it is necessary
in his argument to add a new countable sequence high up in the set-
theoretic hierarchy:

18 Corollary. The following theory is consistent:

MM(ℵω) + MM(ΓΣ) + APℵω
.

�

Proof. We add an APℵω
-sequence to a model of MM. The corollary

now follows from Lemmas 8,10 and Theorem 16. �

It has already been proved that PFA+APℵω
is consistent. See [3] for

more history on that. Next we investigate the Σ-collapsing fragment
of PFA.

19 Corollary. Con(BPFA + PFA(ΓΣ) + APℵ1
).

Proof. By Lemmas 8,10 and Theorem 16 since Aℵ1
is strategically σ-

closed and therefore proper. �

But PFA implies the failure of APℵ1
[8], so we get:
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20 Corollary. BPFA and PFA(ΓΣ) together do not imply full PFA.
�

For transparency, we include a small chart that sums up the results
in this area. The class Γcov is the collection of all posets that preserve
stationary subsets of ω1 and have the covering property, i.e. every
countable set of ordinals in the extension can be covered by a countable
set in the ground model. Note that ΓΣ is a proper subset of Γcov.

If V |= MM and P is ... then ... is true in V P.

(1) ω2-distributive BMM
(2) weakly (ω1 + 1)-game-closed BMM + saturation of NSω1

(3) strongly (ω1 + 1)-game-closed BMM + MM(ΓΣ)
(4) ω2-closed BMM + MM(Γcov)
(5) ω2-directed-closed MM

In the table above, (1) is Lemma 8, (2) is in [18], (3) is Theorem
16, (4) is in [8], and (5) is folklore but can be looked up in [12]. The
papers [8] and [9] give counterexamples which show that the results in
this chart are basically optimal. For example, it is shown in [8] that
adding an APℵ1

-sequence with a strongly (ω1 + 1)-game-closed forcing
makes PFA (and therefore MM(Γcov)) fail in the extension. In [9], an
ω2-closed forcing is constructed which makes MM fail in the extension.
More details on this last fact can actually be found in Section 4b of
this paper.

b. Levy-Collapse. There are similar preservation results for state-
ments true in the Levy-Collapse of a large cardinal. In [7], an attempt
was made to axiomatize the theory of the Levy-Collapse with the help
of a reflection principle that is in the style of the well-investigated re-
flection principles for stationary sets and is actually a strengthening of
these. This axiom, the Game Reflection Principle or GRP for short,
proves all the typical statements known to hold in the Levy-Collapse
and is formulated in terms of games. We need the following notions
from [7]:

21 Definition. Let θ be a regular cardinal.

(1) (The Games) If A ⊆ <ω1θ then the game G(A) has length ω1

and is played as follows:

I α0 α1 . . . αξ αξ+1 . . .
II β0 β1 . . . βξ βξ+1 . . .

both players I and II play ordinals below θ and

II wins iff 〈αξ, βξ : ξ < ω1〉 ∈ [A],
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where [A] = {f ∈ ω1θ : f ↾ ξ ∈ A for all ξ < ω1}.
(2) (Restricted Games) For B ⊆ Hλ, define the game GB(A) by

letting the winning conditions be the same as in G(A) but im-
posing the restriction on both players to play ordinals in B ∩ θ.

(3) (ǫ-Approachability) A substructure M ≺ Hλ of size ℵ1 is called
ǫ-approachable if it is the limit of an ǫ-chain of countable ele-
mentary substructures, i.e. there is an ǫ-chain 〈Mξ : ξ < ω1〉
with M =

⋃
ξ<ω1

Mξ. We denote the set of all ǫ-approachable
substructures of Hλ of size ℵ1 by EAλ and we drop the subscript
if it is clear from the context.

22 Definition. The Game Reflection Principle or GRP is the following
statement:

Let θ be regular, A ⊆ <ω1θ and λ much larger than θ. If
II has a winning strategy in the game GM (A) for every
M ∈ EAλ, then II has a winning strategy in G(A).

We have the following two theorems from [7]:

23 Theorem. GRP is equivalent to saying that ω2 is generically su-

percompact by σ-closed forcing, i.e. for every regular λ there is P ∈ Γ
such that V P supports j : V −→ M with cp(j) = ω2, j(ω2) > λ, and
j′′λ ∈ M . �

24 Theorem. Assume that κ is supercompact. Then

V Coll(ω1,<κ) |= GRP.

�

Theorem 24 is really contained in the stronger Theorem 25, so we
postpone the proof. The following is the preservation argument:

25 Theorem. Assume that κ is supercompact and Ṗ is a Coll(ω1, < κ)-
name for a strongly (ω1 + 1)-game-closed partial ordering. Then

V Coll(ω1,<κ)∗Ṗ |= GRP.

Proof. By Theorem 23 it suffices to show that ω2 is generically super-
compact by σ-closed forcing. For any regular λ fix j : V −→ M such
that cp(j) = κ, j(κ) > λ, and j′′λ ∈ M . Without restriction, λ > |Ṗ|.

25.1 Claim. 
Coll(ω1,<κ) Coll(ω1, [κ, jκ))/Ṗ is σ-closed.

Proof. Note first that this makes sense because jκ > λ > |Ṗ| and

therefore it is forced by Coll(ω1, < κ) that Ṗ is a complete subalgebra
of Coll(ω1, [κ, jκ)). This last statement is basically Lemma 7. The
claim now follows from Lemma 13. �
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Now set Q = Coll(ω1, < κ) ∗ Ṗ. Standard arguments yield

jQ = j(Coll(ω1, < κ) ∗ Ṗ)

= Coll(ω1, < jκ) ∗ jṖ

= Coll(ω1, < κ) ∗ Coll(ω1, [κ, jκ)) ∗ jṖ

= Coll(ω1, < κ) ∗ Ṗ ∗ Coll(ω1, [κ, jκ))/Ṗ ∗ jṖ

= Q ∗ Coll(ω1, [κ, jκ))/Ṗ ∗ jṖ

= Q ∗ jQ/Q.

By the Extension Lemma 4 we can, in V jQ, extend j to

j∗ : V Q −→ M jQ.

Notice first that j′′λ ∈ M jQ. Finally, it holds in the model V Q that
ω2 is generically λ-supercompact by the forcing jQ/Q. But remember
that

jQ/Q = Coll(ω1, [κ, jκ))/Ṗ ∗ jṖ

is σ-closed by Claim 25.1. �

Note that GRP implies CH [7] and therefore APℵ1
. So Theorem

25 tells us nothing if we take Ṗ to be the usual forcing that adds an
APℵ1

-sequence. But we can get the following interesting corollary:

26 Corollary. Con(GRP+ APℵω
).

Proof. By Lemma 10 and Theorem 25. �

Corollary 26 is interesting because Shelah [14] has shown that if κ is
supercompact then APκ+ω fails. This contrasts the above result in the
sense that generic supercompactness of ω2 by σ-closed forcing does not
imply that APℵω

fails. To end the section, let us remark that weakly
(ω1 + 1)-game-closed forcings can introduce square-sequences and this
would violate GRP in a very strong fashion [7]. So we cannot hope to
have a preservation theorem for weakly (ω1 + 1)-game-closed forcings.

4. Kurepa-trees

a. Jonsson cardinals. Let us go back to Theorem 17 for a while.
Magidor’s argument that MM implies failure of the approachability
property at ℵω has raised hopes that MM can provide a good picture
of the combinatorics of the cardinal ℵω. Even earlier [5], it was shown
that MM implies SCH which puts severe restrictions on the cardinal
arithmetic at ℵω. In the light of all this, it seemed possible that MM
implies ℵω is Jonsson which would solve an old question. We give
an argument to refute this last implication, i.e. we show that MM is
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consistent with ℵω not being Jonsson. This answers a question raised
during the Oberwolfach set theory meeting in 2005. The following
theorem is well-known, see for example [6].

27 Theorem. Assume that µ is the least Jonsson cardinal. Then µ is

λ-Rowbottom for some λ < µ. �

Kurepa-trees are natural counterexamples to model-theoretic trans-
fer properties. The next lemma is probably standard, but we give the
proof for convenience.

28 Lemma. Let κ < λ < µ be cardinals where λ is regular and assume

that there is a λ-Kurepa-tree T with at least µ-many cofinal branches.

Then (µ, λ) ։/ (λ, κ).

Proof. Let B be a collection of µ-many cofinal branches of T . The
structure (B, T ) is of type (µ, λ), so suppose towards a contradiction
that there exists

(A, S) ≺ (B, T ),

where A ⊆ B is of size λ and S ⊆ T is of size κ. Find δ < λ such
that S ⊆ T<δ. Then by elementarity, every two branches in A split
within the structure (A, S) which implies that Tδ would have size at
least |A| = λ. This contradicts the fact that levels of T have size less
than λ. �

Let us point out again (cf. Section 3a) that MM is preserved by
ω2-directed-closed forcings. This is used crucially in the proof of the
next theorem.

29 Theorem. MM does not imply that ℵω is Jonsson.

Proof. We construct a model of MM in which ℵω is not Jonsson. First
note that MM is consistent with 2λ = λ+ for all λ ≥ ℵ1 since this
instance of the GCH can be forced with an ω2-directed-closed forcing.
So we start with a model

V |= MM+ 2λ = λ+ for all λ ≥ ℵ1

and define a full support Easton product

Kω =
∏

1<n<ω

Kn,

where Kn is the usual forcing to add an ℵn-Kurepa-tree with ℵω-many
branches (see e.g. [11]). Note that Kn is ℵn-directed-closed and has the
ℵn+1-chain condition as we assumed the arithmetic 2<ℵn = ℵn. The
usual arguments for the Easton product yield that Kω preserves all
cardinals ℵn (n < ω) and therefore preserves ℵω. It is also easy to see
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that Kω is an ω2-directed-closed forcing and hence preserves MM. By
Lemma 28 we have

(4.1) (ℵω,ℵm) ։/ (ℵm,ℵn) for all n < m < ω

in the generic extension V Kω . Now assume that ℵω is Jonsson in V Kω

and use Theorem 27. We get that (ℵω,ℵm) ։ (ℵω,ℵn) holds for some
n < m < ω. This contradicts (4.1). �

The proof of Theorem 29 actually shows that MM++ does not im-
ply that ℵω is Jonsson, where MM++ means that ω1-many names for
stationary subsets of ω1 can be pulled back into the ground model.
We generally tried to avoid these ’plus-versions’ of forcing axioms, the
interested reader is referred to [2] or [19].

b. Regressive Kurepa-trees. The notion of a regressive Kurepa-tree
was introduced in [9] in order to answer the question if MM is sensi-
tive to ω2-closed forcings. Surprisingly, MM turned out to be sensitive
to ω2-closed forcings but only the Namba-fragment of MM can be vi-
olated. The key notion was that of an ω1-regressive ω2-Kurepa-tree
which can be added by an ω2-closed forcing and it was shown that MM
is false once such a tree is added. We want to point out in this section
that regressive Kurepa-trees have strong impact on higher versions of
Chang’s Conjecture even though they can be added with a very mild
forcing.

30 Definition. For any tree T say that the level Tα is non-stationary
if there is a function fα : Tα −→ T<α which is regressive in the sense
that fα(x) <T x for all x ∈ Tα and if x, y ∈ Tα are distinct then fα(x)
or fα(y) is strictly above the meet of x and y.

31 Definition. Let X be a set of ordinals. A λ-Kurepa-tree T will be
called X-regressive if for all limit ordinals α < λ with cf(α) ∈ X the
level Tα is non-stationary.

The following two theorems appear in [9].

32 Theorem. For all uncountable regular λ there is a λ-closed forcing

that adds a λ-regressive λ-Kurepa-tree. �

33 Theorem. Under MM, there are no ω1-regressive λ-Kurepa-trees

for any uncountable regular λ. �

A close examination of the proof of Theorem 32 actually gives:

34 Theorem. Assume 2<λ = λ and κ < λ < µ, where κ and λ are

regular. There is a κ+-directed-closed, λ-closed, λ+ − cc forcing that

adds a [κ, λ)-regressive λ-Kurepa-tree with at least µ-many branches.

�
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Regressive Kurepa-trees are even stronger counterexamples to model-
theoretic transfer properties than the regular Kurepa-trees considered
in Section 4a. This can be seen from the following Lemma.

35 Lemma. Let κ < λ be regular. Assume there is a {κ}-regressive
λ-Kurepa-tree T with at least µ-many branches and suppose κ<κ = κ.
Then (µ, λ) ։/ (κ+, κ).

Proof. Let B be the set of cofinal branches of T and consider the struc-
ture (B, T ) which is of type (µ, λ). Now assume towards a contradiction
that (µ, λ) ։ (κ+, κ) would hold, so we find a substructure

(A, S) ≺ (B, T ),

where A has size κ+ and S has size κ. Define δ = sup(ht”S), we have
two cases:
Case 1: if cf(δ) = κ then Tδ is a non-stationary level of the tree T .

A straightforward argument using the fact that there is a regressive 1-1
function defined on Tδ shows that A has size at most |S| = κ. This is
a contradiction.
Case 2: if cf(δ) < κ then S has a cofinal subtree S0 of height κ0 < κ.

Since |S| = κ, the number of branches through S0 can not be larger
than κκ0 ≤ κ<κ = κ. Again, contradiction. �

36 Corollary. MM is consistent with

(ℵm+1,ℵm) ։/ (ℵn+1,ℵn)

for all 1 < n < m simultaneously.

Proof. Using an Easton product similar to the proof of Theorem 29:
we start with a model of ”MM+ 2λ = λ+ for all λ ≥ ℵ1”. Then for all
m > 2 we add an [ℵ2,ℵm)-regressive ℵm-Kurepa-tree with ℵm+1-many
branches. This product is ω2-directed-closed by Theorem 34. Notice
that in the extension we have 2<ℵn = ℵn for all 1 < n < ω. The
statement of the corollary then follows from Lemma 35. �
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