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Abstract 

James Ax showed that, in each characteristic, there is a natural bijection from 

the space of complete theories of pseudo-finite fields, in first order logic, to the 

set of conjugacy classes of procyclic subgroups of the absolute Galois group of 

the prime field. I show that when the set of subgroups of a profinite group is 

considered to have the Vietoris (a.k.a. hyperspace, finite, exponential, neigh-

bourhood) topology the aforementioned bijection is a homeomorphism. Thus 

we can think of the space of complete theories of pseudo-finite fields of a given 

characteristic as being encoded in the absolute Galois group of the prime field. 

I go on to show that there is a natural way of encoding the whole space of 

complete theories of pseudo-finite fields (i.e. without dependence on characteris-

tic) in the absolute Galois group of the rationals. To do this I use: the theory of 

the algebraic p-adics; the relationship between the absolute Galois group of the 

p-adics and the absolute Galois group of the field with p elements; the structure 

of the absolute Galois group of the p-adics given by Iwasawa; Krasner's lemma 

for henselian fields; and the Vietoris topology. 

At the same time, we consider the theory of algebraically closed fields with 

a generic automorphism (AGFA). By taking the theory of the fixed field, there 

is a surjective (but not injective) map from the space of complete theories of 

AGFA to the space of complete theories of pseudo-finite fields. For the space 

of complete theories of AGFA, there is also a bijective Galois correspondence, 

in each characteristic, given by restricting the automorphism to the algebraic 

closure of the prime field. I show that this correspondence is a homeomorphism 

and that there is an analogous way of encoding the whole space in the absolute 

Galois group of the rationals. 
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Introduction 

In this thesis, I will give a new characterisation of the complete theories of 

pseudo-finite fields and of algebraically closed fields with a generic automor-

phism. I give detailed definitions of pseudo-finite fields and of algebraically 

closed fields with a generic automorphism in Chapter 1. There we see that, from 

Ax's work on pseudo-finite fields, there is, in each characteristic, a natural bi-

jection from the complete theories of pseudo-finite fields to conjugacy classes of 

subgroups of the absolute Galois group of the prime field. We exhibit a similar 

bijection for algebraically closed fields with an automorphism and show that the 

two bijections are related. 

The Vietoris topology has a long history dating back to the early days of 

general topology. As we shall see in Chapter 2, it is a topology on the set of 

closed subsets of a topological space such that (provided the space is T1 ) the 

set of singletons is a homeomorphic copy of the space. Moreover it is closely 

related to the Hausdorif metric (which is a metric on the closed subsets of a 

metric space). 

The absolute Galois group of a field carries the usual profinite topology. In 

Chapter 3, we consider the conjugacy classes of subgroups as a subspace of 

the double Vietoris space of the absolute Galois group of a field. This allows 

us to show that both the bijections of Chapter 1 are homeomorphisms and 

hence that the full structure of the space of complete theories is captured in our 

characterisation. 

The bijections of Chapter 1 depend on the characteristic but, in Chapter 4, 

we will see that we may remove this dependence. For this, we give a new bijection 

of the space of complete theories of pseudo-finite fields in all characteristics with 

conjugacy classes of subgroups of the absolute Galois group of the rationals. 

This space is again given the Vietoris topology and the bijection is shown to be 

a homeomorphism. We finish the chapter by showing that similar results hold 

for algebraically closed fields with a generic automorphism. 

Finally, in Chapter 5, we discuss the possibilities of extending the results to 

type spaces. 
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Chapter 1 

Pseudo-finite Fields, A CFA and 
Procyclic Groups 

In this chapter, I will introduce the protagonists of this thesis. These are 

pseudo-finite fields, algebraically closed fields with an automorphism and pro-

cyclic groups. In each case I will give background and results, which will be of 

relevance in later chapters. 

1.1 Some notions from model theory 

The purpose of this section is to introduce some of the concepts from model 

theory that will be fundamental later on. It is not meant to contain all the 

definitions from model theory that I will use. In particular, I will not define 

what it means for a structure (e.g. a group, a field) to satisfy a formula; I will 

just say that this is the formal definition of a formula being true in that structure 

and rely on the reader's intuition or knowledge of what that means. For the fine 

detail of the subject, I refer the reader to [CK], [Ho] or any of the other excellent 

model theory texts. 

We will mainly be working in two first order logical languages: the language 

of fields and the language of fields with an automorphism. The language of 

fields £ is the normal language of first order logic with equality and the symbols 

1+,-,., 0, 11. The language of fields with an automorphism L, is £ with a 

symbol a for the automorphism. Thus the structures we will be considering in 

the language £ are fields, and in £ fields with a specified automorphism. 

A theory in a language is any consistent set of sentences (i.e. formulas without 

free variables). A structure M is a model of the theory T, written M = T, if M 

satisfies T (i.e. all the sentences of  are true in M). A theory is complete if for 

every sentence , either W E T or —iço E T. Note, therefore, that each structure 
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M has a complete theory Th(M) associated to it, namely all the sentences which 

are satisfied by M. If for structures M and .N we have that Th(M) = Th(A1) 

then we say that M and Al are elementarily equivalent, written 

MEAl. 

This is a weaker condition than isomorphism; for instance, it is easy to see 

that in £ all algebraically closed fields of a given characteristic are elementarily 

equivalent, yet, for example, Qaig  5t C because they are of a different cardinality. 

Nevertheless, the fact that it is weaker condition can be useful when classification 

up to isomorphism is inappropriate (for example see [P]). 

We will now see that it is possible to isolate, in a first order way, the char-

acteristic of the fields for a given theory. For all primes p, if T is a theory in £ 

or L a , then the models of 

TU{1+...+1=O} 
p times 

are exactly the characteristic p models of T. Furthermore, the models of 

TU{1+...+lO:pprime} 

p times 

are exactly the characteristic 0 models of T. Thus it is possible to refer to the 

theory of T of characteristic p or of characteristic 0. 

For a theory T, a complete theory R such that T C R is called a completion 

of T. The set of all completions of T, written 80 (T), has a natural topology on 

it making it into a Stone space, see [Jo, p69]. Indeed, it is often referred to as 

the Stone space of T. The basic clopen sets of the topology are given by 

X,={SES o (T):goES} 

where y  is a sentence. In Chapters 3 and 4, I will give a new characterisation of 

these spaces for the theories called Psf and A CFA which I will now explain. 

1.2 Pseudo-finite fields 

It is well known (and elementary to prove from the compactness theorem) that 

there are no theories which have models of unbounded finite cardinality but 

only have finite models. Thus for the theory of finite fields (i.e. the collection 

of sentences true in all finite fields) there are infinite models. These are called 
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pseudo-finite fields. The following example of a pseudo-finite field involves the 

theory of ultraproducts. These are defined in nearly all model theory texts (for 

example see [Ho] or [CK]). Later on, I will give an example of a pseudo-finite 

field which does not involve ultraproducts. 

Example 1.1. Let Q be the set of prime powers and let U be a non-principal 

ultrafilter on Q. Then the ultraproduct 

flJF'q /U 

is a pseudo-finite field (of characteristic 0). 

Pseudo-finite fields were first introduced by Ax in his studies of the applica-

tions of logic to Diophantine problems [Al]. He went on to study them in their 

own right [A2] to show, amongst other things, that the theory is decidable. I will 

summarise the parts of Ax's paper that we will need. My exposition is derived 

from Chatzidakis's excellent survey article [C2], as well as Ax's original paper. 

Ax shows that the following properties of a field are expressible in £: 

• perfect 

. there is a unique extension of each degree 

•PAC 

where PAC stands for pseudo algebraically closed and means that every abso-

lutely irreducible variety over the field has a rational point. We will call the 

theory given by the sentences expressing the above properties Psf, and we will 

see at the end of this section that the pseudo-finite fields are axiomatised by 

Psf. 
Note that each finite field satisfies the first two properties above but no finite 

field satisfies the third. Even so, as a consequence of the following theorem of 

Lang and Weil [LW], we will see that each pseudo-finite field is a model of Psf. 

Theorem 1.2. Let V be an absolutely irreducible variety and let V be defined 

over TFq  by r polynomials inn variables each of total degree at most e. Then, there 

is a constant C, depending only on e, n and r, such that if V is of dimension d, 

we have 

card(V(IF'q)) - qd 	Cq'"2 

where V(IF q ) is the set of TFq  rational points of V. 
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Consider a variety V as in the theorem above and note that we may consider 

V as a variety defined over IF 3  for any IF D IFq . Suppose that card(V(1F3 )) = 0 

for all such fields IF,,. Then, by the theorem above, we get 

which for large enough s cannot be true (because C depends only on V) 

The following formulas of £ are well known: 

• ' 	 x3  the sentence expressing that there are n distinct 

elements. 

fm () the formula expressing that the polynomials f, . . . , fm (whose coef-

ficients are given by the tuple ) define an absolutely irreducible variety 

(see [Cl]). 

fi ,...,fm (, ) 	fi () = 0 A . A fm () = 0 the formula expressing that Y is a 

rational point of the variety defined by fl, ... , fm. 

By the argument in the preceding paragraph, we know that there is an N such 

that the sentence 

is a member of the theory of finite fields. Therefore the pseudo-finite fields are 

PAC and hence each pseudo-finite field is a model of Psf. 

To give another example of a model of Psf, I will introduce the supernatural 

numbers. 

Definition 1.3. Let pi  be the i-th prime number. The supernatural numbers 

are formal products of the form 

H pi  
where the r2  E N U 10, oo}. 

Example 1.4. To each algebraic extension F of IF we associate a supernatural 

number s = fl pZ where 

ri  = sup{n: IF PPn C F}. 

It is easily seen that this yields a bijective correspondence between the algebraic 

extensions of IF and the supernatural numbers. By an abuse of notation, we can 

thus write the algebraic extensions of IF as F8 for each supernatural number s. 
I now claim that the field Fps = Psf if 



ri  < oo for all i 

and ri  > 0 for infinitely many i. 

Proof of claim. The field is perfect because it is an algebraic extension of F, 

and by the first condition above it has a unique extension of each degree. Thus 

we only need to show that it is PAC. 

By the second condition TF is an infinite extension of IF' and hence is infinite. 

Therefore by Theorem 1.2, each absolutely irreducible variety defined over 

has a rational point in a subfield of Fp s and hence F8 is PAC. 	 El 

Ax states the following lemma in [A2]. For a proof, see [Al] and [Po]. For 

a field extension FIE we will write SolE (F) for the set of polynomials in one 

variable over E that have a root in F. 

Lemma 1.5. If F, F' are algebraic extensions of a field E, then 

Sol E (F) = S01E (F') == F E  F' 

For a field F let Abs(F) be the absolute numbers of F i.e. the elements of F 

that are algebraic over the prime field. Ax shows that elementary equivalence 

of two models of Psf is determined by the absolute numbers. 

Theorem 1.6 ([A21 Theorem 4, p255). Let F, F' = Psf. Then 

F F' 	Abs(F) Abs(F') 

Proof. (=) Follows from Lemma 1.5. (=) see [A2]. 	 LI 

Corollary 1.7. Let F, F' F= Psf and suppose that F and F' are of the same 

characteristic. Then 

F F' == Solp(Abs(F)) = Solp(Abs(F')) 

where P is the prime field. 

Proof. Lemma 1.5 and Theorem 1.6. 	 . 

From the corollary above we can see that the complete theories of Psf are 

determined by sentences of the form 

x f(x) = 0 

where f is a polynomial over the integers. This was subsequently taken further 

by Ax's student Kiefe [Ki]. She extended the language £ by an n-ary relation 
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symbol S, called a solvability predicate, for each positive integer n. In the new 

language £s the theory Psf is extended by taking 

PsfU{Vyo ,.. 	 ,Yn) —* x(y0xn+y1Xn 1 ++yn = 0)) In e 

Then by an application of Shoenfield's Theorem [Sh] she proves that the new 

language has elimination of quantifiers [H, p66]. 

Returning to Ax's work, we can ask which fields of absolute numbers can be 

the absolute numbers of a model of Psf. He gives us these theorems. 

Theorem 1.8 ([A2] Theorem 7, p262). A field K of absolute numbers is 

isomorphic to Abs(1C) for some non-principal ultraproduct K of finite fields if, 

and only if, K has at most one extension of each degree. If charK = 0 we may 

take 1C to be a non-principal ultraproduct of the finite prime fields. If charK = p 

we may take K to be a non-principal ultraproduct of the characteristic p finite 

fields. 

Theorem 1.9 ([A2] Theorem 8, p262). A field F is pseudo-finite if, and 

only if, F K for some non-principal ultraproduct IC of the finite fields. 

Corollary 1.10 ([A2] Theorem 9, p262). F = Psf 	F is pseudo-finite. 

Proof. (=) By Theorem 1.2. (=) By Theorem 1.9 and Example 1.1. 	LI 

Thus in characteristic 0, if a field of absolute numbers has at most one ex-

tension of each degree then it is isomorphic to the absolute numbers of some 

pseudo-finite field. In characteristic p, every field of absolute numbers is isomor-

phic to the absolute numbers of some pseudo-finite field. Note, however, that by 

Example 1.4 only certain fields of absolute numbers are themselves pseudo-finite. 

1.3 AGFA 

Recall that if we take a non-principal ultraproduct of finite fields then the re-

sulting field is pseudo-finite. Inspired by this, Macintyre considered taking a 

non-principal ultraproduct of the fields Jalg  with the automorphism x '—* 

More precisely, in L we take the ultraproduct 

&) = ]J (F, cx)/U 

where F = Fpalg and a is a power of the Frobenius automorphism. As an imme-

diate consequence of the construction, we get that the field F is algebraically 

closed and that the fixed field of & is pseudo-finite. 

[.] 



This idea led to the study in model theory of fields with an automorphism. 

Outside model theory these had already been studied and had been christened 

difference fields because of a link with difference equations (see [Co]). In [M], 

Macintyre gives an account of difference fields similar in spirit to Ax's work on 

pseudo-finite fields. Chatzidakis, Hrushovski and Peterzil [CH],[CHP] have taken 

Macintyre's results a lot further to give stability theoretic results and results of 

the type of Zil'ber trichotomy [HZ]. There are good notes written on the subject 

by Marker [Mar] and Chatzidakis [C3]. I will give a summary of the material 

relevant to this thesis, drawing mainly on Macintyre's account [M]. 

We will be considering only the existentially closed (e.c.) difference fields. 

These are defined as being the difference fields (F, a) such that if a finite system 

of polynomials in 

• , a- 2(y),  a'(), , a(), a 2 () 

where T is the tuple x 1 ,. .. , xn and a() is the tuple a(x i ).... a(x,), has a so-

lution in an extension (F', a') of (F, a) then it has a solution in (F, a). (This 

is equivalent to the standard notion of e.c. structures from model theory be-

cause, for example, the solvability of f(x) 0 is equivalent to the solvability of 

y yf(x) = 1.) 

Lemma 1.11. Any difference field extends to an existentially closed difference 

field. 

Proof. This can be proved on the grounds of general theory, see [Si], or as a 

consequence of the axiomatisation given below, see [CH]. 	 E 

Macintyre shows that the e.c. difference fields are (first order) axiomatised by 

the sentences saying that the field is algebraically closed and by the conjunction 

of axioms called Axiom H (H for Hrushovski). 

Axiom H. Let V be a closed subvariety of A' 2 (F) and let a(V) be its conjugate 

variety, which is also a closed subvariety of A(F). Thus V x a(V) is a closed 

subvariety of A 2 (F). Then for every closed subvariety W of V x a(V), such 

that a generic point of W projects to a generic point of V and a(V) under the 

natural projection maps (see diagram below), there exist x 1 , . . . , x e F such 

that (x 1 ,. . . 7 x )  a(xi),.. . , a(x)) e W. 



WV xa(V) 

U(V) 

The theory given by the axioms above is called A CFA. It is unclear from 

the literature where the term A CFA first arose, but it appears to stand for 

"algebraically closed fields with a generic automorphism" [Mar]. (Here generic 

is a synonym for e.c.) 

Our main concern later will be the completions of ACFA. The following 

theorem shows that the completions are determined by the characteristic and 

the action of the automorphism on the algebraic closure of the prime field. 

Theorem 1.12. Let (Fi ,ai ) and (F2 , U2)  be models of ACFA of the same char-

acteristic and let P C F1 , F2  be the prime field. Then 

(paig 
cripaig) 	 aIpaig) 4 	(Fr , cri ) 	(F2 , 0 2 ). 

Proof. Suppose that (palg, 
ads) 

(pa1g, 	 Then by picking a different 

embedding of palg  in F2 , if necessary, we may assume a1  pals = 	pals. Then 
F1/Pl and F2/Pl  are regular extensions [FJ, pill]. Hence F1  ®palg F2  is a 

domain [J, p2031 and there is a map 0`1 ® o extending a1  and 92  to this domain. 

Thus let (F3 , 0­3)  be the field of fractions of F1  ®palg F2  with the induced extended 

automorphism. By Lemma 1.11 we get an extension (F4 , a4 ) of (F3 , 0`3) such that 

(F4 , a4 ) 1= AGFA. Thus we have the following picture. 

(F4 , a4 ) 

(F3, 0`3) 

/\ 
(Fi , ai ) 	 ( F2, 0`2) 

(P, or) 

Any theory whose models are all e.c. is model complete [Ho, Theorem 8.3.1]. 

Thus AGFA is model complete and hence 

(F1 , 0`1) 	(F4,  0`4) 	(F2 , a2 ). 
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Conversely, suppose that (F1 , a1) 	(F2 , 02). Let E be an arbitrary Galois 

extension of P with primitive element a. Let f(x) be the minimum polynomial 

of a over P. Also since E is a normal extension, E is fixed setwise by o.  In 

particular ai ( a) e E, and hence ai (a) = g(a) for some polynomial g over P. 

Now consider the sentence 

x [1(x) = 0 A a(x) = g(x)]. 

Since (F1 , cr i ) and (F2 , 0'2)  agree on this sentence, there is an isomorphism r 

of (E, alIE)  and (E, a2IE).  Note that r is a member of G(E/P) and that if 

S e 9 (E/P) commutes with alIE, then i- S is also an isomorphism of (E,al I E ) 

and (E,a2 I E ). 

Let I be an index set and let {E : i e I} be the set of all Galois extensions 

of the prime field. Now order the index set by inclusion, i.e. E2  C E3  implies 

i < j. As we saw above, for each i there is a finite set H2  of isomorphisms of 

(Ei , a1  I E) and (E2
, 0'2 

 1 E2).  Furthermore, for each r E H2  and j < i, we have 

rHE H3 . Therefore the set {H2  : i e I}, together with restriction maps form 

an inverse system. Since we know each H2  is non-empty and finite, lim H2  is 

non-empty, by [W, Proposition 1.1.51, and we are done. LI 

The proof of the converse above can be done in one line by using a standard 

result on elementary equivalence, isomorphism and ultrapowers [CK, Corollary 

6.1.2]. The reason I have chosen to give the proof without using this result is 

that it is suggestive of the quantifier elimination in Psf by solvability predicates. 

Indeed, Macintyre proves the analogous result, which I shall outline here. 

For each n e N extend the language £ by n-ary relation symbols S1  where: 

. 	and ii are the tuples of polynomials Yi,• . , g and h 1 ,. . . , h, 

• f and g2  and h, for i < m, are members of 

Now define ACFAS to be A CFA together with the following axioms 

S1,() 	,' t [f(. . . , a(), t) = OA 

a(gi (,.. .,a_k(),t)) = 	. ,a_k() , t)] 

where ii,. . . , a () is an abbreviation of 

V1, . . . , v, a(vi ),. . . , a(v), a'(vi ),. . . , a(v), 0,2 (vi ),.. . , 

0,2(v) ........ , ak(v i ) ,  . . . , ak (vn ), a_k(v i ) ,..  . , a_k( vn ). 
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Theorem 1.13 ([M], piTT). ACFAS has quantifier elimination. 

Macintyre also proves decidability results similar to those of Ax. 

1.4 Procyclic groups 

Recall that a profinite group is an inverse limit of a system of finite groups and 

a procyclic group is an inverse limit of a system of cyclic groups. Here we will 

present several characterisations of procyclic groups, all of which are standard, 

but scattered throughout the literature. We then show that the absolute Galois 

group of a pseudo-finite field is procyclic. 

Let C be a profinite group and let X be a subset of C. Then X generates G 

topologically if G is the closure of the abstract group generated by X. 

Theorem 1.14. C is procyclic if, and only if, C is topologically generated by 

one element. 

Proof. Suppose that C = lim Hi  is procyclic. For each i, let Xi  be the set of 

generators of H2 . It can be seen that the X i 's form an inverse system and, by [W, 

Proposition 1.1.5], we have X X 2  is non-empty. Then, by [W, Proposition 

4.1.1] any element of X generates C. 

Conversely, suppose that G is generated by some a e C. Thus the image of 

a in each H2  generates H2  and so we are done. 	 LE 

The following example of a procyclic group will be fundamental in the later 

chapters. 

Example 1.15. Consider the inverse system on {Z/nZ : n E N} given by the 

maps x + nZZ i—* x + m7L if mm. Define Z to be the inverse limit of this system. 

Thus Z is a pro cyclic group and if we identify x E Z with x + nZ for each n in the 

inverse limit then we get a natural embedding of Z in Z. Under this embedding 

we have that Z is topologically generated by 1. 

Lemma 1.16 ([W], Proposition 1.5.3). Let C be profinite. 

There is a unique continuous map Z x G --4G  such that (ii, g) i—p gfl for 

n e Z. So if g E G and z E Z, then the 'power' gZ  is defined. 

If g E G and z 1 , z2  E Z then (i) g11+Z2 = g11gz2 and (ii) (gZl)z2 = gz1z2 .  

If g i , 92 E C and z E Z, and if 91, 92 commute, then (9192)Z = 
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Thus we can use the elements of Z as powers in a profinite group. By the 

following lemma, we have the natural extension of the idea of taking powers of 

a generator in a cyclic group. 

Lemma 1.17. Let C be a procyclic group. Then a generates C topologically if, 

and only if, C = { az : z E Z}. 

Proof. From [W, Proposition 4.1.1],  we have that a generates G topologically 

if, and only if, a generates C/N for all open normal subgroups N of C. Note 

also that since C is compact we have that [C : N] is finite for all open normal 

subgroups [W, Lemma 0.3.1(c)]. 

Suppose that a generates C, and let g e C. Let N be an open normal 

subgroup of C and let n = [C: NI. Since a generates C, we have gN = amN 

for some m e {0,. . . , n - 1}. By running N over all the open normal subgroups 

of C we get an inverse system of m E Z/nZ. However, note that in the inverse 

system we do not necessarily have the groups Z/nZ for all n E N. Nevertheless 

there is a z E Z such that the image of z in Z/nZ is m for all Z/nZ in our 

inverse system. Then it can be seen that & = g. 

Conversely, suppose that C = { az : z E Z}. As before consider C/N where 

N is an open normal subgroup of C. Then it can be seen that aN generates 

C/N. LI 

Consider now the following well-known theorem from group theory. 

Theorem 1.18 ([H], Theorem 12.5.3, p190). A group of order pfl  which 

contains only one subgroup of order pm,  where 1 < m < n, is cyclic. 

As a consequence we get the following theorem. 

Theorem 1.19. Let F be a perfect field and let C(F) be its absolute Galois 

group. 

F has at most one extension of each degree if, and only if, C(F) is pro-

cyclic. 

F has exactly one extension of each degree if, and only if, C(F) Z. 

Proof. In both (i) and (ii) sufficiency is immediate. Thus we prove necessity in 

both cases: 

(i) Suppose that F has at most one extension of each degree. Let E/F be an 

extension of degree n and note that the uniqueness implies that E/F is normal. 

It is now sufficient to show that C = (E/F) is cyclic. 
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If n is a prime power then Theorem 1.18 implies that G is cyclic. Moreover 

if n is not a prime power, then by the same reasoning we have that the Sylow 

subgroups of G are cyclic. (Note that our supposition implies that for each 

prime pin there is only one Sylow p-subgroup.) Let H and K be distinct Sylow 

subgroups, and let h E H and k e K. Then by normality we have khk 1  E H 

and hk'h' E K, and hence khk'h' E H fl K = 1. Thus H and K commute 

and so G is the direct product of its Sylow subgroups. Therefore C is cyclic. 

(ii) By (i), C(F) is procyclic, so let a be a generator. Then the map z '-f az 

is the required isomorphism. 	 El 

We can see from the axiomatisation of Psf that the absolute Galois group of 

a pseudo-finite field is Z. Furthermore we have the following corollary. 

Corollary 1.20. The absolute Calois group of the absolute numbers of a pseudo-

finite field is procyclic. 

Proof. By Theorem 1.19 and Theorems 1.8 and 1.9. 	 El 

1.5 AGFA and Psf 

It can be seen from sections 1.2 and 1.3 that there are many similarities between 

A CFA and Psf. In this section we will highlight the relationship between the 

complete theories of A CFA and Psf. The following theorem, which is attributed 

to van den Dries, shows that it is the fixed field in AGFA that determines this 

relationship. For a field automorphism a, we will use Fix(a) to denote the fixed 

field. 

Theorem 1.21 ([M], p169). If (F, a) = AGFA then Fix(a) = Psf. 

Thus we may define a map from S0 (ACFA) to So (Psf) which takes a theory 

of AGFA to the theory of its fixed field. (Recall that So  (T) for a theory T was 

defined in Section 1. 1.) We will now investigate the properties of this map. 

Let X be the basic open subset of S o (Psf) defined by the sentence . By 

the results of Section 1.2 we have that 

where fl, . . . , f are polynomials over Z and 0 is a boolean polynomial. Thus 

the inverse image of X is the set determined by 
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Therefore the map is continuous. 

We will now show that the map is surjective. Let T E So (Psf) and let F be 

a model of T. Thus by Corollary 1.20 we have that G(Abs(F)) is procyclic. Let 

cm be a generator of G(Abs(F)). Now we may extend (Abs(F)aJ, 0
0) to a model 

(K, a) of ACFA by Lemma 1.11. Therefore Th(K, a) gets mapped to T and the 

map is surjective. 

The map, however, is not injective because of the following example of two 

automorphisms of Qaig  which generate the same group but are not elementarily 

equivalent. A simple lemma from group theory is needed first. 

Lemma 1.22. Let 0 : H —* K be a surjective homomorphism of finite cyclic 

groups and let k be a generator of K. Then there is an h e H such that 0(h) = k 

and h generates H. 

Proof. We know that 

HCrnix ... xCn 

and 
KCrlx...xC ;3 

where pr, 	Pn are distinct primes, 1 < r 	m 2  for each i = 1,.. . , s and 

s < n. Thus 0 is defined by its coordinate maps Oi  from Cmi  onto Cri  for 

i = 1,. . . , s. Since the product of generators of the component cyclic groups 

of H is a generator of H (and similarly for K), we need only check for each 

generator di  of Cri  that there is a generator c, of Cm i  such that 0(c) = d. It 

is, however, easily checked that for all ci  such that 02 (c2 ) = di  we have that c 

generates Cmi. El
pi 

Example 1.23. Let ( be a primitive fifth root of unity and let F be a charac-

teristic 0 pseudo-finite field such that [F(() : F] = 4. Now let a0  and r0  be the 

elements of (F(()/F) defined by 

0,0 : 	I.' 	 : ( 

and notice that each of a0  and r0  generate (F()/F) 

By the lemma above we can get an inverse system of generators extending a0  

and extending To. Thus, by taking inverse limits, we can lift a0 , To  to generators 

a, (respectively) of G(F). 

The example above gives two automorphisms a, r on FaIg  which generate the 

same procyclic group. Thus if we extend a, 'r to models (K, a'), (L, r') of AGFA, 

we will have 

Abs(Fix(a')) 	Abs(Fix(r')) 
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and hence Fix(cr') 	Fix(r') by Theorem 1.6. The construction, however, is 

such that 

a') Vy (y 5  = 1 -* a(y) = y2) 

r') Vy (y 5  = 1 -* or(y) = y3) 

and hence Th(K, a') Th(L, r'). Therefore the map from S0 (ACFA) to So (Psf) 

described above is not injective. 

I will finish this section by summarising its results in the theorem below. 

Theorem 1.24. There is a natural continuous, surjective but not bijective map 

from S 0 (ACFA) to S o (Psf) which takes a theory of AGFA to the theory of its 

fixed field. 

1.6 Stone spaces and Galois groups 

In Section 1.2, we saw that there is a one-one correspondence between So (Psf) 

and the extensions of the prime field that have at most one extension of each 

degree (Theorems 1.8 and 1.9). By Theorem 1.19, we have that a field has at 

most one extension of each finite degree if, and only if, its absolute Galois group 

is procyclic. 

Lemma 1.25. Let C1, C2  be closed subgroups of the absolute Galois group of a 

field F. Then 

Fix(Ci ) Fix(C2) == C1  is conjugate to C2 . 

Proof. Let r : Fix(Ci ) -p Fix(C) be an isomorphism. Let N be a normal 

extension of F such that Fix(Ci ), and hence Fix(C2 ), is a subfield of N. By 

Galois theory, r lifts to an automorphism of N and hence to an automorphism 

f of FaIg.  It is now an easy calculation to show that 5C1 f = C2  and hence 

that C1  and C2  are conjugate. 

Conversely, if we suppose that 8C1 8' = C2 , then it is again easy to show 

that 8Fix(Gi)  is the required isomorphism. 	 El 

Let Psf be the theory of Psf of characteristic p. Then by the lemma and 

discussion above, for each characteristic p (including p = 0) we have established 

a one-one correspondence between the conjugacy classes of closed procyclic sub-

groups of the absolute Galois group of the prime field and So (Psf). Recall 

that, for each prime p, we have G(F) is abelian and procyclic and hence we 

may restate the correspondence in the following form: 
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Theorem 1.26. For each prime p, let SG be the set of closed subgroups of 

G(1F). Let CSGc be the set of conjugacy classes of closed procyclic subgroups 

of G(Q). Then: 

For each prime p, there is a bijection J? : So (Psf) - SG such that if 

F = Psf,,, then (Th(F)) = G(Abs(F)). 

There is a bijection 	: So (Psf 0 ) —* CSGc, with the property that, if 

F = Psf0 , then 0 (Th(F)) is the conjugacy class of G(Q) such that any 

member of 4 0 (Th(F)) has fixed field isomorphic to Abs(F). 

There are analogous bijections for the complete theories of A CFA of each 

characteristic. This time, though, a complete theory will be mapped to the 

conjugacy class of an element in the absolute Galois group. However, because 

C(F) is abelian, the conjugacy classes are just singletons in this case. As with 

Psf, let ACFA be the theory of AGFA of characteristic p (where p may be 0). 

Theorem 1.27. (i) For each prime p, there is a bijection e : S0 (ACFA) —* 

G(F) such that if (K, a) = ACFA then e(Th(K, a)) = U1a1g. 

(ii) Let G(Q)c be the set of corijugacy classes of G(Q). There is a bijection ê o  

S0 (ACFA 0 ) —* G(Q)c such that if (K, a) 1= AGFA 0  then e 0 (Th(K, a)) is 

the conjugacy class containing the element UI QaIg . 

Proof. By Theorem 1.12 and Lemma 1.11. 	 D 

If we consider the map in Section 1.5 we get the following commuting dia-

grams. 

So(ACFAlip) e G(F) 	 S0 (ACFA 0)_e0 G(Q)c 

So(Psf)_ "  SG 	 So (Psf 0)_ O  CSGC 

In both diagrams the left vertical arrow is the map taking T E S0 (A CFA) to the 

theory of its fixed field. In the diagram on the left, the right vertical arrow is 

the map taking an element of G(F) to the procyclic group generated by it. In 

the diagram on the right, the right vertical arrow is the map taking a conjugacy 

class [x] of G(Q)c to the conjugacy class of groups that are generated by each 

member of [x]. 
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The bijections in the two theorems above are useful because they characterise 

the complete types of Psf and ACFA without having to use the absolute numbers 

of a field. (The absolute numbers of a field only really make sense when you 

fix the algebraic closure of the prime field, and so the characterisation above 

is more invariant.) Recall that there is the natural profinite topology on the 

absolute Galois group of a field (and indeed on any profinite group). How does 

this relate under the bijections above to the natural topology on So (Psf) and 

S0 (ACFA) described in Section 1.1? We shall see in Chapter 3 that all the 

bijections above are homeomorphisms when the spaces CSG, SG and C(Q)c 

are given the Vietoris topology coming from the topology on the absolute Galois 

group. Thus, in the next Chapter, I will define and give the properties of the 

Vietoris topology. 

1E1 



Chapter 2 

The Vietoris Topology 

For a topological space X, let C(X) be the set of closed, non-empty subsets of 

X. If X is a metric space with metric d, recall that the Hausdorff metric dH is 

the metric on C(X) defined by 

dH(A, B) = max{supae A infbeB d(a, b), 511P&EB infaeA d(a, b)} 

for A, B E C(X). The Vietoris topology is a generalisation to topological spaces 

of the Hausdorif metric. It is thus a way to define a topology on C(X) which is 

induced by that of X. As we will see, it is a good choice for the topology because 

the Vietoris space inherits many of the properties of the underlying space and 

there is a natural notion of convergence. For a brief history and references on 

the Vietoris topology, see [Jo, p  1211. 

2.1 A base and a subbase 

To start with, I will give Vietoris's definition from his 1922 paper 1  

Definition 2.1 ([V], p259). Let X be a topological space. The Vietoris space 

of X, denoted V(X), is the topology on C(X) with basic open sets 

(Ui ,...,U):={CEC(X): ccui  and CflUO for i=1,...,k} 

for each finite collection U1 ,. .., U, of open sets of X. 

We illustrate the definition in the diagram below: 

'Leopold Vietoris (born June 4th 1891, died April 9th 2002) was also famous for being the 
oldest living Austrian man. His last mathematical publication was in 1995. 
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U, 

U2  

U3  

U5 	 U4 

We must, of course, check that the sets given in the definition form a base. 

For this it is sufficient to see that 

V(X) = (X) 

For any open sets Ui , . . . , Un, Vi ,.. . , Vm , we have 

(Ui ,...,Un)fl(Vi ,...,Vm )=(VflUi,...,VflUn,UflVi,,Um) 

where U = u:=1 Ui  and V = u1 v. 

It is worth pointing out that (U) is the set of all closed sets contained in the 

set U, and (X, U) is the set of all closed sets having non-trivial intersection with 

U. Some authors have used the notation U for (U) and U for (X, U). It is 

more enlightening to think of the Vietoris topology in terms of these sets. 

Lemma 2.2. The sets (U) and (X, U) for each open set U form a subbase of 

the Vietoris topology. 

Proof. By construction, the subbase is a subset of the base given in the definition, 

and so we just need to check that the topology generated by the subbase contains 

the Vietoris topology. This can be seen by the equality 

(U1 ,..., U) 
= (

U U) fl (X, U 1 ) n• . n (X, U) 
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Remark 2.3. The set (X, U) is the complement of all the closed sets contained 

in X \ U and so for any closed set C, we have that (C) := {D E C(X) : D C C} 

is closed. Thus we think of the lemma as saying that the Vietoris topology is 

the coarsest topology such that 

(U) is open whenever U C X is open 

(C) is closed whenever C C X is closed. 

2.2 Properties in common with X 

It was Vietoris who originally showed that X is compact if, and only if, V(X) is 

compact. Almost thirty years later, Michael [Mil greatly expanded on Vietoris's 

work to give a near exhaustive list of the properties which get carried over from 

X to V(X). Because of the quantity of results, Michael's proofs are very concise, 

so I have included the results that we need from his paper with proofs. 

First we will prove Vietoris's theorem. The proof here is from a paper by 

Rink [Fr] written in terms of lattices. It will require an expansion of the subbase 

for the Vietoris topology given above. 

Lemma 2.4. The sets 

U@V= (U)u(X,V) 

= {Ce C(X) I C CU orCflV=/0}, 

where U, V are open sets such that V C U, form a subbase for the Vietoris 

topology. 

Proof. Follows from (U) = U © 0 and (X, U) = U © U for each open set 

UcX. 	 El 

Theorem 2.5 ([V]). Let X be a topological space. Then X is compact if, and 

only if, V(X) is compact. 

Proof ([Mi],[Fr]). Suppose that X is compact. By Alexander's Lemma it is 

sufficient to show that every cover of V(X) by subbasic sets of the form above 

has a finite subcover. Thus let Ua  ® Va  be a cover of V(X). 

If the Va  form a cover of X then we can find a finite sub cover, say V C, .. . , V. 

It is then the case that U @ Vai ,. . . , Uan  © Va n  cover V(X) because any set in 

V(X) will have non-trivial intersection with one of the Vaj . So suppose that the 

V. do not form a cover of X. Consider the non-empty closed subset X 
- Ua Va . 
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This must be in U0—V for some 0 (since U,,, @ Va  cover V(X)). Thus UUUa Va  

form a cover of X, and so take a finite subcover, say U, Vai ,.. . , V. Then 

UP @ V, Ucyj  © Vai ,.. . , Ua  © are a finite subcover of V(X). 

Conversely suppose that V(X) is compact, and let Uc, be a covering of X 

by open sets. The sets (X, U) thus form a covering of V(X), so take a finite 

subcovering, say (X, U),. . . , (X, U). The sets Uai ,. .. , U thus form a finite 

subcover of X and we are done. LI 

In later chapters, we shall frequently use this standard result from topology. 

Theorem 2.6 ([Ke], Theorem 8, p141). Let f be a continuous function 

carrying the compact topological space X onto the topological space Y. Then Y is 

compact, and if Y is Hausdorff and f is one to one then f is a homeomorphism. 

If X is T1 , then, by definition, for each x e X, the set {x} is closed, and hence 

{x} e V(X). Thus, for such an X, there is a natural embedding of X in V(X). 

We will see that if V(X) is compact and Hausdorif, then X is homeomorphic to 

its image in V(X). 

Lemma 2.7. Suppose that V(X) is compact and Hausdorff, and let f be the 

map taking x e X to {x} E V(X). Then f : X -* f(X) is a homeomorphism. 

Proof. Observe that f(X) is Hausdorif and that, by Theorem 2.5 X is compact. 

Thus by Theorem 2.6, it is sufficient to show that f is continuous, but this is 

obvious because 

f'((U1 ,...,U)) =flu 

for a basic open set (U1 ,. . . , U) of V(X). 	 70 

The theorem below contains the results we will need from [Mi]. In contrast 

to Michael, we will use the currently standard definition of a Stone space as 

being a compact, Hausdorif and totally disconnected space. (This, however, is 

not to say that Michael does not prove (iii) from the theorem below—see 4.9.6 

and 4.13.2 of [Mi].) There are many equivalent formulations of the property 

totally disconnected; the one we will use below is that there is a base of clopen 

sets. 

Theorem 2.8 ([Mi], Section 4). Let X be a topological space and V(X) the 

Vietoris space. Then: 

(i) X is compact and Hausdorff 	V(X) is compact and Hausdorff. 

22 



X is second countable, compact and Hausdorff 4=#> V(X) is second 

countable, compact and Hausdorff. 

X is a Stone space 4== V(X) is a Stone space. 

Proof. In each case, sufficiency follows from Theorem 2.5 and Lemma 2.7. We 

will now prove necessity. 

Suppose that X is compact and Hausdorif. By Theorem 2.5, we only need 

to show V(X) is Hausdorif. Let A, B e V(X) be distinct sets. Without 

loss of generality, assume that there is an x E A such that x B. Since X 

is compact and Hausdorif, there exists disjoint open sets U, V C X such 

that x e U and B C V. Therefore B e (V) and A E (X, U). Moreover 

(V) fl (X, U) = 0 because V fl U = 0. 

Suppose that X is second countable, compact and Hausdorif. It is only 

left to show that V(X) is second countable. Let U = {U : i E N} be 

a countable base for X, and we may assume, without loss of generality, 

that U is closed under taking finite unions. We will now see that the sets 

(U 1 ,. . . , U) form a base of V(X), from which it follows that V(X) is 

second countable. 

Let (V1 ,. . . , Vm ) be a basic open set in V(X) (i.e. 1/i, . . . , V, are arbitrary 

open sets). Let C E (V1 ,.. . , V,,), and let 

Uc{UjEU:UCVi for some i=1,...,m and UflCO}. 

The set UC  is an open cover of C and hence has a finite subcover. Thus 

by taking a finite subcover and extending, if necessary, by members of Uc, 

we can get a sub cover 

Ub={U1, ... ,U} 

such that for all i = 1,... , m, there exists a k such that Ujk  C l/. As a 

consequence of this construction we have that 

CE (U) := 	. , U 3 ) C (Vi, -  .., V,) 

and hence 

U (U)=(Vi ,...,Vm ). 

Ce(V1 ..... Vm) 

By the proof of (ii), it is sufficient to note that, if the sets U1 ,.. . , U,. C X 

are clopen, then the set (U1 ,.. . , U,) C V(X) is clopen (which follows from 

a similar argument to that in Remark 2.3). 	 D 
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2.3 Convergence 

Recall that a local base at a point x in a topological space X is a family of 

open neighbourhoods of x such that every open neighbourhood of x contains a 

member of the family [Ke, p50]. I will now give a definition of first countable 

and, for comparison, I will also give a definition of second countable. 

Definition 2.9. Let X be a topological space. 

X is first countable if at every point there is a countable local base. 

X is second countable if it has a countable base. 

Remark 2.10. An uncountable space with the discrete topology is first, but 

not second, countable because a local base at the point x is given by {x}. 

Theorem 2.11 ([Ke], p72). Let X be a first countable topological space. Then 

a set U C X is open if, and only if, each sequence converging to a point in U is 

eventually in U. 

Thus, in the first countable case, it is possible to describe the topology in 

terms of sequences (in general one must consider nets, see [Ke, Chapter 2]). The 

following lemmas show that there is a very natural notion of convergence in the 

Vietoris topology. 

Lemma 2.12. Let X be first countable and let (Va) be a sequence in V(X). If 

(Va) converges to V in V(X), then for each x e V, there is a sequence (x) such 

that x, e V and (x) converges to x. 

Proof. Let x E V and let (Un ) be a local base of x. By replacing U with 

fl<3 U, if necessary, we may assume that U2  D U3  for i < j. Since V, converges 

to V in V(X), for each i, there is an N such that for all j > N we have 

Vj  e (X, U2 ). Furthermore, we can pick the N such that the sequence (Na ) is 

strictly increasing. We can thus create a sequence converging to x as follows: 

first for i < N, pick any x 2  e V2 
 ; 

then at stage j + 1, for each i such that 

N<i<N31 pickanyxEV2 flU3. Li 

Under different assumptions the notion of convergence also works the other 

way. 

Lemma 2.13. Let X be a regular topological space. Let (V) be a sequence in 

V(X) converging to V and let (v 2 ) be a sequence in X converging to v such that 

v 2  E V2 , for each i. Then v E V. 
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Proof. Suppose not. Let U1  and U2 be disjoint sets such that V C U1  and 

V E U2 . Then for some N, for all i > N, we have V C U1  and vi  E U2 , which is 

a contradiction. 	 Li 

The spaces we shall be considering in Chapters 3 and 4 are the absolute Galois 

group of a prime field. A base for the topology on these groups is given by the 

cosets of open normal subgroups of finite index. The open normal subgroups 

of finite index are in bijective correspondence with finite Galois extensions of 

the field, and hence the groups are second countable. We may therefore take 

advantage of the lemmas given above. 
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Chapter 3 

Coding the complete theories in 
each characteristic 

Recall from Section 1.6 the following notation: 

SG the set of closed subgroups of G(F) 

CSGc the set of conjugacy classes of closed procyclic subgroups of C(Q) 

G(Q)c the set of conjugacy classes of G(Q) 

and define 

CSG the set of closed procyclic subgroups of G(Q). 

Recall, from Theorem 1.26 and 1.27, that, for each prime p, there are natural 

bijections 

So(Psf) 'l? S0(ACFA e 
p) 

and, in the characteristic 0 case, there are natural bijections 

So (Psf0)_"PO 

	
S0 (ACFA 0)_e0 

In this chapter, we will see that all the maps above are homeomorphisms when 

we consider the codomains with the Vietoris topology. We will first prove this 

for the maps iD p  and 1 0  and in the final section we will see that the proofs carry 

over easily to the maps e and e0 . 

3.1 The Vietoris topology on profinite groups 

The goal of this section is to show that CSGc and SC are closed subspaces 

of V(V(G(Q))) and V(G(F)) respectively. As an immediate consequence of 
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Theorem 2.8 we get that both CSGc and SC are Stone spaces (as are So (Psf0 ) 

and So (Psf)). 

The fact that SG is closed follows immediately from this easy lemma. 

Lemma 3.1. Let C be a regular second countable topological group and V(G) 

the induced Vietoris space. The set of closed subgroups of C is a closed subset 

in V(G). 

Proof. Let (Ha) be a sequence of closed subgroups with limit H in V(G). We 

will show H is a subgroup. Let g, h e H. It is sufficient to show gh' E H. 

By applying Lemma 2.12 there are sequences g and h, converging to g 

and h respectively, such that gn,  hn  e Hn  for each n. We have that each Hn  

is a group and so we get that gh' E Hn  for each ri. Since multiplication is 

continuous, we get that the limit of (gh') is gh'. Therefore by Lemma 2.13 

we have that gh' E H. Li 

We will now see that the set CSG of closed procyclic subgroups of C(Q) 

is closed in V(G(Q)). Recall from Section 1.4 that there is a natural notion of 

taking powers from Z in a profinite group and that a subgroup H of a profinite 

group is procyclic if, and only if, there is an element a such that 

H = { az :z EZ}. 

Lemma 3.2. Let C be a second countable profinite group and let V(G) be the 

induced Vietoris space. The set of procyclic subgroups is a closed subset of V(C). 

Proof. First note that by Theorem 2.8 we have that V(G) is a second countable 

Stone space. 

Now consider a sequence of procyclic groups (Ha ) in V(G) converging to H. 

By Lemma 3.1, it is sufficient to show that H is procyclic. For each n, let a be 

a generator of Hn . Since C is compact, by taking a subsequence, we can assume 

that the sequence (an ) converges to an a E C. Furthermore by Lemma 2.13, we 

have that a E H. We will now show that H = {az : z G Z}. 

Let h E H. From Lemma 2.12, there exists a sequence (ha) converging to  

such that hn  E H. By Lemma 1.17, we can write hn  = a for each n, where 

Zn  E Z. Since Z is compact, we can take a subsequence (zfl k ) converging to 
znk a z E Z. Therefore by the continuity of the 'power' map we get that (ank 

converges to az,  and since C is Hausdorif az = h. 	 Li 

We are concerned with CSG, the conjugacy classes of closed procyclic sub-

groups. We first need to show that they are points of 

V(CSC) c V(V(G(Q))). 
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This follows from the corollary after the lemma below. 

Lemma 3.3. Let C be a second countable, compact and Ha'usdorff topological 

group. Let (Ha) be a sequence in V(G) converging to H and g, be a sequence in 

C converging to g. Then the sequence (gHg;') converges to gHg'. 

Proof. Let (U1 , . . . , Urn ) be a basic open neighbourhood of gHg', where the sets 

Ui ,. . . , Urn  are open in C. Pick h1 ,. . . , h e H such that ghg' E ui  fl gHg'. 

By Lemma 2.12, for each i, we can take a sequence (h) converging to h, 

where h23  E H3  for each j and by the continuity of multiplication in C, we have 

(ghg') converges to ghg'. For each i E {1,. . . , m}, let N be such that for 

all j > N we have g3  g' E U. Take N = max{ N1 ,. . . , N }. So for all j > N 

we get that gH3g'flU2 O for all iE{1,...,m}. 

Let U 	U1 U. It is now sufficient to show that there is an M such that 

for every j > M we have gHg' C U. If this is not the case, then we may 

take a subsequence (gfl Hfl g') such that Hg;' I U for all j. So pick, 

for each j, an element gnjh,,jgnjl  0 U. Since G is compact, by taking another 

subsequence we may assume that (hflk ) converges to an h, which, by Lemma 

2.13, is in H. (Note that the conditions of Lemma 2.13 are satisfied because a 

compact Hausdorif space is normal and so, in particular, it is regular.) Therefore 

(gfl hfl g') converges to ghg', and U is a neighbourhood of ghg' such that nk 

gni U for each j, contradiction. 	 Li 

Corollary 3.4. Let C be a second countable profinite group and let H be a closed 

subgroup of C. Then the conjugacy class of H in C, denoted [H], is a closed 

subset of V(G). 

Proof. Let (Ku ) be a convergent sequence in [H]. Then, for each n, we can write 

K = gHg'. Since C is compact, by taking a convergent subsequence, we can 

assume that (gn)  converges to some g E C. Thus, by Lemma 3.3, (Ku ) converges 

to gHg' E [H]. LI 

We will now see that the set of conjugacy classes of closed subgroups is closed, 

and from this we can show our desired result. 

Lemma 3.5. Let C be a second countable profinite group and let SC C V(G) be 

the set of closed subgroups of C. Let C C SC be a closed subset of V(C). Then 

the set of conjugacy classes in V(C) is closed in V(V(C)). 

Proof. Let ([k[]) be a convergent sequence in V(C). Since V(C) is compact, by 

taking a convergent subsequence, we can assume that (Ha) converges to some 

H e C. It is now sufficient to show that ([Ha]) converges to [H]. 



Suppose that gHg' E [H], but then we have that (gHg') is a sequence 

converging to gHg'. Thus, by Lemma 2.13 we have that gHg 1  is in the limit 

of ([Ha]). 

Conversely, suppose that K is in the limit of ([II]). Then, by Lemma 2.12, 

we have that K is the limit of a sequence (gHg;'), for some g E C. By 

compactness, we can assume that (9n)  converges to some g e G and thus by 

Lemma 3.3, we get that K = gHg'. El 

Corollary 3.6. CSGC  is a closed subspace of V(V(C(Q))). 

3.2 Vietoris and quotient spaces 

As in the previous section let CSG be the set of closed procyclic subgroups 

in V(G(Q)). You may have been wondering what would have happened if, 

in the previous section, instead of considering the conjugacy classes as points 

in a double Vietoris space, we had considered taking the quotient of CSC by 

conjugacy, that is, the space CSG/, where r'  is the equivalence relation H 

K 	H is conjugate to K. The purpose of this short section is to show that 

these two spaces are in fact homeomorphic. 

First, I will prove a more general result. Recall that a partition of a topo-

logical space is a disjoint family of subsets whose union is the whole space. 

Theorem 3.7. Let X be a second countable, compact and Hausdorff topological 

space and let V(X) be the Vietoris space. Suppose that the closed subset C C 

V(X) forms a partition of X and let be the induced equivalence relation. Then 

the spaces X/ and C are homeomorphic. 

Proof. Let q: X —* X/r'.i be the quotient map and let f : X1 —p C be the 

obvious bijection. We have the following diagram 

'a' 
	 C 

\q 

X/'  

where g = f o q. From the diagram, it can be seen that it is sufficient to show: 

A is closed in C == g'(A) is closed in X. 
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Suppose, then, that g'(A) is closed in X. Now let (Va) be a sequence in 

A that converges to a V E C, and consider an x E V. By Lemma 2.12, we get 

a sequence (z n ) converging to x such that x 2  E V2  for all i. We then get that 

xE g'(A) and so V E A. 

Conversely, suppose that A is closed in C, and let (x) be a sequence in 

g'(A). Now consider the sequence (g(x n )) in A. Since C is compact, we may 

take a convergent subsequence. By Lemma 2.13, we have that x is in the limit 

of the convergent subsequence and hence x e g' (A). LI 

Corollary 3.8. The spaces CSGc and CSG/-.-' are homeomorphic. 

3.3 The homeomorphism for Psf 

We are now ready to show 450  and 	are homeomorphisms. 

Recall that, in Section 3.1, we introduced the notation CSG for the set of 

closed procyclic subgroups of G(Q). Hence we have the following inclusions: 

CSG c V(G(Q)) 

CSCC C V(CSG) C V(V(G(Q))) 

Theorem 3.9. The map D o  : So (Psf 0 ) -* CSG, defined in Theorem 1. 26, is a 

homeomorphism. 

Proof. By Theorem 2.6, it is sufficient to show that 'I  is continuous. Let A be 

a closed subset in CSGc. Consider a sequence (Ta ) in cI'(A) which converges 

to T E So (Psf0 ). We thus want to show that T E I'(A). Now consider the 

corresponding sequence in A, i.e. (X) where X2  = I 0 (T) for each i. By taking 

a subsequence we may assume that (X c) converges to an X E A. It is thus 

sufficient to show '(X) = T. 

From Theorem 1.6, we know that T is determined by the statements of the 

form 

Of  =— 3xf(x) = 0 

where f is a polynomial over the integers. Hence T is determined by the O f  such 

that f is irreducible over Q. 
Suppose that Of e T. Thus, by the base for the topology on S o (Psf 0 ) given 

in Section 1.1, there is an N, such that Of E T, for all i > N. Let a be a root 

of f(x) and let H = G(Q(a)). We have that H is a clopen set of G(Q) and so 

(H) is clopen in V(G(Q)). Thus Y := (H) fl CSG is a clopen set of CSG. Since 

CSGC C V(CSG), we have also that Z (CSG, Y) flCSG c  is a clopen set. We 
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observe that Z is the conjugacy classes in G(Q) of closed procyclic subgroups of 

H. 

Pick an i > N and a pseudo-finite field F such that F = Ti . Since Of E T, 

we have that a conjugate of a is in Abs(F), that is a(a) E Abs(F) for some 

a e G(Q). Thus 

Q C Q(u(a)) C Abs(F) 

and by the Galois correspondence, 

G(Q) D all' D G(Abs(F2 )) 

So, by the definition of , we have X i  = [G(Abs(F))] and by the construction 

of Z above we have X2  E Z. Hence X2  E Z, for every i > N, and so X e Z. 

Therefore Of E 

Now suppose that O 	T or equivalently, -Of E T and let Z be as above. 

Since CSGc \ Z is closed we can use the argument above to show that X E 

CSG \ Z. Thus -'O, e '(X), and therefore 45 0 	= T. 	 U 

As a corollary to the proof above we get. 

Corollary 3.10. For each prime p, the map 	So (Psf) -* SG is a homeo- 

morphism. 

Proof. Let A be a closed subset in SG, and, with the analogous definitions 

to the above proof, we need to show ' (X) = T. We now have that T is 

determined by the sentences O f  such that f is irreducible over F. 

Let a be a root of f(x) and let H = G(TF(a)). From the previous proof, it 

is now sufficient to note that Z := (H) fl SG is a clopen set of SG. 	U 

3.4 . . . and for A CFA 

In this section we will show that e0  and e are homeomorphisms. 

In analogy with Section 3.1, we must first show that G(Q)c, the set of con-

jugacy classes of G(Q), is a subset of V(G(Q)) and then that this subset is 

closed. 

Lemma 3.11. Let C be a second countable profinite group. Let x E C and let 

[x] be the conjugacy class of x. Then [x] is a closed subset of C. 

Proof. Let (gxg 1 ) be a convergent sequence in C. Then, by compactness, 

there is a subsequence (g,) which converges to some g E G. Thus by continuity 

of multiplication (gxg') converges to gxg'. 	 U 
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Lemma 3.12. Let C be a second countable profinite group and let Cc be the set 

of conjugacy classes of C. Then G c  is a closed subset of V(G). 

Proof. Let ([x]) be a sequence in Cc converging to X E V(G). By taking a 

subsequence, we may assume that (x) converges to some x E G. It is now 

sufficient to show [x] = X. 

Pick an arbitrary element, say gxg 1 , of [x]. We know, however, that 

gx jg 1  E [xi] for each i and so by Lemma 2.13 we have gxg' E X. On the other 

hand, consider a z E X. Then, by Lemma 2.12, there is a sequence (9nxg 1 ) 

converging to z. By compactness, there will be a convergent subsequence of (gn), 
converging to some g E C, and hence z = gxg 1 . LI 

Remark 3.13. As before, we note that, by Theorem 3.7, G(Q)c is just the 

quotient space. 

Theorem 3.14. The map e0 : S0 (ACFA 0 ) -* G(Q)c, defined in Theorem 1. 27, 

is a homeomorphism. 

Proof. We proceed in the same way as in the proof of Theorem 3.9. Thus let A 

be a closed subset in G(Q)c. Let (Ta ) be a sequence in 00  '(A) converging to 

T E S0 (ACFA 0 ) and, without loss of generality, ([o]) (e0 (T)) converges to 

[a] E A. I will show that e'([a]) = T. 

By the proof of Theorem 1.12, we know that T is determined by statements 

of the form 

O,g  = 3x (f (x) = 0 A a(x) = g(x)) 

where f, g are polynomials over Q. Note that 01,9  is not quite a sentence of L a , 

but if we let r, s E Z be the product of the denominators of the coefficients in 

f, g respectively, we can consider 

x (rf(x) = 0 A a(sx) = sg(x)) 

which is a sentence of L a-. Thus we will write 0f,g  e T for 0' ,  e T. Furthermore, 

we need only consider Of ,g  where f is the minimum polynomial of a primitive 

element a of a normal extension of Q and g(a) is a root of f. Let  f be such a 

polynomial. Let H = G(Q(a)) and so H i C(Q). Now for r e G(Q) we have 

that 0,g  holds if, and only if, 0f,g  holds for all elements of TH. Moreover it can 

be seen that Of, g  holds for r if, and only if, it holds for all conjugates of r. So 

let Y be the union of all the cosets of H for which 01,9  holds. Hence we note 

that Y is clopen, because it can be considered to be a finite union, and that Y 

is closed under conjugation. 
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We now consider the clopen set of G(Q)c induced by Y, that is 

z := (Y) n G(Q)c. 

By definition, [T] E Z if, and only if, Of ,g  holds for each conjugate of T. 

Pick an i E N and a (K, r2) = T. Thus Of,g  E T if, and only if, (K, T) 

By the definition of e0 , we have [rjIQaIg] = [o]. Therefore (K, T) = 01, if, and 

only if, Of ,9  holds for each conjugate of a. But as we noted above Of,g  holds for 

each conjugate of ai  if, and only if, [o] E Z. 

We therefore have: 

E T 	N such that Of, g  E T for all i > N 

== N such that [o] E Z for all i> N 

4== [a] E Z 

°f,g E 

I. 

The proof can be modified in the same way as in the previous section to give: 

Corollary 3.15. For each prime p, the map e : S0 (ACFA) -* G(lF',) is a 

homeomorphism. 

To finish, I will make some observations. Firstly, by Theorem 3.7, G(Q)c can 

be thought of as a quotient space. Thus both Theorem 3.14 and Corollary 3.15 

can be stated and proved without reference to the Vietoris topology. Secondly, 

Corollary 3.15 defines a natural group structure on the spaces S0 (ACFA) and 

although this is clear from the material on A CFA already published I do not 

think it has been explicitly stated before. 
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Chapter 4 

Coding the complete theories 

In this chapter we shall extend the results of the previous chapter to show 

that the whole space of complete theories of Psf can be thought of as lying 

in the double Vietoris space of C(Q). The spaces So (Psf) will be shown to 

be homeomorphic to collections of subgroups of G(Q) which will be denoted 

by Co (Psf). We will then take the union of these spaces to obtain the space 

Go (Psf) which will be shown to be homeomorphic to So (Psf). As in the previous 

chapter, we will show, in the final section, that we can adapt the proofs to the 

ACFA case. 

4.1 Group theory preliminaries 

We begin with some standard definitions from group theory. Let G be a profinite 

group and N a closed normal subgroup of C. In this case we will say that G 

is an extension of N. A complement of N is a closed subgroup K such that 

N fl K = 1 and C = NK. If the extension C of N has a complement K then 

we will say that the extension splits, and that C is the semi-direct product of 

N by K, written K v N. The general properties of the semi-direct product 

of profinite groups are given in [W, p221. We note from there that K v N is 

homeomorphic (but not isomorphic) to K x N and that multiplication is given 

by (k 1 ,ni )(k 2 ,n2) = (k i k2 ,k'rii k 2 n2 ) where k 1 , k2  E K and n1 , n2  EN. 

Lemma 4.1. Let (C s) be a convergent sequence of closed subgroups of a first 

countable profinite group and let Gi  = Ki  x N for each i. Assume also that 

the sequences (K u) and (Na) converge to K and N respectively. Then (C a ) 
converges to K v N. 

Proof. Let C be the limit of Gn  and let g E C. Then by Lemma 2.12 there is a 

sequence (ga) such that gn  E Gn  and (ga) converges to g. Furthermore, for each 
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ri, we have g = kh for some k n  E Kn  and hn  E N. By taking convergent 

subsequences, if necessary, we may assume that (ks ) converges to some k E K 

and (ha) converges to some h e N. By the continuity of multiplication, we now 

have that g = kh e K v N. 

Now suppose that kh E K v N. Then, by Lemma 2.12, there are sequences 

(ku ) and (ha) converging to k and h respectively and such that, for each n, we 

have kn  e K and hn  E N. Thus the sequence (kh) converges to kh and, by 

Lemma 2.13, we have kh E G. El 

Lemma 4.2. Let C be a group and let H, K, L be closed subgroups of G. If 

(H x K) x L, then G = H x (K x L). 

Proof. We first show that C = H rx KL. To show that KL 1 G, consider 

gKLg' for some g E C. Since that G = (H v K) x L, we may write g = hkl 

where h e H, k e K and 1 E L. Thus we have 

gKLg' = hklKLl'k'h' = hKLh' = hKh 1 hLh' = KL. 

Now suppose that some x E H fl KL. Thus x = ki for some k E K and 1 e L 

but then k'x = 1. Since x e H and C = (H v K) v L, this means that 1 

and hence x = k = 1. Therefore C = H v KL. 

Now we will show that KL = K v L. Since L is a closed normal subgroup of 

C, it is a closed normal subgroup of KL. Moreover since (H v K) fl L = 1, we 

have that KflL=1. Therefore KL=KvL and hence C=Hv(KvL). El 

Our concern later will be the case where C is a profinite group. In this case 

we must check that in the lemma above the subgroup KL is closed in C, but 

this is just a consequence of the fact that C is compact and Hausdorif (by [W, 

Lemma 0.3.1]). 

Remark 4.3. The converse to the above lemma is not true. Consider the finite 

group of order 27 given by 

C = (a, b, c: a3  = b3  = c3  = 1, ba = abc, cb = bc, ca = ac). 

Let A, B, C be the subgroups generated by a, b, c respectively. Then we see 

that G = A i< (B v C), but a 1 Ba is the subgroup generated by bc and hence 

C=(AvB)D<C. 
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4.2 Henselian fields 

Recall that a pair (K, 1.1) where K is a field and 1. is an absolute value on K is 

called a valued field [FT, p641. We will say that (K, I. I) is henselian if, and only 

if, there is a unique extension of 1.1 to each algebraic extension of K. A good 

general reference for henselian fields is [A3]. There it is shown that a valued field 

is henselian if, and only if, it satisfies an analogue of Hensel's Lemma and hence 

we have that Qp  with the p-adic absolute value is henselian. It is trivial, but 

worth pointing out, that if K is hense1an with respect to some absolute value 

then any algebraic extension of K with the unique induced absolute value will 

be henselian. 

We will now prove some results for henselian fields in close analogy with 

[NSW, pp369,662,663]. If (K, 1 . I) is henselian, then there is no harm in thinking 

of 1.1 as a function on K a19  and we will do this without further comment. The 

following lemma is well known for p-adic fields but in fact it holds for henselian 

fields. 

Krasner's Lemma. Let K be a henselian field with respect to a nonarchimedean 

absolute value. Let a e K a19  be separable over K and let a = a1 , .. . , an  be the 

conjugates of a over K. Suppose that for 3 E KaIg we have 

a—/3< l a — a 

for i=2,...,n. Then K(a)cK(3). 

Proof. Let N be the normal closure of K(a, 0) and consider the Galois field 

extension N/K(3). Let a e 9(N/K(3)) and note that because the extension of 

to N is unique we have a(x)I = IxI for each x E N. 

Thus 

a(a)I = Ia(i3-a)l= 113-a < l a — a 

for i= 2,.. . ,n and so 

a—a(a)l= la — i3+i3 — a(a)< max{Ia-fiI,I/3 -a(a)}<la--a 

for i = 2,.. . , n and hence cr(a) = a. Therefore a e K(i3). 	 U 

We can also prove a stronger form of Krasner's Lemma. Recall that if f = 
ax" + a_ ix' + + a0  and g= bx + . . . + b0  are polynomials over (K, 1.1) 
then 

f — gl := maxa-bl. 
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Lemma 4.4. Let K be a henselian field with respect to a nonarchimedean ab-

solute value 1.1 and let f be a polynomial over K with non-zero discriminant. 

Then for every polynomial g over K with If - gI sufficiently small, the splitting 

fields of f and g coincide. 

Proof. Let a be a root of f. Now for If - gl sufficiently small we get that 

= I g(a) - f(c)I is small. By writing g(x) = dfl1(x - /3) we see that 

I  - ,3j  I  is small for some root I3. 

Let f(x) = cfl 1 (x - a) and let 

E=min{1a2 —aj l :i4j}. 

Thus we can pick a g(x) = d fl1(x - 3) such that for each i there is an 

s(i) e {1,. . . ,n} with kiI3s()I < e. Note that if i,A j, then by the ultrametric 

inequality we get 

	

max{Ia2 - 08(j)  1, 113s(i) - /:3 () i, 1 0s(j) - aI} >_ Ia - 	>_ 

but since Ia - 13s(i)I, 1 a - 13s(j)l < E we must have 

	

1/3s(i) - 13s(j )I >_ E. 	
(*) 

In particular the map s is a bijection. 

Now for each a2  we have 

a2 - 3s(i)I < 6 < 	min 	Ia - cej 
jE{1 ..... i-1,i+1 .....n} 

and by Krasner's Lemma we get that a 2  e K(133(2)). Similarly, by (*), for each 

we have 

- 0I < E < 	min 	I/3 - Oil 
jE{1,...,i-1,i+1,...,n} 

and by Krasner's Lemma we get that Oi  e K(a8-1( 2)). Therefore the splitting 

fields coincide. 

Recall that two absolute values I. Ii and  I. 12 of K are equivalent if there exists 

a positive real number a such that IxI = 1x12 for all x E K, and they are 

inequivalent otherwise [FT, p641. 

Weak Approximation Theorem ([FT], p66). Let I .',..., I - In denote in-

equivalent absolute values on K. Given a positive real number E and given 

x 1 , ..., x in K, then we can findy E K such that for eachi = 

I - xiii <E. 
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We can now prove a theorem which we will need in the next section. 

Theorem 4.5. Let K be henselian with respect to two inequivalent nonarchi-

medean absolute values 1.1 1  and .12.  Then K is separably closed. 

Proof. Let f be an irreducible separable polynomial of degree n over K, and let 

g = flt1(x - 3) where 61,... , j3, are distinct elements of K. Because i.li and 

1.12 are inequivalent, by the weak approximation theorem, for every E > 0, there 

exists a polynomial h over K such that If - h11 <E and Ig - h12 <. Thus by 

Lemma 4.4, we can pick h such that the splitting fields of f and g coincide and 

hence f splits in K. U 

Remark 4.6. There are valuations that do not correspond to an absolute value 

with codomain R [FJ, pp  13 and 173]. It is possible to define Henselian fields in 

terms of a valuation (for example see [A3]) and the proofs of the results in this 

section would translate over easily. Thus the results in this section hold for all 

Henselian fields. 

Alternatively, Macintyre has shown me that there is an equivalence of valu-

ations and nonarchimedean absolute values where the codomain of the absolute 

value is a real closed field. (This result is well known but appears not to have 

been published.) Thus we can see that the results above hold for valuations 

because there is no use of the completeness of R in any of the proofs. 

4.3 The space Go (Psf) 

In this section we will define the space Go (Psf) and show that it is naturally 

homeomorphic to So (Psf). Let K be an algebraic extension of Q. We will say 

that p is a prime of K if p is a prime ideal of the ring of integers of K. 

Let p be a prime of Qaig  lying over (p) and let i : Qaig Q be the embed-

ding induced by p. Recall that the decomposition group of p is the subgroup of 

G(Q) defined by 

G, : {a E G(Q) : u(p) = p}. 

It should be pointed out that for another choice of a prime lying over (p) we would 

get a conjugate of G, in G(Q) as the decomposition group. As a consequence of 

the following theorem, we will show that G. G(Q). 

Theorem 4.7 ({NSW], p369). Qaig = i(Qalg)Qp.  

Proof. It is only necessary to show that Qaig C j(QaIg)Q since the reverse 

inclusion is trivial. Thus let a e QPa1 9 and let f be the minimum polynomial 
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of a over Q,. Since  Q is dense in Q,,, we can choose a polynomial g over Q 
that is arbitrarily close to f. Since Qp  is henselian, Lemma 4.4 applies and 

a e Q(i(/3 1 ),. . . , i(/3,)) where /3k,. . . , /3, are the roots of g in Qaig  Thus 

a e i(Q(,@i,. . . , I3))Q C j(Qalg)Q 

. 

For each finite extension K of Q, we have that GPK  g((K)Q/Q) where 

PK is the restriction of p to K. We therefore have that G is topologically 

isomorphic to g(i(Qal)Q/Q).  Thus, by the theorem above, we get that G is 

topologically isomorphic to G(Q). 

We will now consider the fixed field of G. Recall from [FT, pp  61 and 641 

that there is an equivalence between primes and absolute values. We will thus 

use the notation I.p for the absolute value associated to p and we may observe: 

Lemma 4.8. Fix(G) is henselian with respect to .',. 

Proof. It is sufficient to show that in any Galois extension K of Fix(G) there 

is only one prime lying over PFix(G)  (which is defined to be the restriction of 

p to Fix(C)). We know that PK  lies over PFzx(Cp)  Thus consider some other 

prime q of K that lies over PFix(Gp).  Then, by [L, Proposition 11, p12], for some 

g(K/F(G)) we have o(pK) = q, but g(K/F(G)) = G/N for a normal 

subgroup N of G,. Therefore o(PK) = PK = q. 	 LI 

Furthermore it may be shown that the field Fix(G) is elementarily equivalent 

to Q. Such fields (i.e. subfields of Qaig  elementarily equivalent to Q) are called 

by Ax and Kochen [AK] the algebraic p-adics. Koenigsmann [K] and Efrat [Ef] 

have shown that as p ranges over the primes lying over (p) the corresponding 

fixed fields of G, are all the copies of the algebraic p-adics. 

By the results of the previous section we can get a good understanding of 

how the groups G for various primes p lie in C(Q). 

Lemma 4.9 ([NSW], p663). Let p and q be two distinct primes 0fQg Then 

Cp flG q  = 1. 

Proof. We have that Fix(G fl Gq ) is an algebraic extension of Fix(G) and 

Fix(G q ), and hence it is henselian with respect to 1 . 1 p and IIq• Therefore, by 

Theorem 4.5 we have Fix (G fl Gq) = QaIg 	 0 

Lemma 4.10 ([NSW], p663). Let p be a prime 0fQI Then G is its own 

norrnaliser in G(Q). 

39 



Proof. Suppose that u'G,a = C for some a E G(Q). Then G(p) = G and 

hence by the lemma above a(p) = p. Therefore, by definition, a E G,. 	LI 

We have now established that, for each prime p, there are many copies of 

G(Q) in G(Q). Any two copies that are distinct have trivial intersection and 

each copy is its own normaliser. 

Let us now recall the structure of G(Q). We have the usual field extensions 

QP c  QPur  c Q 	
Qaig 

where Q and  Q are respectively the maximal unramified and tamely ramified 

extensions of Q. There appears to be no standard notation for the correspond-

ing Galois groups. My conventions shall be: 

Up = g(Q/Q) 	T = g(Qt /Qur\ 	1/ = g(QaIg/Qtr) P 
	' p/ p1 

Gp = g(Qag/Q) 	F, = g(Qtr/Q)  

We show these Galois groups and field extensions in Figure 4.1. 

Qaig /P) 
VP 

tr 

ur 

) U 
QP : 

Figure 4.1: Field extensions of Q, and their Galois groups 

Recall, from [CF, Corollary, p27], that for an unramified Galois extension L 

of Qp we have an induced Galois extension K of 1F and vice versa. Further-

more that Galois groups G(L/(Q) and g(K/JF) are isomorphic. Thus, by the 

properties of the inverse limit, we have the following theorem. 

Theorem 4.11 ([CF], Corollary 2, p28). U = g(Qur/Q) is topologically 

isomorphic to G(1F). 



The image of the Frobenius automorphism of C(F) by the isomorphism in 

Theorem 4.11 is called the Frobenius automorphism (or Frobenius substitution) 

of U [CF, p281. 

The following theorem, due to Iwasawa, shows that various phenomena of 

the Galois group of a finite extension of Q,, occur (with the natural profinite 

analogues) in G. Iwasawa's version was for all finite extensions of Q 1,, but here 

we shall just state it for Q. 

Theorem 4.12 ([I], p463). In the notation above we have: 

F is isomorphic to the profinite completion of the group generated by two 

elements cr and r, satisfying the unique relation 

OTci1 = TP 

The isomorphism can be taken such that ci induces the Frobenius automor-

phism of U and r generates I. 

V is the pro-p completion ([W], p26) of a free group with a countable 

number of free generators. 

The group extension G,, of V splits. 

From part (i) of the theorem above we get that F is a group extension of 

T which splits (the complement being the subgroup topologically generated by 

a). Thus by an abuse of notation we have 

and so by Lemma 4.2 we have 

G=U7 x(TxV). 

For the purposes of the following definition, let us fix a prime p in Qa19  and 

hence a decomposition group G, which, as we mentioned before, is isomorphic 

to G. Let A be its associated algebraic p-adic field. For each extension of A 

there is a corresponding extension of Q,. Thus we shall say that an extension 

of A is unramified if the corresponding extension of Qp  is unramified. 

Definition 4.13. Let Go (Psf) be the set of conjugacy classes in G(Q) of closed 

subgroups of G. that correspond to unramified extensions of A, with the topol-

ogy given by the subspace topology of the double Vietoris topology of C(Q). 
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Note that because we have considered conjugacy classes the above definition 

does not depend on our choice of p. 

Since C and G are topologically isomorphic, we shall frequently think of 

G. as having the subgroups U, T and V, with the structure from Iwasawa's 

theorem. 

Lemma 4.14. The space Go (Psf) is closed. 

Proof. Let (X) be a convergent sequence in G o (Psf), so that 

X 2 ==[Uv(Tx Vu )] 

for each i where U, is a closed subgroup of Up . We shall show that the limit X 

is in Go (Psf). Since U is closed, by taking a convergent subsequence, we may 

assume that (Un ) has a limit U C U. Thus by Lemma 4.1 and the proof of 

Lemma 3.5 we have that (X) converges to [U v (T x V)] and we are done. LI 

Remark 4.15. Let T E So (Psf), where p 2. Then the sentence 

x z2 - = 0 

will, of course, be in T, but x2  - p generates a proper (totally ramified) exten-

sion of Q (as it is an Eisenstein polynomial). So the roots of x2 - p are not 

in any of the extensions between A and Aur. Thus we do not have the full 

correspondence between solvability predicates in our theory and the fixed field 

of its representative Galois group in G o (Psf) as we did in the previous chapter. 

This however is not a problem because by Theorem 4.11 we have 

g(QUr/Q) 

Hence it is sufficient to consider the solvability predicates corresponding to un-

ramified extensions. 

Theorem 4.16. G o (Psf) and So (Psf) are homeomorphic. 

Proof. We first need to establish a bijection. As a consequence of Theorem 4. 11, 

the unramified extensions of Qp  are in bijective correspondence with the algebraic 

extensions of F,,. Since G. G,, we have established a bijection between the 

subgroups of G, corresponding to unramified extensions of A and the closed 

subgroups of G(IF,,), and in Section 1.6, we have shown that there is a bijection 

between So (Psf,,) and the closed subgroups of C(IF,,). Thus we only need to 

check that two such distinct subgroups X and Y of C,, cannot be conjugate 
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under the action of G(Q). So suppose that gXg' = Y for some g e G(Q). 

Since X C G I, we have that 

Y = gXg' C gGg' 

but then Lemma 4.9 implies that gGg 1  = G, and so Lemma 4.10 implies that 

g e G,. However, GP/TVP  is abelian and hence 

Y = gXg' = X. 

The remainder of the proof is now analogous to the proof of Theorem 3.9. We 

note, however, that by the remark above we need only consider the sentences O 

for the polynomials f which are irreducible over Qp  and do not ramify at p. LI 

4.4 The space Go (Psf) 

Definition 4.17. 	(i) Go (Psf0 ) is the set of conjugacy classes of closed pro- 

cyclic subgroups of G(Q), that is, Go (Psf 0 ) is CSGc from Section 1.6. 

(ii) Go (Psf) is the union of the spaces Go (Psf) for all primes p and Go (Psf0 ) 

We have established a bijection for each Go (Psf) with S0 (Psf) in the previ-

ous section and for Go (Psf0 ) with So (Psf0 ) in Section 1.6. Moreover the spaces 

Go (Psf) are disjoint because of Lemma 4.9 and since for each prime p the groups 

in C0 (Psf) are not procyclic, we get that they are disjoint from the groups in 

Go (Psf 0 ). Thus we have established a bijection : So (Psf) -p Go (Psf) and as 

mentioned before we will show that is a homeomorphism. There are, however, 

some preliminary lemmas needed. 

Lemma 4.18. Let (pa ) be an increasing sequence of primes. Then, if the se-

quence AP.  v V]) in Go (Psf) converges it has the trivial group as its limit. 

Proof. Let the closed subgroup X of G(Q) be in the limit. Then by Lemma 2.12 

we have for each p  a Rp,,e [T v V] such that (R) converges to X. For 

each p, let APn  be the copy of the algebraic p-adics such that PPn C G(A). 

Let N be an open normal subgroup of G(Q). This corresponds to a finite 

Galois extension of Q for which we shall pick a primitive element a. We know 

that Q(a) ramifies at only finitely many primes. Thus for large enough pn  we 

have 

Q(a) C A(a) C Aur 
Pn 
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and hence N D R. Therefore X C N and since N was arbitrary we have 

Xc fl N=1 
N10G 

where N <10 G means that N is an open normal subgroup of C. 	 0 

We shall say that X E Go (Psf) is of characteristic p if X E Co (Psf). 

Lemma 4.19. Go (Psf) is a closed subspace of the double Vietoris space of C(Q). 

Proof. Let (X) be a convergent sequence in Co (Psf). Then the characteristic 

of (X) is either bounded or unbounded. 

If the characteristic is bounded then we may pick a subsequence of constant 

characteristic, say q (where q is possibly 0). Hence by Lemma 4.14 (or Corollary 

3.6 if q = 0) the limit of the sequence is in Go(Psf q ) C Co (Psf). 

If the characteristic is unbounded then we may pick a subsequence of strictly 

increasing characteristic. As above we may think of the subsequence in the 

following way: 

[Ux(Txv,)] 

and by taking a further subsequence we may assume that the sequences (U x 

(Tp. x V)), (Un ) and (Tp. v V) converge. Then, by Lemma 4.1 and Lemma 

4.18, we have that (U x (T x V?,))  converges to the limit U of the sequence 

(Un ). Each U is procyclic and so, by Lemma 3.2, U is procyclic. By the proof 

of Lemma 3.5 we get that the limit of [U x (Tp. x l')} is [U]. Therefore the 

limit of (X) is in Go (Psf 0 ) and we are done. LI 

Recall that SG is the set of closed subgroups of C(Q) and let SCc be the 

conjugacy classes of closed subgroups of G(Q). Recall from Chapter 2 that for a 

topological space X and open subset U we have that (U) is the set of closed sets 

contained in U and that (X, U) is the set of closed sets which have non-trivial 

intersection with U. 

Theorem 4.20. The map : So (Psf) -f C o (Psf) defined above is a homeo-

morphism. 

Proof. By an analogous argument to the first two paragraphs of the proof of 

Theorem 3.9 it is sufficient to show that if the sequence (Ta ) in So (Psf) converges 

to T E So (Psf) and the sequence (X) in C o (Psf), where Xi  = (T) for each i, 

converges to X e Go (Psf), then 1 (X) = T. 

Let pi  be the characteristic of Ti . Because of the base for the topology on 

So (Psf) given in Section 1.1, we can have the following two cases: 



Case 1: There is an N such that for all i > N, the characteristic of T is 
constant. 

Case 2: For every finite prime p there is an N such that for all i > N, we have 
A > p. 

Case 1 has been shown for finite primes in Theorem 4.16 and for characteristic 

o in Theorem 3.9. The proof of Case 2 is very similar to the proof of Theorem 

3.9. We first note that T is a characteristic 0 theory and, as we observed in the 

proof of Theorem 3.9, it is determined by sentences of the form 

3x 1(x) = 0 

where f is an irreducible polynomial over the integers. 

Suppose that Of E T. Then there is an N such that, for all i > N, we have 

Of  E T2  and f does not ramify at pi  (because f will only ramify at finitely many 

primes). Let c be a root of f(x) and let H = G(Q(a)). We have that H is a 

clopen set of G(Q) and so Y (H) fl SC is a clopen subset of SC. Thus 

B (SC, Y) n Co (Psf) 

is a clopen set of Co (Psf). Since f does not ramify at p, we get 

A N  C AN (a) C Aur 
Pi 

for each i > N and each copy of 	Hence we have that Xi  e B for every 

i > N and so X E B. Therefore Of E - '(X). 

Now suppose that —O f  e T. Since B is open, we have Co (Psf) - B is closed 

and the same argument as above shows that X E Co (Psf) - B. Therefore 

E I'(X) and the proof is complete. 

4.5 The space G0 (ACFA) 

Let p be a prime of Qaig  lying over (p) and let C,, C G(Q) be its decomposition 

group. As we have explained above, there is a normal subgroup N < C 

consisting of the automorphisms which fix the maximal unramified extension of 

A. (The subgroup N was called T v V because of the splitting properties of 

GP .) 

Definition 4.21. (i) C0 (ACFA) is the set of conjugacy classes (in G(Q)) of 

cosets of N by elements of G,. 

(ii) C0 (ACFA 0 ) is the set of conjugacy classes of singleton subsets of C(Q). 
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(iii) G0 (ACFA) is the union of the spaces G0 (ACFA) for each prime p and the 

space G0 (ACFA 0 ). 

Remark 4.22. As was the case with Go (Psf), because we have taken conjugacy 

classes the definition of G0 (ACFA) does not depend on the choice of P. In the 

space G0 (ACFA 0 ) a typical element is [{g}J where g e G(Q). We recall from 

Lemma 2.7 that G(Q) is homeomorphic to the subspace of V(G(Q)) consisting 

of singletons. Thus the space G0 (ACFA 0 ) is a subspace of V(V(G(Q))) which is 

homeomorphic to G(Q)c. 

We now proceed with the familiar sequence of lemmas. 

Lemma 4.23. The space G0 (ACFA) is closed. 

Proof. Let (X) be a convergent sequence in G0 (ACFA). Then, without loss 

of generality, we may consider X i  = [g Np], for each i. By taking a convergent 

subsequence, we may assume that (gn)  converges to some g e C. Then, as in 

the Psf case, we get that (X) converges to [gNu ] E Co (ACFA). 

Lemma 4.24. For each p there is a natural homeomorphism from S0 (ACFA) 

to G0 (ACFA). 

Proof. By Corollary 3.15, for each p there is a natural homeomorphism from 

S0 (ACFA) to G(F). In the discussion following Theorem 4.7, we showed that 

G is topologically isomorphic to C, (= G(0)). By Theorem 4.11, we have that 

G(F) and U = c(QT/Q) are topologically isomorphic and after Theorem 4.12 

we observed that U C/(I, v V,). Thus C/N is topologically isomorphic 

to G(F). Hence, by Lemma 4.9 and Lemma 4.10, we have a natural bijection 

0 : G(F) - G0 (ACFA). 

We could now proceed as in the proof of Theorem 3.14 but we will show 

directly that 9 is a homeomorphism. By Theorem 2.6 it is sufficient to show 

that 0 is continuous. Thus let A be a closed subset of G0 (ACFA) and let 

(ga) be a convergent sequence in &'(A) with limit g E G(F). For each n, 

let [kN] = 0(g) where kn  E C,,. Since C(F) is topologically isomorphic to 

G,,/N,,, we have that (kE N,,) converges to kN,, E C,,/N,, where 0(g) = [kN,,]. 

Hence by the proof of Lemma 3.5, we have ([kE N,,]) converges to [kN,,]. Since 

[kN,,] E A, we have g E 0- '(A) and therefore 9'(A) is closed. D 

Lemma 4.25. G0 (ACFA) is a closed subspace of the double Vietoris space of 

C(Q). 
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Proof. From the proof of Lemma 4.19 we see that is sufficient to show that if 

(X) is a convergent sequence in G0 (ACFA) of strictly increasing characteristic, 

then its limit is in G0 (ACFA). For each i, we may think of X2  as [gN] where 

p 2  is a prime of G(Q) lying over the prime corresponding to the characteristic of 

X2  and gj E G. By taking convergent subsequences, we may assume that the 

sequences (ga ) and (N) converge, and then by Lemma 4.18 we get that (X) 

converges to [{g}] where g is the limit of (gn). LI 

Theorem 4.26. Let e : S0 (ACFA) —f G0 (ACFA) be the bijection constructed 

from the bijections for S 0 (ACFA) and S 0 (ACFA 0 ). Then e is a homeomor-

phism. 

Proof. We have the usual set-up: (Ta) is a sequence in S0 (ACFA) converging to 

T and (X) is the sequence in G0 (ACFA), which converges to X, such that, for 

each i, we have X2  = e(T). 
Let p2  be the characteristic of Ti . As in Theorem 4.20, we can have the 

following two cases: 

Case 1: There is an N such that for all i > N, the characteristic of T2  is 
constant. 

Case 2: For every finite prime p there is an N such that for all i > N, we have 

A > P. 

Case 1 has been dealt with in Lemma 4.24 and Remark 4.22. In Case 2, T is a 

characteristic 0 theory and hence is determined by statements of the form 

x (f (x) = 0 A a(x) = g(x)) 

where f and g are polynomials over Q and  f is the minimum polynomial of the 

primitive element a of a normal extension of Q and g(a) is a root of f. As in 

the proof of Theorem 3.14 we are really considering the sentences 

0/ ' 	x (rf(x) = 0 A o(sx) = sg(x)) 

where r, s e Z are the products of the denominators of the coefficients of the 

polynomials f, g respectively. 

Pick a Of, 9  as described in the previous paragraph. As in the proof of Theorem 

3.14 let Y be the clopen set consisting of all the elements of C(Q) such that 

holds. We know that a general element of G0 (ACFA) may be thought of as [B] 

where B is a certain coset or a singleton. (The conjugacy classes of cosets will 

come from C0 (ACFA) and the conjugacy classes of singletons will come from 
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G0 (ACFA 0 ).) Thus define the clopen set 

Z:={[B]eGo (ACFA):BCY}. 

Still working with the Of ,g  that we picked in the previous paragraph, there 

exists an No  such that for all i > N0 , we have that f does not ramify at p i  and 

pi  does not divide r, s or any of the coefficients of rf(x) and sg(x). Pick some 

i> No  and let (Ks, = T. We now have 

01,9  e T == (Kr , 'i-i) 1 0i, 

== 	
0f,g 

We observed in the proof of Lemma 4.24 that Gpi lNpi  is topologically isomorphic 

to G(TFj. Let o i  E G(Q) be such that aj Np, is the image of rj under this isomor- 

phism. Then by the properties of this map [CF, p27] we have (Fe, 'TjIatg) 	Oi,g Pi 

if, and only if, (Q'19 , o- ) 1= Of , 9 . Thus 

	

E T 	(Q1 	1= 9i, 

G'j  E Y 

== [aN,j E Z 

But, by the definition of e, we have that e(T2 ) = [aN} and so 

	

O1, 9 €T 	x=e(T)EZ 

Therefore 

E T 	N > No  such that O f ,g  E T for all i > N 

such that XeZ for all i> N 

E e'(x). 



Chapter 5 

Discussion: coding types 

The most important aspect of this work is to give a less syntactic description 

of the space of complete theories of Psf and A CFA. Ax described a complete 

theory of Psf by giving a characteristic and the absolute numbers. To give 

the absolute numbers, however, requires a choice of the algebraic closure of the 

prime field to be made. We have seen that Ax was really just associating to each 

complete theory a conjugacy class of procyclic subgroups in the Vietoris space 

of the absolute Galois group of the prime field. We then saw that this could be 

taken further to give the complete theories in all characteristics as a subspace of 

the Vietoris space of G(Q). It is desirable to extend this formulation to types; 

first, though, I will give a brief definition of types (for more detail see [H]). 

A set of formulas in n variables is said to be finitely satisfiable if for each 

finite subset E, the sentence3xAE has a model. An n-type is a maximal finitely 

satisfiable set of formulas in n variables. For a theory T, the set of n-types of 

T is denoted S(T). It is a Stone space with respect to the topology which has 

basic clopen sets 

{p E S(T) : (x) e p} 

where (x) is a formula and x is a tuple of n variables. Note that the space of 

complete theories of T, which is denoted SO (T), can be thought of as the space 

of 0-types of T. Thus, the natural extension of the results in the previous two 

chapters is to ask whether there is a Galois characterisation of the n-type spaces 

of Psf and ACFA. 

We will first consider the Psf case. To link the n-types with a Galois object, 

we will use Galois stratifications. Galois stratifications were first introduced by 

Fried and Sacerdote [FS] to show that there is a primitive recursive decision 

procedure for the theory of finite fields. The ideas of Galois stratifications were 

then extended by Fried, Haran and Jarden ([FHJ],[FJ]) to a class of fields, which 
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they call Frobenius fields, that includes the class of pseudo-finite fields. I will 

briefly describe Galois stratifications in terms of the more recent work on Galois 

stratifications by Denef and Loeser [DL]. This will involve a lot of the language 

of algebraic geometry for which I refer the reader to [Mum], [EH] or [Ha]. 

A morphism of schemes h: C -p A is a Galois cover if 

. C and A are reduced, irreducible and normal 

. h is étale 

• there is a finite group G(C/A), the Galois group, acting on C such that A 

is isomorphic to the quotient C/C in such a way that h is the composition 

of the quotient morphism with the isomorphism. 

If A = SpecR and C = SpecS are affine then h: C -* A is a Galois cover if, and 

only if, the corresponding extension of the quotient fields of R and S is Galois 

and in this case G(CIA) is just the Galois group of the quotient field extension. 

For a variety X we define a Galois stratification to be 

A= (X,h: C2  - A, Con (Ai): i el) 

such that the set I is finite, the A's form a partition of X and, for each i, 

the map h 2  is a Galois cover and Con(A 2 ) is a conjugacy class of subgroups of 

G(C2 /A 2 ). 

Let us now consider a variety X over Spec Z. For each prime (p) we will 

denote the fibre of X at (p) by X. We will define the Artin symbol Ar m  (a) first 

for characteristic p and then for characteristic 0. Let M be a field of characteristic 

p and let X have the Galois stratification A. Let a be an M-rational point of 

X and let a E A 2,. Define ATM (a) to be the conjugacy class of subgroups of 

G(C2 /A 2 ) consisting of the decomposition subgroups at a. Now let M be a field 

of characteristic 0 and let a be an M-rational point of X. Let A 2  be the stratum 

such that a e A 2  and define as before Ar m  (a) to be the decomposition subgroups 

of G(C2 /A 2 ) at a. We will write Ar m (a) C Con(A) for Ar m (a) C Con(A 2 ). 

Let A = 	h2  : C2  -+ A, Con(A 2 ) : i E I) be a Galois stratification of 
m+fl A Galois formula 0(y) is an expression of the form 

Q 1 x 1 .. . QmxmAr(x, y) C Con(A) 

where Q2 is either V or El, x = (x 1 ,. . . , Xm) and y = (yi,. . . , y). We will write 

M = 8(b) if 

Q 1 x 1  . .. Qrnxm ArM(x, b) C Con(A) 

50 



where the quantifiers Qi, . . . , Qm range over M. 

From [DL] and [FJ] we have the following theorems: 

Theorem 5.1. For each formula ço(y) of £, there exists a Galois formula 0(y ) 

such that for each field M and a = (ai ,. . . , a) E Mnwe have 

MI=co(a) 	M=0(a) 

Theorem 5.2. Let A be a Galois stratification of ATh and let 9(y) be the 

Galois formula 

Q 1 x 1  . . . Qm xmAr(x,y) C Con(A). 

Then there exists a k E Z and a Galois stratification B of A []  such that for Zl 

every pseudo-finite field M, with char(M) t k and a E Mn' we have 

M = 0(a) 	AT M (a) C Con(B). 

Thus Galois formulas are an extension of the language of fields and for 

pseudo-finite fields there is quantifier elimination in Galois formulas. 

Let us now return to n-types. Thus let T e S(Psf). It is easy to see that 

we may define a prime ideal IT  of Z[x i ,. . . , x] by taking 

f(x)EIT 	(f(x)=0)ET. 

This ideal will define an irreducible and reduced subscheme of A n  . By nor-

malising, we can get a normal, irreducible and reduced subscheme of A. The 

quantifier elimination for Galois formulas suggests that we should consider con-

jugacy classes of subgroups of the Galois groups of Galois covers of the normal 

subscheme. By taking a projective limit, we will obtain a conjugacy class of sub-

groups of the absolute Galois group of the fraction field of the ring corresponding 

to the scheme. Thus to each n-type we may attach a normal, irreducible and 

reduced subscheme of An and a conjugacy class of subgroups of the absolute 

Galois group of the function field. 

Consider the procedure above in the 0-type case (i.e. the case of complete 

theories). Recall that A 0  is just the prime ideals of Z. So, the prime ideal 

attached to a given theory will be (p) where p is the characteristic of the theory. 

Thus as in Chapter 3 we will be associating a theory of Psf to its characteristic 

and a conjugacy class of subgroups of the absolute Galois group of the prime 

field. 

There is another way of thinking of type spaces. Take the language L and 

extend it by the constant symbols c1 , . . . , c. Call this new language L. It can 
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be seen that the space of complete theories in C zF  is the same as the space of 

ri-types in L. Thus to extend the results of Chapter 4 and to code the whole type 

space it is natural to think in terms of a Galois object associated with Q(X) or 

Q[i']. For Q(X), the most obvious choice of Galois object is the absolute Galois 

group and for Q[X], it is the étale fundamental group. (The étale fundamental 

group of a variety is a projective limit of automorphism groups of Galois covers 

of the variety, see [Mur] or [Mu].) 

We will also need a way of identifying varieties with our Galois object. Recall 

that in Chapter 4 we associated the characteristic p theories with subgroups of 

the absolute Galois group of a copy of the algebraic p-adics. In the case of types, 

as we saw above, it is not just the characteristic that is defined by the quantifier 

free formulas, it is a variety. Thus, for any given variety, there needs to be a 

subset of our Galois object that relates to the Galois covers of the variety. These 

considerations suggest that the Galois object might be a sheaf-like construction 

made from varieties with their Galois covers. 

Let us now consider the type spaces of ACFA. I have spent some time working 

on extending Galois formulas to A CFA, but I have yet to find a satisfactory 

solution. It is, however, known (see [CH, p2998]) that a particular n-type is 

determined by a a-ideal and the action of the automorphism on the étale covers 

of the corresponding variety. We can see that the quantifier elimination for Galois 

formulas is intimately related to Kiefe's quantifier elimination for pseudo-finite 

fields in terms of solvability predicates. Macintyre's solvability predicates are a 

generalisation of Kiefe's and so these give us an idea of the general form of a 

solution. Thus we will need to consider a variety, its conjugates, a Galois cover 

and some information relating to a. 

To conclude, here are the problems that have been formulated in the discus-

sion above and which I hope will form the basis of future work: 

Problem 1 What are the Galois objects for encoding the type spaces of Psf 

and AGFA? 

Problem 2 What is the analogue of Galois stratifications for A CFA? 
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