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Abstract. By using finite support iteration of Suslin c.c.c forcing notions we construct

several models which satisfy some ♦-like principles while other cardinal invariants are

larger than ω1.

§1. Introduction. This work is about parametrized diamond principles, a
broad framework of♦-like principles introduced by Moore, Hrušák and Džamonja
in [7] to analyze systematically ♦ and its consequences.

For our purpose call a triple (A,B,E) a Borel invariant if
1. |A| , |B| ≤ c,
2. E ⊂ A×B,
3. for each a ∈ A there exists b ∈ B such that (a, b) ∈ E,
4. for each b ∈ B there exists a ∈ A such that (a, b) 6∈ E and,
5. A,B and E are Borel sets in some Polish space.

If a triple (A,B,E) is a Borel invariant, then its evaluation 〈A,B,E〉 is given by

〈A,B,E〉 = min{|X| : X ⊂ B and ∀a ∈ A∃b ∈ X (aEb)}.
We call F : 2<ω1 → A a Borel function if F ¹ 2α is a Borel function for α < ω1.
Then ♦(A,B,E) is the following statement:
♦(A,B,E) For all Borel F : 2<ω1 → A there exists g : ω1 → B such that for

every f : ω1 → 2 the set {α ∈ ω1 : F (f ¹ α)Eg(α)} is stationary.
The witness g for given F in this statement is called ♦(A,B,E)-sequence for

F .
Note. When we deal with a Borel invariant whose evaluation is a well-known

cardinal invariant, we will use the cardinal invariant to denote the Borel invariant
(e.g., we will use ♦(add(N )) to denote ♦(N ,N , 6⊃)).

In [7] Moore, Hrušák and Džamonja introduced several methods for construct-
ing parametrized diamond principles.

Theorem 1.1. [7] Let C(ω1) and B(ω1) be the Cohen and random forcing
corresponding to the product space 2ω1 . Then V C(ω1) |= “♦(non(M))” and
V B(ω1) |= “♦(non(N ))”.

In [6] by using ω1-stage finite support iteration several models which satisfy
CH and some♦(A,B,E) while others fail are constructed. For countable support
iteration, there is a general theorem to construct ♦(A,B,E).

Theorem 1.2. [7] Suppose that 〈Qα : α < ω2〉 is a sequence of Borel partial
orders such that for each α < ω2 Qα is equivalent to ℘(2)+ × Qα as a forcing
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notion and let Pω2 be the countable support iteration of this sequence. If Pω2 is
proper and (A,B,E) is a Borel invariant then Pω2 forces 〈A,B,E〉 ≤ ω1 iff Pω2

forces ♦(A,B,E).

This result is best possible because the following proposition holds.

Proposition 1.3. Let (A,B,E) be a Borel invariant. If ♦(A,B,E) holds,
then 〈A,B,E〉 ≤ ω1.

In this paper we shall prove the consistency of ♦(x) + y = ω2 for several pairs
(x, y) of cardinal invariants of the continuum. As mentioned above (Theorem1.2)
this has been achieved before by Moore, Hrušák and Džamonja in [7]. They used
countable support iteration to show ♦(x) + y = ω2.

Our approach is completely different from theirs. We shall use finite support
iteration of Suslin c.c.c forcing notions to prove the consistency of ♦(x)+y = ω2.
In addition, our results are more general. We can obtain the consistency of
♦(x) + y = κ, not just of ♦(x) + y = ω2.

Along the way, new preservation results for finite support iteration are estab-
lished. These are interesting in their own right.

The present paper is organized as follows. In section 2, we will show some
properties of Suslin c.c.c forcing. Section 3 is devoted to prove preservation
results for finite support iteration of some Suslin c.c.c forcing notions.

In section 4, we shall present several models satisfying parametrized diamond
principles by using ω2-stage finite support iteration of Suslin c.c.c forcing notions.

§2. Suslin c.c.c forcing and complete embedding. In this section we
will study some properties of a family of c.c.c forcing notions which have a nice
definition.

Definition 2.1. [1, p.168] A forcing notion P = 〈P,≤P〉 has a Suslin defini-
tion if P ⊂ ωω, ≤P⊂ ωω × ωω and ⊥P⊂ ωω × ωω are Σ1

1.
P is Suslin c.c.c if P is c.c.c and has a Suslin definition.

Definition 2.2. [1, p.168] Let M |= ZFC∗. A Suslin c.c.c forcing P is in M
if all the parameters used in the definitions of P, ≤P and ⊥P are in M .

We will interpret a Suslin c.c.c forcing notion in forcing extensions by using
its code rather than by taking the ground model forcing notion.

Definition 2.3. Let A and B be forcing notions. Then i : A→ B is a complete
embedding if
(1) whenever a, a′ ∈ A and a ≤ a′, then i(a) ≤ i(a′),
(2) for all a1, a2 ∈ A, a1 ⊥ a2 if and only if i(a1) ⊥ i(a2) and
(3) whenever A is a maximal antichain in A, then i[A] is a maximal antichain

in B.

If there is a complete embedding from A to B, then we write Al B.

Lemma 2.4. Assume A l B and P is a Suslin c.c.c forcing notion. Then
A ∗ Ṗl B ∗ Ṗ where Ṗ are names for interpretations of the code for the Suslin
c.c.c forcing notion in each model.
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Proof. Let i : A → B be a complete embedding. Define î : A ∗ Ṗ → B ∗ Ṗ
by î(〈a, ẋ〉) = 〈i(a), i∗(ẋ)〉 where i∗ is the class map from A-names to B-names
induced by i (see [4, p.222]). We will show if A ⊂ A ∗ Ṗ is a maximal antichain,
then î[A] is also a maximal antichain.

Let A = {〈aα, ṗα〉 : α < κ} be a maximal antichain of A∗ Ṗ . It is clear î[A] is
an antichain. Assume there exists 〈b, ṗ〉 ∈ B ∗ Ṗ such that 〈b, ṗ〉 is incompatible
with î(〈aα, ṗα〉) for all α < κ. Let G be a (B, V )-generic such that b ∈ G and let
H = i−1[G]. Let A′ = {ṗα[H] : i(aα) ∈ G} ∈ V [H].

Claim 2.4.1. V [H] |= “A′ is a maximal antichain”.

Proof of claim. Firstly we shall show A′ is an antichain. Suppose ṗα[H],
ṗβ [H] ∈ A′. Since aα, aβ ∈ H, aα is compatible with aβ . Since 〈aα, ṗα〉
is incompatible with 〈aβ , ṗβ〉, for all r ≤ aα, aβ there exists s ≤ r such that
s ° “ṗα is incompatible with ṗβ”. So ṗα[H] is incompatible with ṗβ [H]. Hence
A′ is an antichain.

Next we shall show maximality of A′. Assume to the contrary that there
exists q ∈ P such that q is incompatible with ṗα[H] for any ṗα[H] ∈ A′. So
there exist a ∈ H and an A-name q̇ such that q̇[H] = q and a ° “∀α < κ(aα ∈
Ḣ → q̇ is incompatible with ṗα)”. Hence 〈a, q̇〉 is incompatible with 〈aα, ṗα〉 for
α < κ. However, this contradicts the maximality of A.

a
Since V [H] |= “A′ is a maximal antichain in P” and the statement “A′ is a

maximal antichain in P” is a Π1
1 statement with parameter A′, P, ≤P and ⊥P ,

V [G] |= “A′ is a maximal antichain in P” by Π1
1-absoluteness. However, this

is a contradiction to the fact V [G] |= “ṗ[G] is incompatible with i∗(ṗα)[G]” for
i(aα) ∈ G.

a
Theorem 2.5. Let 〈Qα : α < κ〉 be a sequence of Suslin c.c.c forcing notions.

Let Pκ be the limit of the finite support iteration of 〈Pα, Q̇α : α < κ〉. Then AlB
implies A ∗ Ṗκ l B ∗ Ṗκ

Proof. By induction on κ. The limit stage is clear. The successor stage
follows from the above lemma.

a
Corollary 2.6. Let 〈Qα : α < κ〉 be a sequence of Suslin c.c.c forcing

notions. Let I ⊂ κ. Then PI l Pκ where PI is the limit of the iteration of

〈Pα
I , Ṙα : α < κ〉 where °Pα

I
Ṙα =

{
Q̇α α ∈ I
{1} otherwise.

§3. Preservation results. In this section we shall show some preservation
results for finite support iteration of Suslin c.c.c forcing notions. We deal with
well-known Suslin forcing notions.

Definition 3.1. (1) The Hechler forcing notion is defined as follows:

〈s, f〉 ∈ D if s ∈ ω<ω, f ∈ ωω and s ⊂ f.
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It is ordered by

〈s, f〉 ≤ 〈t, g〉 if s ⊃ t and g ≤ f.

(2) The eventually different forcing notion is defined as follows:

〈s,H〉 ∈ E if s ∈ ω<ω and H ∈ [ωω]<ω.

It is ordered by 〈s,H〉 ≤ 〈t, G〉 if s ⊃ t, H ⊃ G and

for all g ∈ G for all j ∈ [|t| , |s|) s(j) 6= g(j).

(3) Let Borel(2ω) be the smallest σ-algebra containing all open subsets of 2ω.
Let µ be the standard product measure on 2ω and let N = {A ∈ Borel(2ω) :
µ(A) = 0}. For A,B ∈ Borel(2ω) let A ∼=N B if A4B ∈ N . Let [A]N
be the equivalence class of the set A with respect to the equivalence relation
∼=N .

Define the random forcing notion by

B = {[A]N : A ∈ Borel(2ω)}.
It is ordered by [A]N ≤ [B]N if A \B ∈ N .

Notice that D, E and B are Suslin c.c.c.
The proof of the following result is similar to the argument showing that finite

support iteration of Hechler forcings preserves cov(N ).

Theorem 3.2. Let Π = 〈In : n ∈ ω〉 be a partition of ω into finite in-
tervals In with |In| = n + 1 for n ∈ ω. Suppose γ is an ordinal and P is
a forcing notion which has a P-name ċ such that for all x ∈ 2ω ∩ V , °P
“ ∃∞n (x ¹ In = ċ ¹ In)”. Let ẋ be a Dγ-name such that °Dγ “ ẋ ∈ 2ω”. Then
°P∗Ḋγ

“ ∃∞n (ċ ¹ In = ẋ ¹ In)”.
More precisely we should write °P∗Ḋγ

“ ∃∞n (ċ ¹ In = i∗(ẋ) ¹ In)” where i∗
is the canonical map from Dγ-names to P ∗ Ḋγ-names induced by the complete
embedding i : Dγ → P ∗ Ḋγ .

Proof. We proceed by induction on γ.
First step
Let ẋ be a D-name such that °D “ ẋ ∈ 2ω”. Let ċ be a P-name such that
°P “ ∃∞n ∈ ω (ċ ¹ In = x ¹ In) ” for all x ∈ V ∩ 2ω. Let (p0, q̇0) ∈ P ∗ Ḋ and
m ∈ ω.

It suffices to show there exist (p1, q̇1) ≤P∗Ḋ (p0, q̇0) and n ≥ m such that
(p1, q̇1) °P∗Ḋ “ ẋ ¹ In = ċ ¹ In”.

Without loss of generality we can assume p0 °P “ q̇0 = 〈š, ġ〉” for some s ∈
ω<ω.

Claim 3.2.1. Let ẋ be a D-name such that °D “ ẋ ∈ 2ω”. Then for each
s ∈ ω<ω, there exists xs ∈ ωω ∩ V such that

∀j ∈ ω∀f ∈ ωω (f ⊃ s→ ¬〈s, f〉 °D “ ẋ ¹ Ij 6= xs ¹ Ij) .
Proof of Claim. It suffices to show that for each s ∈ ω<ω and j ∈ ω, there

exists σ ∈ 2Ij such that for each f ∈ ωω with s ⊂ f , ¬〈s, f〉 °D “ ẋ ¹ Ij 6= σ”.
Assume to the contrary that there exist s ∈ ω<ω and j ∈ ω such that for all

σ ∈ 2Ij , there exists fσ ∈ ωω with s ⊂ fσ such that 〈s, fσ〉 °D “ ẋ ¹ Ij 6= σ”. Let
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f ∈ ωω such that s ⊂ f and fσ ≤ f . Then 〈s, f〉 ≤ 〈s, fσ〉 for σ ∈ 2Ij . Therefore
〈s, f〉 °D “ ẋ ¹ Ij 6∈ 2Ij ”. This is a contradiction.

a
Let xs ∈ V ∩ 2ω such that

∀j ∈ ω∀g′ ∈ ωω (g′ ⊃ s→ ¬〈s, g′〉 °D “ ẋ ¹ Ij 6= xs ¹ Ij”) .

Let r ≤ p0 such that r °P “ xs ¹ In = ċ ¹ In” for some n ≥ m. Then fix
〈rk : k ∈ ω〉 a decreasing sequence in P and g∗ ∈ 2ω ∩ V such that r0 ≤P r and
rk °P “ ġ ¹ (|s|+ k) = g∗ ¹ (|s|+ k)”.

By definition of xs there is 〈t, h〉 ≤D 〈s, g∗〉 such that 〈t, h〉 °D “ xs ¹ In =
ẋ ¹ In”. Since 〈t, h〉 ≤D 〈s, g∗〉, g∗(l) ≤ t(l) for l ∈ [|s| , |t|). Since r|t| °P
“ ∀i ∈ |t| (ġ(i) = g∗(i) ≤ t(i))”, r|t| °P “ 〈t, h〉 is compatible with 〈s, ġ〉”. Put
p1 = r|t| and choose a P-name q̇1 so that p1 °P “ q̇1 ∈ D and q̇1 ≤D 〈s, ġ〉, 〈t, h〉”.
Then (p1, q̇1) ≤P∗Ḋ (p0, q̇0) and p1 °P “ xs ¹ In = ċ ¹ In” by p1 ≤P r and
p1 °P “ q̇1 °D xs ¹ In = ẋ ¹ In” by p1 °P “ q̇1 ≤D 〈t, h〉”. Therefore (p1, q̇1) °P∗Ḋ
“ ẋ ¹ In = xs ¹ In = ċ ¹ In”.
Successor step:
Suppose the lemma holds for γ. Let ẋ be a Dγ+1-name such that °Dγ+1 “ ẋ ∈
2ω”. Let (p0, q̇0) ∈ P ∗ Ḋγ+1 and m ∈ ω. Without loss of generality we can
assume (p0, q̇0 ¹ γ) °P∗Ḋγ

“ q̇0(γ) = 〈š, ġ〉” for some s ∈ ω<ω.
Let ẋs be a Dγ-name such that

°Dγ “ ∀j ∈ ω∀ġ′ ∈ ω̇ω (ġ′ ⊃ š→ ¬〈š, ġ′〉 °D “ ẋs ¹ Ij 6= ẋ ¹ Ij”) ”.

By induction hypothesis there are (p′, q̇′) ∈ P ∗ Ḋγ and n ≥ m such that
(p′, q̇′) ≤P∗Ḋγ

(p0, q̇0 ¹ γ) and (p′, q̇′) °P∗Ḋγ
“ ẋs ¹ In = ċ ¹ In”.

Since Dγ lP∗ Ḋγ , there is a Dγ-name Q̇ for a partial order such that P∗ Ḋγ
∼=

Dγ ∗ Q̇. Let q∗ be the projection of (p′, q̇′) to Dγ .
Define Dγ-names ġ∗ and 〈ṙk : k ∈ ω〉 such that

(i) °Dγ “ ġ∗ ∈ ωω and ṙk ∈ Q̇ ” for k ∈ ω,
(ii) (q∗, ṙ0) ≤ (p′, q̇′),
(iii) °Dγ “ ṙk+1 ≤Q̇ ṙk” for k ∈ ω and
(vi) °Dγ “ṙk °Q̇ “ ġ(k) = ġ∗(k)” ”.

Let q∗1 ≤Dγ q∗, t ∈ ω<ω and let ḣ be a Dγ-name such that °Dγ “ ḣ ∈ ωω”
and q∗1 °Dγ “〈ť, ḣ〉 ≤D 〈s, ġ∗〉 and 〈ť, ḣ〉 °D “ ẋ ¹ In = ẋs ¹ In””. Since

(q∗1 , ṙ|t|) °Dγ∗Q̇ “ ∀i ∈ |t|
(
ġ(i) = ġ∗(i) ≤ ḣ(i)

)
”, (q∗1 , ṙ|t|) °Dγ∗Q̇ “ 〈t, ḣ〉 is com-

patible with 〈s, ġ〉”.
Choose (p1, q̇1) ∈ P ∗ Ḋγ+1 so that (p1, q̇1 ¹ γ) = (q∗1 , ṙ|t|) and (p1, q̇1 ¹ γ) =

(q∗, ṙ|t|) °Dγ∗Q̇ “ q̇1(γ) ∈ D and q̇1(γ) ≤D 〈t, ḣ〉, 〈s, ġ〉”. Then (p1, q̇1 ¹ γ) °P∗Ḋγ

“ ċ ¹ In = ẋs ¹ In” and q̇1(γ) °Ḋ “ ẋs ¹ In = ẋ ¹ In”. Therefore (p1, q̇1) °P∗Ḋγ+1

“ ċ ¹ In = ẋ ¹ In”.
Limit step:
Suppose γ is a limit ordinal and for β < γ the lemma holds. Without loss of
generality we can assume the cofinality of γ is ω. Let 〈γi : i ∈ ω〉 be a strictly
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increasing sequence converging to γ. Let (p0, q̇0) ∈ P ∗ Ḋγ , m ∈ ω and ẋ be a
Dγ-name such that °Dγ “ ẋ ∈ 2ω ”. Suppose (p0, q̇0) ∈ P ∗ Ḋγj .

In V Dγj let 〈rk : k ∈ ω〉 be a decreasing sequence in D[γj ,γ) such that rk °D[γj,γ)

“ẋ ¹ Ik = xj ¹ Ik” where xj ∈ 2ω ∩ V Dγj .
Back in V let ṙk and ẋj be Dγj

-names such that °Dγj
“〈ṙk : k ∈ ω〉 and ẋj

satisfies the above”.
By induction hypothesis there exist 〈p′, q̇′〉 ≤P∗Ḋγj

〈p0, q̇0〉 and n ≥ m such

that (p′, q̇′) °P∗Ḋγj
“ ċ ¹ In = ẋj ¹ In”. Put p1 = p′ and °P “ q̇1 = q̇′aṙn”

Then 〈p1, q̇1〉 °P∗Ḋγ
“ ċ ¹ In = ẋj ¹ In = ẋ ¹ In”.

a
The proof of the following result is similar to the argument showing that finite
support iteration of eventually different forcings preserves unbounded families.

Theorem 3.3. Suppose γ is an ordinal and P is a forcing notion which has a
P-name ċ such that °P “∃∞n (x(n) < ċ(n))” for x ∈ ωω∩V . Let ẋ be a Eγ-name
such that °Eγ “ ẋ ∈ ωω”. Then °P∗Ėγ

“ ∃∞n (ẋ(n) < ċ(n))”.

Proof. We proceed by induction on γ. We shall only prove the successor
step. The rest of the proof is similar to the proof of Theorem 3.2.
Successor step:
Suppose the lemma holds for γ. Let ẋ be a Eγ+1-name such that °Eγ+1 “ ẋ ∈
ωω”. Let (p0, q̇0) ∈ P ∗ Ėγ+1 and m ∈ ω. Without loss of generality we can
assume (p0, q̇0 ¹ γ) °P∗Ėγ

“q̇0(γ) = 〈s, Ḟ 〉 and Ḟ = {ḟj : j < l}” for some l ∈ ω

and s ∈ ω<ω.

Claim 3.3.1. [1, p367] Let ẋ be a E-name such that °E “ ẋ ∈ ωω”. For each
s ∈ ωω, l ∈ ω and i ∈ ω, put

xs,l(i) = min{j ∈ ω : ∀H ⊂ ωω with |H| = l (¬〈s,H〉 °E “ ẋ(i) > j”)}.
Then xs,l ∈ ωω.

Proof of Claim. Fix s ∈ ω<ω, l ∈ ω and i ∈ ω. For t ∈ ω with s ⊂ t put

At = {H ∈ (ωω)l : ∀f ∈ H∀k ∈ [|s| , |t|) (f(k) 6= t(k))}.
Then (ωω)l =

⋃{At : t ∈ ω<ω ∧ s ⊂ t ∧ ∃G ∈ [ωω]<ω (〈t, G〉 decides ẋ(i))}.
We assume ω is equipped with the cofinite topology and (ωω)l is equipped

with the product topology. Since ω is compact in the topology, (ωω)l is also
compact by Tychonoff’s theorem.

Since {At : t ∈ ω<ω ∧ s ⊂ t ∧ ∃G ∈ [ωω]<ω (〈t, G〉 decides ẋ(i))} is an open
covering of (ωω)l, there exist finitely many t0, t1, . . . tn−1 such that (ωω)k =
At0 ∪At1 ∪ . . . ∪Atn−1 .

Pick G0, G1, . . . , Gn ∈ (ωω)k and j0, j1, . . . , jn ∈ ω so that 〈tm, Gm〉 °E
“ ẋ(i) = jm” for m < n. Put xs,l(i) = max{jm : m < n}. Then xs,l(i) is as
desired:

For each 〈s,H〉 with H ∈ (ωω)l, there is tm with m < n such that H ∈ Atm .
Since H ∈ Atm , 〈tm, Gm ∪H〉 ≤ 〈tm, Gm〉, 〈s,H〉 and 〈tm, Gm ∪H〉 °E “ ẋ(i) =
jm ≤ xs,l(i)”. Therefore ¬〈s,H〉 °E “ ẋ(i) > xs,l(i)”.

a
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Apply this claim in V Eγ for ẋ and put ẋs,l a Eγ-name such that

°Eγ
“ ẋs,l(i) = min{j : ∀Ḣ ⊂ ωω with ˙|H| = l

(
¬〈s, Ḣ〉 ° ẋ(i) > j

)
}”.

By induction hypothesis there are (p′, q̇′) ∈ P ∗ Ėγ and n ≥ m such that
(p′, q̇′) ≤P∗Ėγ

(p0, q̇0 ¹ γ) and (p′, q̇′) °P∗Ėγ
“ ċ(n) > ẋs,l(n)”. Since Eγ l P ∗ Ėγ ,

there is a Eγ-name Q̇ for a partial order such that P ∗ Ėγ
∼= Eγ ∗ Q̇. Let q∗ be a

projection of (p′, q̇′) to Eγ . Find Eγ-names 〈ṙk : k ∈ ω〉 and Ḟ ∗ such that

(i) °Eγ
“ Ḟ ∗ = {ḟ∗j : j < l} ⊂ ωω and ṙk ∈ Q̇” for k ∈ ω,

(ii) (q∗, ṙ0) ≤ (p′, q̇′),
(iii) °Eγ

“ ṙk+1 ≤Q̇ ṙk” for k ∈ ω and,

(iv) (q∗, ṙk) °Eγ∗Q̇ “ ∀j < l
(
ḟ∗j (k) = ḟj(k)

)
” for k ∈ ω.

Then there are q∗1 ≤Eγ
q∗, t ∈ ω<ω and a Eγ-name Ġ such that q∗1 °Eγ

“〈t, Ġ〉 ≤E
〈s, Ḟ ∗〉 and 〈t, Ġ〉 °Ė “ ẋ(n) ≤ ẋs,l(n)””.

Since (q∗, ṙ|t|) °Eγ∗Q̇ “∀j < l ∀k < |t|
(
ḟj(k) = ḟ∗j (k)

)
” and q∗1 °Eγ

“ ∀j <
n∀k ∈ [|s| , |t|)

(
ḟ∗j (k) 6= t(k)

)
”, (q∗1 , ṙ|t|) °Eγ∗Q̇ “〈t, Ġ〉 is compatible with 〈s, Ḟ 〉”.

Choose (p1, q̇1) ∈ P∗ Ėγ+1 so that (p1, q̇1 ¹ γ) = (q∗1 , ṙ|t|) and (p1, q̇1 ¹ γ) °P∗Ėγ

“ q̇1(γ) ≤E 〈s, Ḟ 〉, 〈t, Ġ〉”. Then (p1, q̇1 ¹ γ) °P∗Ėγ
“ ẋs,l(n) < ċ(n) and q̇1(γ) °Ė

“ ẋ(n) ≤ ẋs,l(n)””. Therefore (p1, q̇1) °P∗Ėγ+1
“ ẋ(n) < ċ(n)”.

a
The proof of the following result is similar to the argument showing that finite
support iteration of random forcings preserves unbounded families.

Theorem 3.4. Suppose γ is an ordinal and P is a forcing notion which has
a P-name ċ such that °P “ ∃∞n (x(n) < ċ(n))” for x ∈ ωω ∩ V . Let ẋ be a
Bγ-name such that ° “ ẋ ∈ ωω”. Then °P∗Ḃγ

“ ∃∞n (ẋ(n) < ċ(n))”.

Proof. We proceed by induction on γ. We shall prove only the successor
step.
Successor step:
Suppose the lemma holds for γ. Let µ be a measure on B. Let ẋ be a Bγ+1-name
such that °Bγ+1 “ ẋ ∈ ωω”.

Claim 3.4.1. Let ṁ be a B-name such that °B “ ṁ ∈ ω”. Then for each n,
there exists l ∈ ω such that µ([[ṁ ≤ ľ]]) ≥ 1− 1

n .

Apply this claim in V Bγ for ẋ(n) for n < ω and choose ẋ∗ a Bγ-name such
that

°Bγ µ([[ẋ(k) ≤ ẋ∗(k)]]Ḃ) ≥ 1− 1
2k
.

Let (p0, q̇0) ∈ P ∗ Ḃγ+1 and m ∈ ω. Without loss of generality we can assume

(p0, q̇0 ¹ γ) °P∗Ḃγ
“ µ(q̇0(γ)) ≥ 1

2l
” for some l ∈ ω. By induction hypothesis

there are (p′, q̇′) ∈ P ∗ Ḃγ and n ≥ m, l such that (p′, q̇′) ≤P∗Ḃγ
(p, q̇ ¹ γ) and

(p′, q̇′) °P∗Ḃγ
“ ẋ∗(n) < ċ(n)”. Put (p1, q̇1) ∈ P ∗ Ḃγ+1 so that (p1, q̇1 ¹ γ) =
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(p′, q̇′) and (p1, q̇1 ¹ γ) °P∗Ḃγ
“ q̇1(γ) ≤B q̇0(γ) and q̇1(γ) ≤ [[ẋ(n) ≤ ẋ∗(n)]]B”.

Then (p1, q̇1 ¹ γ) °P∗Ḃγ
“ẋ∗(n) < ċ(n) and q̇1(γ) °B ẋ(n) ≤ ẋ∗(n)””. Therefore

(p1, q̇1) °P∗Ḃγ+1
“ ẋ(n) ≤ ẋ∗(n) < ċ(n)”.

a
We shall show a preservation theorem for finite support iteration of complete
Boolean algebras with a strictly positive finitely additive measure, where we say
that a Boolean algebra B has a strictly positive finitely additive measure µ if µ
is a function from B to [0, 1] such that

1. µ(0B) = 0,
2. µ(1B) = 1,
3. for every finite pairwise disjoint subset {ai : i ∈ I} of B,

µ(
∨

i∈I

ai) =
∑

i∈I

µ(ai) and

4. a 6= 0B implies µ(a) > 0.
Note that if a Boolean algebra has a strictly positive finitely additive measure,
then the Boolean algebra is c.c.c.

Let LOC = {φ : φ : ω → ω<ω and ∃k ∈ ω∀n ∈ ω
(|φ(n)| ≤ nk

)}. Define
φ 6A x if ∃∞n (φ(n) 63 x(n)) for φ ∈ LOC and x ∈ ωω.

Theorem 3.5. Suppose γ is an ordinal and P is a forcing notion which has
a P-name ċ such that °P “ ∃∞n (φ(n) 63 ċ(n))” for φ ∈ LOC ∩ V . Let Bγ be a
γ-stage finite support iteration of complete Boolean algebras with strictly positive
finitely additive measure µ and which is Suslin c.c.c for each γ. Let φ̇ be a
Bγ-name such that °Bγ “ φ̇ ∈ LOC”. Then °P∗Ḃγ

“ φ̇ 6A ċ”.

Proof. We proceed by induction on γ. We shall prove only the successor
step.
Successor step:
Suppose for γ the lemma holds. Let φ̇ be a Bγ+1-name such that °Bγ+1 “ φ̇ ∈
LOC”. Let ψ̇i (i < ω), ṗi (i < ω) and k̇i (i < ω) be Bγ-names such that

• °Bγ “ ψ̇i ∈ LOC, ṗi ∈ Ḃ and k̇i ∈ ω” for i < ω,

• °Bγ “ṗi °Ḃ ∀n ∈ ω
(
φ̇(n) ≤ nk̇i

)
” and

• °Bγ “ ψ̇i(n) = {j : µ
(
[[j ∈ φ̇(n)]]Ḃ ∧ ṗi

)
≥ 1
n
· µ(ṗi)}”.

Claim 3.5.1. °Bγ

∣∣∣ψ̇i(n)
∣∣∣ ≤ nk̇i+1.

Proof of Claim. Since °Bγ “
∑

j∈ω µ([[j ∈ φ(n)]] ∧ ṗi) ≤ nk̇i · µ(ṗi)”, °Bγ

“
∣∣∣ψ̇i(n)

∣∣∣ ≤ nk̇i ·µ(ṗi)
1
n µ(ṗi)

= nk̇i+1”.
a

Let m ∈ ω and (p0, q̇0) ∈ P ∗ Ḃγ+1. Without loss of generality we can find i ∈ ω
and ni ∈ ω such that (p, q̇ ¹ γ) °P∗Ḃγ

“µ (q̇(γ) ∧ ṗi) ≥ 1
ni

”. By induction hy-

pothesis there exist (p′, q̇′) ≤P∗Ḃγ
(p, q̇ ¹ γ) and n ≥ ni,m such that (p′, q̇′) °P∗Ḃγ

“ ċ(n) 6∈ ψ̇i(n)”. Without loss of generality we can assume p′ decides ċ(n) and
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p′ °B “ċ(n) = l” for some l ∈ ω. Since (p′, q̇′) °P∗Ḃγ
“ l 6∈ ψ̇i(n)”, (p′, q̇′) °P∗Ḃγ

“ µ
(
[[l ∈ φ̇(n)]]Ḃ ∧ ṗi

)
<

1
n

”. So (p′, q̇′) °P∗Ḃγ
“ µ

(
[[l 6∈ φ̇(n)]]Ḃ ∧ ṗi ∧ q̇(γ)

)
>

0”. Put (p1, q̇1) ∈ P ∗ Ḃγ+1 so that (p1, q̇1 ¹ γ) = (p′, q̇′) and (p1, q̇1 ¹ γ) °P∗Ḃγ

“ q̇1(γ) = [[l 6∈ φ̇(n)]]Ḃ ∧ ṗi ∧ q̇(γ)”. Then (p1, q̇1) °P∗Ḃγ+1
“ ċ(n) = l 6∈ φ̇(n)”.

a

§4. Construction of Parametrized ♦ principles. We shall construct sev-
eral models by finite support iteration of Suslin c.c.c forcing notions.

If two Borel invariants (A1, B1, E1),(A2, B2, E2) are comparable in the Borel
Tukey order, then ♦(A1, B1, E1) and ♦(A2, B2, E2) satisfy some relation:

Definition 4.1. (Borel Tukey ordering [2]) Given a pair of Borel invariants
(A1, B1, E1) and (A2, B2, E2), we say that (A1, B1, E1) ≤B

T (A2, B2, E2) if there
exist Borel maps φ : A1 → A2 and ψ : B2 → B1 such that (φ(a), b) ∈ E2 implies
(a, ψ(b)) ∈ E1.

Proposition 4.2. [7] Let (A1, B1, E1) and (A2, B2, E2) be Borel invariants.
Suppose (A1, B1, E1) ≤B

T (A2, B2, E2) and♦(A2, B2, E2) holds. Then♦(A1, B1, E1)
holds.

Concerning ≤B
T , we know the following holds.

(Cichoń’s diagram)
(R,N ,∈) oo (M,R, 63) oo (M,⊂) oo (N ,⊂)

(ωω, 6≥∗) oo
²²

(ωω,≤∗)
²²

(N , 6⊃)
²²

oo (M, 6⊃)
²²

oo (R,M,∈)
²²

oo (N ,R, 63)
²²

(The direction of the arrow is from larger to smaller in the Borel Tukey order).
Hence the following holds:

♦(cov(N )) oo ♦(non(M)) oo ♦(cof(M)) oo ♦(cof(N ))

♦(b) oo
²²

♦(d)
²²

♦(add(N ))
²²

oo ♦(add(M))
²²

oo ♦(cov(M))
²²

oo ♦(non(N ))
²²

.

(The direction of the arrow is the direction of the implication).
We call this diagram “Cichoń’s diagram for parametrized diamonds”. We will

deal with Borel invariants in Cichoń’s diagram.

Theorem 4.3. Let κ be an ordinal with cf(κ) > ω1. Let Dκ be the κ-stage
finite support iteration of D. Then V Dκ |= ♦(cov(N )).
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Proof. Let Π = 〈In : n ∈ ω〉 be a partition of ω into finite intervals In
with |In| = n+ 1 for n ∈ ω. Define a relation =∞Π so that x =∞Π y if there exist
infinitely many n ∈ ω such that x ¹ In = y ¹ In. We will show V Dκ |= ♦(2ω,=∞Π ).

Let Ḟ be a Dκ-name such that °Dκ
“ Ḟ : 2<ω1 → 2ω”. Since Dκ has the

c.c.c, a real ṙα coding the Borel function Ḟ ¹ 2α appears at an intermediate
stage. By cf(κ) > ω1 we can assume Ḟ is a Dβ-name for some β < κ. Since
the cofinality of the oreder type of [β, κ) is cf(κ) > ω1 for β < κ and Dκ =
Dβ ∗ Ḋ[β,κ), we can assume Ḟ is a Borel function in the ground model. Let
F be a Borel function in the ground model. Let ċα be a Dω1 -name such that
°Dω1

“ ∃∞n (ċα ¹ In = ẋ ¹ In)” for ẋ ∈ 2ω ∩ V Dα . We can obtain such ċα. For
example let ċα be a Dω1 -name for a Cohen real over V Dα .

We shall show °Dκ
“ 〈ċα : α < ω1〉 is a ♦(2ω,=∞Π )-sequence for F”. Let ḟ be

a Dκ-name such that °Dκ “ ḟ : ω1 → 2”. Then the following claim holds:

Claim 4.3.1. Define Cḟ ⊂ ω1 by

Cḟ = {α < ω1 : ḟ ¹ α is a Dα∪[ω1,κ)-name}.
Then Cḟ contains a club.

Remark 4.3.2. More precisely we should write

Cḟ = {α < ω1 : there exists a Dα∪[ω1,κ)-name ẋα such that °Dκ “ ḟ ¹ α = i∗(ẋα)”}
where i∗ is the class function from Dα∪[ω1,κ)-names to Dκ-names induced by the
complete embedding i : Dα∪[ω1,κ) l Dκ. For convenience we will think of a Dκ-
name ẋ as DI-name if there exists a DI-name ẏ such that °Dκ “ ẋ = iI∗(ẏ)”
where iI is the complete embedding from DI to Dκ defined by Corollary 2.6.

For α ∈ Cḟ , F (ḟ ¹ α) is a Dα∪[ω1,κ)-name because ḟ ¹ α is Dα∪[ω1,κ)-name and
F ∈ V .

In V Dα , F (ḟ ¹ α) is D[ω1,κ)-name such that °D[ω1,κ) “ F (ḟ ¹ α) ∈ 2ω” and ċα is
a D[α,ω1)-name such that °D[α,ω1) “ ∃∞n ∈ ω(x ¹ In = ċα ¹ α)” for x ∈ 2ω ∩V Dα .
By Theorem 3.2, °D[α,κ) “ ∃∞n ∈ ω(F (ḟ ¹ α) ¹ In = ċα ¹ In)”.

Back in V , °Dκ “ ∃∞n ∈ ω(F (ḟ ¹ α) ¹ In = ċα ¹ In)” for α ∈ Cḟ . Since Cḟ

contains a club subset of ω1, °Dκ “ 〈ċα : α ∈ ω1〉 is a ♦(2ω,=∞Π )-sequence for
F”.

Let φ : 2ω → N be the function such that

φ(x) = {y ∈ 2ω : ∃∞n (x ¹ In = y ¹ In)}.
Then φ : 2ω → N and the identity function id : 2ω → 2ω witness (2ω,N ,∈) ≤B

T

(2ω,=∞Π ) (see [3, Theorem 5.11]). So V Dκ |= ♦(2ω,N ,∈).
a

Theorem 4.4. Let κ be an ordinal with cf(κ) > ω1. Let Eκ be the κ-stage
finite support iteration of E. Then V Eκ |= ♦(cov(N )) and ♦(b).

Proof. °Eκ “ ♦(cov(N ))” is similar to the proof of Theorem 4.3. To prove
V Eκ |= ♦(b), it suffices to show °Eκ “ there exists a ♦(ωω, ωω,∗ 6≥)-sequence for
F” for each Borel function F ∈ V .
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For each α < ω1, let ċα be a Eω1-name such that °Eω1
“ ∃∞n ∈ ω (ẋ(n) < ċα(n))”

for each Eα-name ẋ such that °Eα “ ẋ ∈ ωω”. Let F : 2<ω1 → ωω be a
Borel function in V . Let ḟ be a Eκ-name such that °Eκ

“ ḟ : ω1 → 2”. Put
Cḟ = {α < ω1 : ḟ ¹ α is a Eα∪[ω1,κ)-name}. Then Cḟ contains a club subset of
ω1.

For α ∈ Cḟ , F (ḟ ¹ α) is a Eα∪[ω1,κ)-name such that °Eα∪[ω1,κ) “ F (ḟ ¹ α) ∈
ωω”. By Theorem 3.3, α ∈ Cḟ implies °Eκ

“ ∃∞n ∈ ω(F (ḟ ¹ α)(n) < ċα(n))”.
So °Eκ

“ 〈ċα : α < ω1〉 is a ♦(ωω, ωω, 6≥∗)-sequence for F”.
a

Theorem 4.5. Let κ be an ordinal with cf(κ) > ω1. Let Bκ be the κ-stage
finite support iteration of B. Then V Bκ |= ♦(b).

Proof. It suffices to show °Bκ “ there exists a ♦(ωω, ωω,∗ 6≥)-sequence for
F” for each Borel function F ∈ V .

For α < ω1, let ċα be a Bω1 -name such that °Bω1
“∃n ∈ ω (ẋ(n) < ċα(n))” for

each Bα-name ẋ such that °Bα
“ ẋ ∈ ωω”.

Let F : 2<ω1 → ωω be a Borel function in V . Let ḟ be a Bκ-name such that
°Bκ “ ḟ : ω1 → 2”. Put Cḟ = {α < ω1 : ḟ ¹ α is a Bα∪[ω1,κ)-name}. Then Cḟ

contains a club subset of ω1.
For α ∈ Cḟ , F (ḟ ¹ α) is a Bα∪[ω1,κ)-name such that °Bα∪[ω1,κ) “ F (ḟ ¹ α) ∈

ωω”. By Theorem 3.4, α ∈ Cḟ implies °Bκ “ ∃∞n ∈ ω(F (ḟ ¹ α) < ċα(n))”. So
°Bκ “ 〈ċα : α < ω1〉 is a ♦(ωω, ωω, 6≥∗)-sequence for F”.

a
Theorem 4.6. Let κ be an ordinal with cf(κ) > ω1. Let (B ∗ Ḋ)κ be the

κ-stage finite support iteration of B ∗ Ḋ. Then V (B∗Ḋ)κ |= ♦(add(N )).

Proof. We shall show V (B∗Ḋ)κ |= ♦(LOC, ωω, 6A). Without loss of generality
we can assume B ∗ Ḋ is a complete Boolean algebra with strictly positive finitely
additive measure µ [1, p319 Lemma 6.5.18].

For α < ω1, let ċα be a (B ∗ Ḋ)ω1-name such that °(B∗Ḋ)ω1
“ φ̇ 6A ċα” for each

(B ∗ Ḋ)α-name φ̇ such that °(B∗Ḋ)α
“ φ̇ ∈ LOC”.

To prove V (B∗Ḋ)κ |= ♦(LOC, ωω, 6A), it suffices to show that for each Borel
function F : 2<ω1 → LOC ∈ V , °(B∗Ḋ)κ

“ 〈ċα : α < ω1〉 is a ♦(LOC, ωω, 6A)-
sequence for F”.

Let F : 2<ω1 → LOC be a Borel function in V . Let ḟ be a (B∗ Ḋ)κ-name such
that °(B∗Ḋ)κ

“ ḟ : ω1 → 2”. Put Cḟ = {α < ω1 : ḟ ¹ α is a (B∗Ḋ)α∪[ω1,κ)-name}.
Then Cḟ contains a club subset of ω1.

For α ∈ Cḟ , F (ḟ ¹ α) is a (B∗Ḋ)α∪[ω1,κ)-name such that °(B∗Ḋ)α∪[ω1,κ)
“ F (ḟ ¹

α) ∈ LOC”. By Theorem 3.5, α ∈ Cḟ implies °(B∗Ḋ)κ
“ F (ḟ ¹ α) 6A ċα”.

So °(B∗Ḋ)κ
“ 〈ċα : α < ω1〉 is a ♦(LOC, ωω, 6A)-sequence for F”. So we have

V (B∗Ḋ)κ |= ♦(LOC, ωω, 6A).
We shall show V (B∗Ḋ)κ |= ♦(N ,N , 6⊃). Let {Ci,j} be a family of independent

open sets with µ(Ci,j) = 1
(i+1)2 for all i, j. Let Φ : ωω → N be the function such
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that

Φ(f) =
⋃
n

⋂

i≥n

Ci,f(i).

For each B ∈ N fix a compact set KB ⊂ ωω \B with µ(KB∩U) > 0 for any open
set U with KB ∩ U 6= ∅. Let {σB

n : n ∈ ω} list all σ ∈ ω<ω with KB ∩ [σ] 6= ∅.
Put

g(B,n, i) = {j : KB ∩ [σB
n ] ∩ Ci,j = ∅}

for i, n ∈ ω. Fix k(B,n) such that

|g(B,n, i)| ≤ (i+ 1)2

2n+1

for i ≥ k(B,n). Define Ψ : N → LOC by

Ψ(B)(i) =
⋃

k(B,n)≤i

g(B,n, i).

Then Ψ and Φ witness (N ,N , 6⊃) ≤T
B (LOC, ωω, 6A) (see [1, Theorem 2.3.9]). So

V (B∗Ḋ)κ |= ♦(N ,N , 6⊃).
a

Corollary 4.7. Each of the following are relatively consistent with ZFC:
(i) c = add(M) = ω2 +♦(cov(N ))(see Diagram 1).
(ii) c = non(M) = cov(M) = ω2 +♦(b) +♦(cov(N ))(see Diagram 2).
(iii) c = cov(N ) = cov(M) = ω2 +♦(b)(see Diagram 3).
(iv) c = cov(N ) = add(M) = ω2 +♦(add(N ))(see Diagram 4).

Proof. (i) Suppose V |= CH. By Theorem 4.3 V Dω2 |= ♦(cov(N )). Since
Dω2 adds ω2-many dominating reals and Cohen reals, V Dω2 |= c = b = cov(M) =
ω2. Since add(M) = min{b, cov(M)} (see [1], [5]),

V Dω2 |= ♦(cov(N )) + c = add(M) = ω2.

Cichoń’s diagram for parametrized diamonds looks as follows where an ω2 means
the corresponding evaluation of the Borel invariant is ω2 while the parametrized
diamond principle for the others hold.

♦(cov(N )) ω2 ω2 ω2

ω2 ω2

♦(add(N )) ω2 ω2 ω2

Diagram 1 .

(ii) Suppose V |= CH. By Theorem 4.4 V Eω2 |= ♦(cov(N )) +♦(b). Since Eω2

adds ω2 many Cohen and eventually different reals, c = non(M) = cov(M) = ω2.
Hence

V Eω2 |= ♦(cov(N )) +♦(b) + c = non(M) = cov(M).
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♦(cov(N )) ω2 ω2 ω2

♦(b) ω2

♦(add(N )) ♦(add(M)) ω2 ω2

Diagram 2 .

(iii) Suppose V |= CH. By Theorem 4.5 V Bω2 |= ♦(b). Since Bω2 adds ω2

many Cohen and random reals, V Bω2 |= c = cov(N ) = cov(M) = ω2. Hence

V Bω2 |= ♦(b) + c = cov(N ) = cov(M) = ω2.

ω2 ω2 ω2 ω2

♦(b) ω2

♦(add(N )) ♦(add(M)) ω2 ω2

Diagram 3 .

(iv) Suppose V |= CH. By Theorem 4.6 V (B∗Ḋ)ω2 |= ♦(add(N )). Since (B ∗ Ḋ)ω2

adds ω2 many random, Cohen and dominating reals, c = cov(N ) = add(M) =
min{b, cov(M)} = ω2. Hence

V (B∗Ḋ)ω2 |= ♦(add(N )) + c = cov(N ) = add(M) = ω2.

ω2 ω2 ω2 ω2

ω2 ω2

♦(add(N )) ω2 ω2 ω2

Diagram 4 .

a
Hrušák asked the following question after a talk I gave at the 33rd Winter School
on Abstract Analysis -Section of Topology held in the Czech Republic (2005
January).

Question 4.8 (Hrušák). Let A be a amoeba forcing. Then V Aω2 |= ♦(s)?
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