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Abstract

We use a reverse Easton forcing iteration to obtain a universe with a definable well-
ordering, while preserving the GCH and proper classes of a variety of very large
cardinals. This is achieved by coding using the principle ♦∗

κ+ at a proper class of
cardinals κ. By choosing the cardinals at which coding occurs sufficiently sparsely,
we are able to lift the embeddings witnessing the large cardinal properties without
having to meet any non-trivial master conditions.
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1 Introduction

A major theme of set theory in recent years has been the construction of
models of ZFC which contain various large cardinals while at the same time
enjoying properties analogous to those of Gödel’s constructible universe L.
Generally this has been approached via the inner model programme, construct-
ing canonical L-like inner models for the large cardinals under consideration.
While this approach has had much success, there is a bound on the size of the
large cardinals that have thus far been accommodated by such techniques. For
this reason, Sy Friedman has proposed the outer model programme, in which
the goal is to construct L-like outer models containing large cardinals by the
method of forcing. In doing so, one may obtain new consistency results for
large cardinals beyond the scope of current inner model theory.
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One of the most striking properties of L is the fact that it bears a definable
well-order, whose definition moreover involves no parameters. This may be
expressed in terms of another well known inner model: V has a well-order
definable without parameters if and only if V = HOD, the universe of all
hereditarily ordinal definable sets (in V ). It is well known that one may force
to obtain such a model. Indeed, McAloon [12] shows how to force a model of
ZFC+GCH+V = HOD+V 6= L starting from L, or using the continuum func-
tion for coding, a model of ZFC+V = HOD while preserving all measurables.
Sy Friedman [5] shows how to obtain a model of ZFC+GCH+V = HOD while
preserving a (single, although the same argument works for boundedly many)
hyperstrong or n-superstrong cardinal, starting with techniques of Jensen to
make V = L[A] for A a subset of some sufficiently large cardinal.

In this article we improve upon these results, exhibiting a forcing construction
that yields a universe satisfying both V = HOD and the GCH, while preserving
proper classes of a variety of large cardinals. The techniques will not in general
suffice to preserve all cardinals satisfying a given large cardinal property, but
rather those satisfying a combined large cardinal and anti-large cardinal axiom
of a certain kind, such as “superstrong but not a limit of huge cardinals”. Of
course, this is sufficient to prove the relative consistency of

ZFC + GCH+ V = HOD+ ∃ a proper class of cardinals κ such that ϕ(κ)

for a variety of very strong large cardinal properties ϕ.

The idea of our forcing is essentially to add unboundedly large Cohen sets
and use the fact that every element of V [G] is ordinal definable from A, a
class predicate for the added Cohen sets. Of course, we then want to make
A itself definable in V [G]. To achieve this, we code up the choices made by
the generic in terms of whether or not some combinatorial principle holds at
various cardinals. Doing this while preserving the GCH puts a heavy constraint
on which combinatorial principles can be used for such an encoding; indeed,
the GCH itself would otherwise be an ideal principle to use as a coding oracle,
as in the work of McAloon [12]. However, the existence of ♦∗

κ-sequences also
fits the bill nicely, without disturbing the GCH.

Coming at this from the other direction, we have a property suitable to be
used as an oracle (existence of ♦∗

κ-sequences) and we want to use it to en-
code a definable well-order of the (extension) universe. Instead of using some
complicated iteration with lots of bookkeeping, we may simply “let the generic
decide” which way to force at each stage. This technique — having an iteration
at each stage of which the generic makes an initial decision that determines
the rest of the forcing poset at that stage — is not new in other contexts; see
for example Theorems 5.27 and 5.33 of [6] and Section 3 of [7].

Finally, we wish to do all this while preserving large cardinals. As usual, we
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preserve the large cardinals in question by lifting the witnessing elementary
embeddings. Often this entails selecting a generic that lies below a specific
master condition, and so in general it is problematic to simultaneously preserve
many large cardinals, as one will not in general be able to choose a single
generic meeting all of the necessary master conditions. The solution we present
is to simply avoid the problem, making all of the master conditions in question
trivial by only coding at cardinals which will not lead to non-trivial master
condition requirements. However, we may not be able to achieve this for all
large cardinals of the given kind, and this is what leads to the exceptions in
our preservation theorems.

Throughout this article we shall assume that our ground model satisfies the
GCH. It is known that that this can be forced while preserving a variety of
large cardinals; see for example [5] which specifically deals with the case of
n-superstrong cardinals.

2 The coding oracle ♦∗
κ+

Recall the following definition.

Definition 1 Let λ be a regular cardinal, and let D = 〈Dα |α < λ〉 be a
sequence such that for every α < λ, Dα ⊂ P(α) and |Dα| ≤ |α|. Then D is
said to be a ♦∗

λ-sequence if for every X ⊂ λ, {α ∈ λ |X ∩ α ∈ Dα} contains
a closed unbounded subset of λ. The statement ♦∗

λ is the statement that a
♦∗

λ-sequence exists.

There are known κ+-closed, κ++-cc partial orders for forcing ♦∗
κ+ to hold or

fail while preserving the GCH, for each infinite cardinal κ. Indeed, in the κ = ω
case, the two directions are given as exercises in [11] (VII H.18–20 for forcing
♦∗

ω1
to hold, VIII J.3 for forcing it to fail). For completeness we outline the

details (for the general case) here.

To force ♦∗
κ to hold there are at least two options. Cummings, Foreman and

Magidor [3] present one possibility, with an iteration in which the first iterand
yields the eventual ♦∗

κ+-sequence and the later iterands shoot clubs through
κ+ to witness that the sequence is indeed a ♦∗

κ+-sequence.

For the more L-inclined, one can follow the lead of [11], using a simpler forcing
but a much more involved verification that it yields a ♦∗

κ+-sequence. We use
the following lemma.

Lemma 2 Let κ+ be a successor cardinal. If there is a κ+-tree T which is a
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subtree of <κ+
2, and an h ∈ κ+

2 such that

∀f ∈ κ+

2 ∃g ∈ κ+

2(f ∈ L({g, h}) ∧ g is the union of a cofinal branch in T )

then ♦+
κ+ holds.

Note that the conclusion here is the principle ♦+
κ+ , which is stronger than

♦∗
κ+ . Indeed, we could code using ♦+

κ+ rather than ♦∗
κ+ , but have elected to

use ♦∗
κ+ for simplicity. The proof of Lemma 2 is similar to the proof of ♦+

κ+ in
L; see [11] Exercise VI.9 for an outline or [1] Section 4.1.1 for the full details.

With Lemma 2 at our disposal we may now simply force a Kurepa tree T to
exist and observe that it will satisfy the conditions of the lemma. We can do
this with the following forcing, which is perhaps slightly simpler than that
presented (in the ω1 case) in [11].

Definition 3 For any cardinal κ, let Pκ+ denote the partial order whose
elements are pairs 〈X,α〉, where X ⊂ κ+

2, α < κ+, and |X| ≤ κ. For
〈X,α〉, 〈Y, β〉 ∈ Pκ+, say that 〈Y, β〉 ≤ 〈X,α〉 if and only if Y ⊇ X, β ≥ α,
and for all f ∈ Y there is a g ∈ X such that f ↾α = g ↾α.

The condition 〈X,α〉 can be thought of as determining that the initial segment
up to level α of the ultimate κ+-Kurepa tree T will consist of the α-initial
segments of the elements of X , and further, forcing that every element of X
will be the union of a cofinal branch of T . Clearly Pκ is κ+-closed, has the
κ++-cc, and has cardinality κ++, so cardinals and the GCH are preserved. To
verify that the conditions of Lemma 2 hold for T in the generic extension V [G]
by Pκ, we take h ∈ (κ

+
2)V [G] encoding T itself and every element of P(κ)V [G].

Every ground model function from κ to 2 appears as a cofinal branch of T up
to bounded differences, every extension model function from κ to 2 has a nice
name that can be encoded by a ground model function from κ to 2, and T
determines the entire generic G, so indeed every f ∈ (κ

+
2)V [G] lies in L({g, h})

for some branch g of T , as required.

Making ♦∗
κ+ fail will simply be a matter of adding κ++-many Cohen subsets of

κ+ and observing that ♦∗
κ+ will not hold in the extension. We use the common

notation Add(λ, µ) for the partial order with partial functions from λ× µ to
2 of cardinality less than λ as conditions; thus, our forcing to make ♦∗

κ+ fail
will be Add(κ+, κ++). The arguments in this subsection actually work for any
uncountable regular cardinal λ, so we present them at this level of generality,
although for later sections we will only need the case when λ = κ+ for some
κ.

The partial order Add(λ, λ+) is of course λ-closed, λ+-cc, and has cardinality
λ+, so it preserves cardinals and the GCH. The verification that it destroys ♦∗

λ

is presented in [4] for the case when λ = ω1, but with appropriate modifications
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the argument can be lifted to work for any regular uncountable λ. We present
this modified argument here.

To avoid the temptation to abuse notation, we make a definition to recast
♦∗

λ-sequences in terms of characteristic functions, giving notationally more
convenient objects.

Definition 4 Let λ be a regular cardinal and let D = 〈Dα|α < λ〉 be a se-
quence such that for every α < λ, Dα ⊂ P(α) and |Dα| ≤ |α|. We say that d
is a listing of D if d is a function on λ with the property that for each α < λ,
d(α) enumerates the characteristic functions of the elements of Dα in order
type |Dα|. That is,

(i) for each α < λ, d(α) is a a function from |Dα| to
α2; and

(ii) for all α < λ and β < |Dα|, there is some S ∈ Dα such that for all ζ < α,
d(α)(β)(ζ) = 1 if and only if ζ ∈ S; and

(iii) for all α < λ and S ∈ Dα, there is a unique β < |Dα| such that for all
ζ < α, d(α)(β)(ζ) = 1 if and only if ζ ∈ S.

Proposition 5 Suppose that M � ZFC+GCH and λ is a regular cardinal of
M . Then if G is Add(λ, λ+)-generic over M , M [G] � ZFC+GCH+ ¬♦∗

λ.

PROOF. We first claim that forcing with Add(λ, λ) destroys any♦∗
λ-sequence

of M . Let D be a ♦∗
λ-sequence of M . For notational convenience, we may as-

sume by expanding the sets Dα if necessary that for every α < λ, |Dα| = |α|.
Let d be a listing of D; the assumption of the last sentence thus becomes the
statement that for each α < λ, d(α) has domain |α|.

Let Gλ be Add(λ, λ)-generic over M , let Ċ be a name for a club subset of λ in
M [Gλ], and let Ḟ name

⋃

Gλ. We claim that in M [Gλ], the subset of λ with
characteristic function

⋃

Gλ is not correctly guessed by D on all elements of
ĊGλ

. Suppose to the contrary that there is some p ∈ Gλ such that

p 
 (Ċ is a club in λ̌) ∧ ∀α ∈ Ċ∃δ < |α|(Ḟ ↾ α = ď(α)(δ)).

So that we may smoothly deal with the successor and inaccessible cases si-
multaneously, let γ = κ+1 for κ such that κ+ = λ if λ is a successor cardinal,
and let γ = λ otherwise. By induction on rank in <γ2, we may construct
conditions 〈ps | s ∈

<γ2〉 and ordinals 〈αs | s ∈ <γ2〉 such that the following
properties hold.

(i) p∅ ≤ p and p∅ 
 α̌∅ ∈ Ċ.
(ii) For every s ∈ <γ2, dom(ps) ∈ λ.
(iii) s ⊆ t implies pt ≤ ps and αt ≥ αs
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(iv) For i ∈ 2 we have dom(ps⌢〈i〉) ∋ dom(ps), and

ps⌢〈i〉(dom(ps)) = i.

(v) For i ∈ 2 we have αs⌢〈i〉 > dom(ps) and ps⌢〈i〉 
 α̌s⌢〈i〉 ∈ Ċ.
(vi) If t ∈ β2 then dom(pt) ≥ sup({αs | s ∈

β2}).
(vii) dom(s) = dom(t) implies dom(ps) = dom(pt).
(viii) If s ∈ η2 for η is a limit ordinal, then ps =

⋃

β<η ps↾β and

αs = sup({αs↾β | β < η}).

Indeed, we may construct such 〈ps | s ∈
<λ2〉 and 〈αs | s ∈

<λ2〉 by first extend-
ing p as appropriate for (i) and (ii), at successor stages extending to satisfy
(iv), (v), (vi) and (vii) in that order while respecting (ii) and (iii), and at limit
stages satisfying (viii). Note that to satisfy (vi) at successor stages, we rely on
our assumption of the GCH to give that {αs | s ∈

β2} is bounded below λ.

We claim that for all s ∈ <γ2, ps 
 α̌s ∈ Ċ. Of course from the definitions
we need only check this for s with domain a limit ordinal. But for such s,
ps 
 α̌s↾β ∈ Ċ for all β < dom(s), and so since p ≥ ps forces that Ċ is a club
and αs = sup({αs↾β | β < γ}), ps 
 α̌s ∈ Ċ.

Note that for any limit ordinal ζ < γ, αs for s ∈ ζ2 is independent of the
choice of s: for t with domain less than ζ ,

αt⌢〈i〉 > dom(pt) ≥ sup({αs | s ∈
dom(t)2}),

so
αs = sup({αs↾β | β < ζ}) = sup({αt | dom(t) < ζ}).

Hence, let us denote αs for s ∈ ζ2 by αζ . Observe further that because we
have terms dom(pt) interleaving with terms αt in the above inequalities, and
ps =

⋃

β<ζ ps↾β for s ∈ ζ2, we have dom(ps) = αζ for s ∈ ζ2.

But now let µ be the least cardinal such that |αµ| = µ; such a µ < λ can easily
be found by a typical closure argument. For each s ∈ µ2 we have a condition
ps such that ps ↾ λ ∈ αµ2. Moreover, (iv) dictates that for s 6= t ∈ α2,
ps ↾ λ 6= pt ↾ λ. Thus, we have 2µ distinct elements of αµ2, so not all of them
can be of the form d(αµ)(δ) for δ < |αµ| = µ. So let s ∈ µ2 be such that for
all δ < µ, ps ↾ λ = ps ↾ αµ 6= d(αµ)(δ). But then

ps 
 (α̌µ ∈ Ċ) ∧ ∀δ < |α̌µ|(Ḟ ↾ αµ = ˇ(ps ↾ αµ) 6= ď(α̌µ)(δ))

contradicting the fact that ps ≤ p. We have therefore shown that Add(λ, λ)
destroys any ground model ♦∗

λ-sequences.

Next we claim that all ground model ♦∗
λ-sequences will be destroyed by our

forcing Add(λ, λ+). Since Add(λ, λ+) ∼= Add(λ, λ) ∗ Add(λ, λ+), it suffices
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to show that such a D cannot be resurrected after being killed by the initial
Add(λ, λ) piece of the forcing. Now the statement that D is not a ♦∗

λ sequence
is equivalent to there being a subset X of λ such that the set of α such
that X ∩ α /∈ Dα is stationary in λ. The partial order Add(λ, λ+) preserves
stationary subsets of λ, so D will continue not being a ♦∗

λ-sequence after
subsequently forcing with Add(λ, λ+). Hence, D is not resurrected, and we
may conclude that all ground model ♦∗

λ-sequences are destroyed by the forcing
Add(λ, λ+).

Now suppose that some D of the right form to be a ♦∗
λ-sequence (that is,

satisfying the assumptions of Definition 4) is added by Add(λ, λ+); we wish
to show that D is not in fact a ♦∗

λ-sequence in M [G]. Let d ∈ M [G] be a
listing of D. Since Add(λ, λ+) is λ-closed and hence adds no new < λ-tuples
of ground model sets, d(α) is an element of M for each α < λ. Therefore, d
can be named by a name ḋ which involves for each α < λ a single antichain of
Add(λ, λ+) to determine d(α). To be precise, if Aα is a maximal antichain of
conditions that determine d(α), and for p ∈ Aα we write fp for that function
such that p 
 ḋ(α̌) = f̌p, then we may take ḋ to be

ḋ =
⋃

α<λ

{〈

{

〈α̌, 1〉
}

, 1
〉

,
〈

({

〈α̌, 1〉
}

∪
{

〈f̌p, p〉 | p ∈ Aα

})

, 1
〉}

.

Since Add(λ, λ+) has the λ+-chain condition, |
⋃

α<λAα| ≤ λ, and so

∣

∣

∣

∣

⋃

α<λ

⋃

p∈Aα

dom(p)

∣

∣

∣

∣

≤ λ.

Thus, there is some common upper bound γ < λ on the domains of those
conditions p appearing in ḋ. Now

Add(λ, λ+) ∼= Add(λ, γ)× Add(λ, λ+),

and if Gγ = G ∩Add(λ, γ), we have d ∈M [Gγ ]. Since Add(λ, γ) is λ-closed,

Add(λ, λ+)M [Gγ ] = Add(λ, λ+)M .

So by what we have already shown, if Gγ = G ∩ Add(λ, λ+), then d does
not represent a ♦∗

λ-sequence in M [Gγ ][G
γ ] = M [G]. Therefore, there are no

♦∗
λ-sequences in M [G]. ✷

3 Forcing a definable well-order

In this section we exhibit our forcing which yields a universe with a definable
well order. There is much flexibility in the definition we shall present, a fact

7



which we will later exploit when trying to preserve various different kinds of
large cardinals.

As discussed in the introduction, the general idea of our forcing is to use ♦∗
κ at

various κ to act as an oracle, coding up a proper class of ordinals from which
our well-order will be defined. In fact, we further obtain that the extension
V [G] is of the form L[A] for A a definable class in V [G]. In some sense this is
the closest to L we can hope to get while trying to preserve very large cardinals
— it follows from Kunen’s theorem that V 6= L(x) for any set x if V contains
strong cardinals, and of course A cannot be taken to be definable over L as
that would give L[A] = L. On the other hand, it is possible to have properties
very different from those of L coded into A (for example, the failure of ♦∗

κ+ for
many cardinals κ!), so in itself this should not be thought of as a resolution
of the outer model programme.

We wish to force at various successor cardinals to “switch ♦∗ on or off”, and
then use this as an oracle to make the universe well-orderable. Perhaps the
most natural sequence of cardinals at which to do this would be simply the
class of all infinite successor cardinals. However, for consideration of large
cardinal preservation, it will be convenient to use more restricted classes of
successor cardinals, and we present our results in this generality.

Definition 6 A definable class C of cardinals is a coding class if there is a
definable class B of cardinals such that

(1) C is a proper class, and
(2) every element of C is a successor cardinal, and
(3) if B is a set, then every successor cardinal greater than the supremum of

B is in C, and
(4) for every element β of B, β+ ∈ C, and the least successor cardinal greater

than β that is not in C (if such exists) is the successor of an inaccessible
cardinal, and

(5) B is countably closed.

Given a coding class C, we will denote by c the increasing enumeration of C.
For our present purposes, one may think of C being the class of all successor
cardinals, with B empty and c being the function ℵ ·+1 : α 7→ ℵα+1. Of course
there are concerns regarding the absoluteness of C which we shall address in
due course; unless otherwise stated, c(α) should be taken to be computed in
the ground model V .

So let C be a fixed coding class, with c its increasing enumeration. We retain
the notation of Section 2 of Pκ+ being our forcing to produce a ♦∗

κ+-sequence.
For ease of notation let us set Qκ+ = Add(κ+, κ++), the forcing that quashes
all ♦∗

κ+-sequences. Note again that we assume V � GCH. For each ordinal
α, let Rc(α) be the sum of Pc(α) and Qc(α), that is, the partial order given by
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combining disjoint copies of Pc(α) and Qc(α) below a new maximum element in
the obvious way. For concreteness, let us set 1Rc(α)

= ∅, and let

Rc(α) = {1Rc(α)
} ∪ ({0} × Pc(α)) ∪ ({1} ×Qc(α)).

For r0, r1 ∈ Rc(α), r1 ≤ r0 if and only if either r0 = 1Rc(α)
, or r0 = 〈i, r′0〉 and

r1 = 〈i, r′1〉 for some i ∈ 2 and r′1, r
′
0 ∈ Pc(α) ∪ Qc(α) such that r′1 ≤Pc(α)

r′0
or r′1 ≤Qc(α)

r′0. Clearly Rc(α) will have cardinality c(α)+, be c(α)-closed, and
have the c(α)+-cc, since these statements are true of both Pc(α) and Qc(α). For
γ ∈ Ord not of the form c(α) for some α, let Rγ be the trivial forcing.

Definition 7 The ♦∗ Oracle Partial Order S is the reverse Easton iteration
of Ṙα as above for α ∈ Ord.

Note that with only trivial forcings used between cardinals, Easton support is
the same as taking direct limits at inaccessibles and inverse limits elsewhere.
In particular, this implies that S can be factored as Sα ∗ Ṡα for any stage α
— see for example Lemma 21.8 of [9].

Lemma 8 If V � ZFC + GCH and G is generic for the ♦∗ Oracle Partial
Order S over V , then V [G] satisfies ZFC+GCH and has the same cardinals
as V .

PROOF. As is generally the case for reverse Easton iterations used in prac-
tice, S is tame because the iterands are increasingly closed (see Lemmata 2.22
and 2.31 of [6]) so ZFC is preserved. To prove that cardinals and the GCH
are preserved, we argue by induction on the length of the iteration. Successor
stages are immediate from the fact that Rκ+ is κ+-closed and κ++-cc. For limit
stages λ, cardinals and the GCH are preserved below λ by the closure of the
tail parts of the iteration Sλ. There is a dense suborder of Sλ of size at most
λ+ if λ is singular or λ is λ is regular, so the GCH and cardinals are preserved
above λ+, or λ in the regular case. It therefore only remains to show that in
the λ singular case, the GCH holds at λ and λ+ is preserved, and this follows
by considering nice names for subsets of λ built up as the union of nice names
for subsets of smaller cardinals. ✷

In particular, note that the class of successor cardinals is unchanged at each
stage of the iteration, so if c = ℵ·+1, then c is absolute.

Considering the factorisation of S as Sκ∗S
κ, with Sκ being κ-closed, also gives

the following.

Lemma 9 Forcing with S preserves inaccessible cardinals. ✷
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Another basic property of this forcing we shall need is that after applying it,
♦∗ holds at exactly those points in the sequence c where we expect it to: those
c(α) such that 〈0, 1Pc(α)

〉 ∈ G(c(α)).

Lemma 10 Let V � ZFC + GCH and let G be S-generic over V . Then for
every α ∈ Ord, V [G] � ♦∗

c(α) if and only if 〈0, 1Pc(α)
〉 ∈ G(c(α)).

PROOF. Let κ+ be of the form c(α), and consider the factorisation of S as
Sκ+ ∗ Rκ+ ∗ Sκ++1. Clearly V [Gκ+ ∗ G(κ+)] � ♦∗

κ+ if and only if 〈0, 1Pc(α)
〉 ∈

G(c(α)), and Sκ++1 is κ++-closed, so any ♦∗
κ+-sequence of V [Gκ+ ∗ G(κ+)]

remains a ♦∗
κ+-sequence of V [G], and no new ♦∗

κ+-sequences are added by
Gκ++1. ✷

Theorem 11 Let V � ZFC+GCH, and let S be the ♦∗ Oracle Partial Order
as defined above. If G is S-generic over V , then there is a definable class of
ordinals A of V [G] such that V [G] = L[A]. In particular, V [G] = HODV [G],
and there is a definable well-order on V [G].

PROOF. The class A will of course be {α ∈ Ord | ♦∗
c(α) holds}. Clearly A

is definable in V [G]; the question will be what the relationships between A,
CV [G] and CV are, because of course C need not be absolute.

Actually in many specific cases of interest, C will be absolute. As mentioned
above, the class of all successor cardinals will be absolute, and in context of the
next section one could get absoluteness from the fact that we are preserving
the large cardinals from which B is defined, along with Hamkins’ Gap Forcing
Theorem [8]. But in any case, the requirements we have placed on B will
give CV and CV [G] sufficient agreement to show that every set in V [G] is
encoded into A. Namely, since V [G] satisfies the Axiom of Replacement with
respect to formulas involving a predicate for V (see [6] Lemma 2.19), the usual
argument to show that countably closed unbounded sets have countably closed
unbounded intersection goes through for BV ∩ BV [G], and we see that there
are unboundedly many cardinals in BV ∩BV [G]. We claim that this agreement
is sufficient for our purposes.

So suppose x ∈ V [G], and let X be a subset of µ = |trcl({x})| coding up x.
We claim that for every β such that c(β) ≥ µ, X appears in the choices made
by the generic between c(β) and the least inaccessible greater than c(β) (if one
exists), where in each case c(β) is to be computed in V . To see this, let ιc(β)
denote the least inaccessible greater than c(β) if such exists or Ord otherwise,
and consider the class
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DX,β =
{

s ∈ Sµ+1 | ∃γ ∈ ιc(β)
(

γ ≥ β ∧ ∀α < µ
(

α ∈ X → 
Sµ+1 s(c(γ + α)) ≤Ṙc(γ+α)
〈0, 1̇Pc(γ+α)

〉 ∧

α /∈ X → 
Sµ+1 s(c(γ + α)) ≤Ṙc(γ+α)
〈1, 1̇Qc(γ+α)

〉
))}

.

Because a direct limit is taken at ιc(β), we have for any s ∈ Sµ+1 that
supp(s) ∩ ιc(β) is bounded in ιc(β), so we may extend s ↾ ιc(β) to an element
of DX,β ∩ S

[µ+1,ιc(β)), and then “re-attach the tail of s” to get an extension of
s in DX,β. Hence, for each β with c(β) ≥ µ, the class DX,β is dense in Sµ+1,
and so has non-empty intersection with Gµ+1.

Now because inaccessibles are absolute between V and V [G] (Lemma 9), if
λ ∈ BV ∩ BV [G] is greater than µ and ιλ is the least inaccessible greater than
λ, then [λ, ιλ)∩ Succ ⊂ CV ∩CV [G], where Succ denotes the class of successor
cardinals. Therefore, taking β, s and γ such that β is least with c(β) ≥ λ,
s ∈ DX,β∩G

µ+1, and γ is as in the definition of DX,β witnessing that s ∈ DX,β,
we have that cV “[γ, γ+µ) = cV [G]“[ζ, ζ+µ) for some ordinal ζ , and so indeed,
X ∈ L[A]. Hence, we have shown that V [G] = L[A], as required. ✷

4 Preserving large cardinals

As mentioned in the introduction, if we wish to preserve large cardinals while
forcing, we will generally have master conditions to be hit by our generic,
which will be problematic if we wish to preserve many large cardinals. In
other settings this can be overcome by making the partial order sufficiently
homogeneous that generics containing particular master conditions can be
constructed in any generic extension — see for example [2] for the case of
forcing gap-1 morasses to exist at every regular cardinal. We need another
approach, however, as our forcing partial order is inherently inhomogeneous —
indeed, any forcing that yields a model of V = HOD must be inhomogeneous,
as HOD of the generic extension by a homogeneous forcing must be contained
in V (see [11], Exercise VII E1).

The solution to this problem comes from the extra flexibility we have because
we are interested in forcing a global principle, rather than a local principle at,
say, every regular cardinal. We can “thin out” our forcing partial order, still
obtaining a definable well-order of the extension universe, but finessing the
issue of master conditions by making the forcing trivial at every point where
master conditions might be required.

To facilitate this thinning out, we make the following definitions.

Definition 12 Suppose that ϕ is a formula in one variable, and more specif-
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ically, that:

(1) ϕ(κ) ≡ “κ is measurable”, or
(2) for some ordinal η, ϕ(κ) ≡ “κ is η-strong”, or
(3) ϕ(κ) ≡ “κ is Woodin”, or
(4) for some n ∈ ω + 1, ϕ(κ) ≡ “κ is n-superstrong”, or
(5) ϕ(κ) ≡ “κ is hyperstrong”, or
(6) for some definable function g, ϕ(κ) ≡ “κ is g(κ)-supercompact”, or
(7) for some ordinal η, ϕ(κ) ≡ “κ is η-extendible”, or
(8) for some m ∈ ω, ϕ(κ) ≡ “κ is m-huge”.

A cardinal λ is a ϕ-bound if λ is an infinite cardinal, λ is not Mahlo, and
if ϕ(κ) holds for any κ < λ, then there is an elementary embedding j with
critical point κ witnessing the fact that ϕ(κ) holds, such that

(i) if ϕ(κ) ≡ “κ is measurable” then κ < λ (that is, no extra requirement),
(ii) if ϕ(κ) ≡ “κ is η-strong” then i+

κ+η < λ,
(iii) if ϕ(κ) ≡ “κ is Woodin” then for all f : κ → κ there is an α ∈ κ and

a j : V → M elementary such that f“α ⊂ α, crit(j) = α, Vj(f)(α) ⊆ M ,
and i

+
j(f)(α) < λ.

(iv) if ϕ(κ) ≡ “κ is n-superstrong” then ijn(κ) < λ,
(v) if ϕ(κ) ≡ “κ is hyperstrong” then ij(κ)+1 < λ,
(vi) if ϕ(κ) ≡ “κ is g(κ)-supercompact” then g(κ)<κ < λ,
(vii) if ϕ(κ) ≡ “κ is η-extendible” then ζ < λ for the ζ such that j : Vκ+η → Vζ ,

and
(viii) if ϕ(κ) ≡ “κ is m-huge” then 2j

m(κ) < λ.

We say that λ is a minimal ϕ-bound if for every cardinal ν < λ there is a
cardinal κ which is not a ϕ-bound such that ν ≤ κ < λ.

Clearly one may construct minimal ϕ-bounds by the usual methods for ob-
taining fixed points. The non-Mahloness assumption is simply a convenient
way to ensure that the large cardinals were are interested in are not consid-
ered ϕ-bounds. Also note that we have stuck with i notation for clarity in the
arguments to come, even though we are assuming the GCH and so ℵ notation
would be equivalent.

Unless otherwise specified, ϕ shall henceforth denote one of the listed large
cardinal properties 1–8, and for convenience we shall refer to cardinals κ sat-
isfying ϕ(κ) as ϕ-cardinals . This list of large cardinal properties, which will
be the ones that are preserved in Theorem 15, should by no means be thought
of as encompassing all large cardinals for which the techniques of this chapter
are applicable. Rather, it is a representative list of well-known large cardinals
each witnessed by boundedly many elementary embeddings so that bounds
may be constructed for them. For reasons that will become apparent, it would
also be of interest (and moreover straightforward) to include large cardinals
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of the form “ϕ a limit of ϕ” (for example, a measurable limit of measurables).
However, if we do not wish to move to a more general statement, we must
draw the line somewhere!

Once we have a ϕ-bound, the succeeding cardinals will remain ϕ-bounds for
some time. The following lemma in this direction will be sufficient for our
purposes.

Lemma 13 Suppose ℵβ is a ϕ-bound. Then for all γ less than the least in-
accessible greater than ℵβ (or all γ if no such inaccessible exists), ℵβ+γ is a
ϕ-bound.

PROOF. This is immediate from the fact that the least cardinal κ which is
not a ϕ-bound above a given ϕ-bound will satisfy ϕ(κ), and hence be inacces-
sible. ✷

With this fact, we are ready to define the points at which we shall perform
our coding.

Definition 14 A cardinal λ is a ϕ-coding point if

(1) λ is a successor cardinal, and
(2) λ is a ϕ-bound, and
(3) if there is a cardinal κ > λ such that ϕ(κ), there is a minimal ϕ-bound

µ ≤ λ such that λ is less than the least inaccessible cardinal greater than
µ.

Thus, our coding points come after each minimal ϕ-bound, going on until the
next inaccessible cardinal, or indefinitely if there is no next ϕ-cardinal. Clearly
the class C of all ϕ-coding points is a coding class, witnessed by the class B
of minimal ϕ-bounds.

Theorem 15 Let V � ZFC + GCH, and let ϕ be one of the large cardinal
properties 1–8 listed in Definition 12. Let C be the coding class of all ϕ-coding
points of V , and let S be the ♦∗ Oracle Partial Order defined from C. Suppose
G is S-generic over V . Then there is V [G]-definable class of ordinals A such
that V [G] = L[A]. Further, if κ is a ϕ-cardinal in V that is not a limit of
ϕ-cardinals, then in V [G] κ remains a ϕ-cardinal.

So for example, we can preserve all measurable cardinals that are not limits
of measurables; see below for a discussion of extensions strengthening this.

PROOF. As before, we denote by c the increasing enumeration of C, and
let B denote the class of minimal ϕ-bounds in V . Theorem 11 gives that
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V [G] = L[A], and it only remains to show that any ϕ-cardinal κ of V that
is not a limit of ϕ-cardinals remains a ϕ-cardinal in V [G]. We prove this by
lifting embeddings witnessing ϕ(κ), and moreover taking these embeddings to
be given by ultrapowers or extenders where appropriate. This will allow us
to use representation results about the codomain of such embeddings; a good
reference for these is [10]. We deal with each large cardinal property separately.

Measurable Cardinals. Let j : V → M be an ultrapower embedding wit-
nessing the measurability of κ with j(κ) least. We shall construct an SM -
generic G∗ over M in V [G], such that we can lift j to j∗ : V [G] → M [G∗].
Note that the ϕ-coding points of V less than κ are in fact bounded below κ
since the class of measurable cardinals is. Hence, SM is SV up to stage κ, and
is trivial from κ to j(κ). We may therefore take G∗

κ = Gκ, trivially extend to
G∗

j(κ), and have a lift of j to j′ : V [Gκ] → M [G∗
j(κ)]. To define G∗j(κ), note

that every element of M has the form j(f)(κ), where f : κ → V is a func-
tion in V , and so every element of M [G∗

j(κ)] has the form σGj(κ)
, where σ has

the form j(f)(κ). We claim that the filter on Sj(κ) generated by j′“Gj(κ) is
(Sj(κ))M -generic over M .

So suppose thatD is a dense class inM [G∗
j(κ)], defined (inM [G∗

j(κ)]) relative to

the parameter d ∈M [G∗
j(κ)] by D = {x |ψ(x, d)}. Let σ be an SM

j(κ)-name inM
such that d = σG∗

j(κ)
, and let f : κ → V in V be such that σ = j(f)(κ). Since

κ is not a measurable-coding point, (Sκ)V is κ+-closed, and we see that it is
dense for s ∈ (Sκ)V to extend an element of the class Dα = {x |ψ(x, f(α)Gκ

)}
of V whenever α ∈ κ with f(α) an Sκ-name and Dα dense in (Sκ)V . Therefore,
we may take such an s lying in Gκ. By elementarity, it follows that j(s) extends

an element of D. Hence, the filter generated by j′“Gκ is indeed (Sj(κ))
M [G∗

j(κ)
]
-

generic over M . By the Lifting Lemma, it follows that there is an elementary
embedding j∗ : V [G] → M [G∗] lifting j, and so κ is measurable in V [G].

η-Strong Cardinals. We may assume that our η-strong embedding j : V →
M is an extender ultrapower embedding, with every element of M having
the form j(f)(a), with a a finite tuple from |Vκ+η|

+ and f a function in V
from [κ]|a| to V . As in the measurable cardinal case, we show that the filter

generated by j′“Gκ is (Sj(κ))
M [G∗

j(κ)
]
-generic, observing that by the definition

of a ϕ-bound, Sκ is trivial up to at least stage |Vκ+η|
++, and so we have the

requisite closure to make the argument go through. We can therefore lift j to
j∗ : V [G] → M [G∗]. We may also conclude that V

V [G]
κ+η ⊆ M [G∗] from a nice

names argument, since V V
κ+η ⊆ M , Gκ+η = G∗

κ+η, and Sκ+η is trivial beyond
some bound below κ. Hence, κ is η-strong in V [G].

Woodin Cardinals. The situation for Woodin cardinals is somewhat differ-
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ent from that for the other large cardinals listed here, since Woodinness is
witnessed by multiple embeddings. However, since there are only boundedly
many, this point will not present a problem. Let ι denote the supremum of the
Woodin-coding points less than κ. Note that for any two functions f, g : κ→ κ,
if f(α) ≤ g(α) for all α ∈ κ, then

{α ∈ κ | f“α ⊆ α} ⊆ {α ∈ κ | g“α ⊆ α}.

Now given a name ḟ for a function from κ to (ι, κ), we can find a function

f̄ : κ→ (ι, κ) in V such that 1S 
 ḟ ≤ ˇ̄f , since the forcing iterands are trivial
from ι to κ. To prove that Woodinness is preserved, then, it is sufficient to
show that for every function f in V from κ to the interval (ι, κ), there is an
α with f“α ⊆ α and a j∗ from V [G] to N an inner model of V [G] such that
crit(j∗) = α and Vj∗(f)(α) ⊆ N . Since κ is Woodin in V , we have for each
such f an α with f“α ⊆ α and an elementary embedding j : V → M such
that crit(j) = α and Vj(f)(α) ⊆; that is, an η-strong embedding for η such that
α+ η = j(f)(α). But this is simply a case of η-strength, so we can lift j to j∗

as above. Since j∗ ↾V = j, j∗(f)(α) = j(f)(α), and we are done.

n-Superstrong Cardinals and Hyperstrong Cardinals. The argument
is analogous to the measurable and η-strong cases, this time with our exten-
der models having elements of the form j(f)(a) with a in Vjn(κ) and f with
domain Vjn−1(κ) in the case of n-superstrong cardinals, and a ∈ Vj(κ)+1 and f
with domain Vκ+1 in the case of hyperstrong cardinals. The required level of
agreement between V [G] and M [G∗] again follows from a nice names argu-
ment, noting in the hyperstrong case that Vj(κ)+1 ∈ M ↔ Hj(κ)+ ∈M .

g(κ)-Supercompact Cardinals. In this case we may take the elements of
M to be of the form j(f)(j“g(κ)), so in V [Gκ] we consider all x ∈ Pκ(g(κ));
again, because of our definition of a g(κ)-supercompact coding point, the ar-
gument goes through without difficulty. To show that M [G∗] is closed under
taking g(κ)-tuples, note that for any g(κ)-tuple from M [G∗] in V [G], we may
consider an g(κ)-tuple t of names for its elements in V [G], where the names are
inM . All g(κ)-tuples in V [G] of elements of V are in V [Gg(κ)] by closedness of
the tail of the iteration, and so since Sg(κ) is trivial beyond some bound below
κ, there is a nice name ṫ for t with only g(κ) elements. Therefore, since M
is closed with respect to taking g(κ)-tuples in V , ṫ ∈ M , and since G∗

κ is the
same as Gκ, t ∈ M [G∗

j(κ)]. But then the original g(κ)-tuple of elements from
M [G∗] is in M [G∗], as desired.

η-Extendible Cardinals. On the domain and range of j, the nontrivial part
of S is bounded below κ, so this is trivial.
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m-Huge Cardinals. This is much like the g(κ)-supercompact case. The ele-
ments ofM may be taken to be of the form j(f)(j“(jm(κ))) where the domain
of f is P(jm(κ)), so the assumed 2j

m(κ)-closure of Sκ is what we need to con-
struct the M-generic for the lifting. Closure of M [G∗] with respect to taking
jm(κ)-tuples is exactly as in the g(κ)-supercompact case.

This completes the verification. ✷

One may wonder if the restriction on which ϕ-cardinals are preserved (that
is, only those that are not limits of ϕ-cardinals) can be lifted. However, some
kind of restriction like this is necessary for our technique. We are using the
fact that the set of coding points is bounded below every cardinal that we
lift. Hence, by Fodor’s theorem, we cannot hope to lift all ϕ-cardinals from a
universe where they form a stationary set in Ord.

On the other hand, we can always mollify this problem by restricting it to
smaller and smaller classes of large cardinals. By thinning out the class of
coding point while keeping it unbounded in Ord, the above arguments will
still go through at all of the cardinals that were previously preserved, but
with new cardinals added to the list of large cardinals that stay large. For
example, if there are boundedly many measurable limits of measurables, and
we thin out the measurable-coding points to only use those “directly after”
a measurable limit of measurables, until there are no more, then we will still
preserve all measurable cardinals that are not limits of measurables, but we
will also preserve those measurable limits of measurables that are not limits
of measurable limits of measurables. If there is a proper class of measurable
limits of measurables, the “thinned out” class of coding points is even easier to
describe: it is simply the set of ϕ-coding points for ϕ ≡“κ is a measurable limit
of measurables”. Indeed, this can be done not just for ϕ limits of ϕ-cardinals,
but for any proper class sequence of cardinals at whose limits we don’t mind
preservation failing. So for example, we may deduce the following.

Theorem 16 Suppose there is a proper class of ϕ0-cardinals, and let δ be an
arbitrary ordinal. Then a definable well-order of the universe may be forced
while preserving all measurable, η-strong for η < δ, Woodin, n-superstrong for
n ∈ ω + 1, hyperstrong, κ+η-supercompact for η < δ, η-extendible for η < δ,
and m-huge for m ∈ ω cardinals that are not limits of ϕ0-cardinals.

PROOF. We take ϕ to be the (size |δ|) disjunction of all of the stated large
cardinal properties for the sake of defining ϕ-bounds, but for defining the
coding points we take B to only contain those minimal ϕ-bounds that are
minimal above a ϕ0-cardinal or are a limit of such (and as before, take the
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block of coding points starting at such minimal ϕ-bounds to have length the
next inaccessible). The arguments from Theorem 15 for each individual case
will all go through unaffected, as long as the cardinal in question is not a limit
of ϕ0-cardinals. ✷

Of course it makes sense to choose a very strong large cardinal property as ϕ0

in this theorem, for the simple reason that generally, stronger large cardinals
are limits of weaker large cardinals. The choice can be calibrated to the tastes
of the reader — if the assumption of, say, a proper class of ω-superstrong
cardinals seems unpalatably strong, one can use some other large cardinal
property as ϕ0 and the theorem will remain true, albeit vacuous in some
cases.

Acknowledgements

The author would like to thank Sy Friedman for his guidance throughout
the course of this research, and James Cummings and Heike Mildenberger
for many corrections and helpful comments. The article was written while
supported as a doctoral student at the Kurt Gödel Research Center for Math-
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