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Abstract

It is relatively consistent with ZFC that every countable FUfin space
of weight ℵ1 is metrizable. This provides a partial answer to a question
of G. Gruenhage and P. Szeptycki [GS1].

Introduction

Classical metrization theorem of Birkhoff and Kakutani states that a T1

topological group is metrizable if and only if it is first countable. The
results contained here are motivated by the following question:

Question 1. (V.I. Malykhin)[Ar, MT] Is there a countable Fréchet-Urysohn
topological group that is not metrizable?
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Recall that a topological space X is Fréchet-Urysohn (or just Fréchet)
if whenever a point x ∈ X is in the closure of a set A ⊆ X, there is a
sequence of elements of A converging to x. In fact, the question can be
reformulated by asking for the existence of a separable Fréchet-Urysohn
topological group that is not metrizable. On the other hand there are
non-separable, even σ-compact examples, for instance the direct sum of
uncountably many copies of the circle.

It is well known (see [Ny1, Ny2, GN]) that the answer to Malykhin’s
question is consistently positive, i.e. under either of the following as-
sumptions: p > ω1, b = p and the existence of an uncountable γ-set.
In fact, either of the assumptions implies the existence of a simply de-
scribed non-metrizable Fréchet-Urysohn group topology on the Boolean
group G = ([ω]<ω,△) of finite subsets of ω with symmetric difference as
the group operation.

Let F be a free filter on ω. Then

F<ω := {A ⊆ [ω]<ω : there is F ∈ F such that [F ]<ω ⊆ A}

is a filter on [ω]<ω. By stipulating that F<ω is a neighbourhood base
at ∅, we introduce a group topology τF on G. Note that, by definition,
F<ω is generated by sets of the form [F ]<ω, F ∈ F . Also, any set of the
form [F ]<ω is a subgroup of G. So the [F ]<ω, F ∈ F , are in fact open
subgroups which generate the neighbourhood base at ∅.
Observation 1. The following are equivalent:

1. (G, τF ) is first-countable (equivalently, metrizable);

2. F<ω is countably generated;

3. F is countably generated.

A filter F such that the topological group (G, τF ) is Fréchet is called
an FUfin-filter, see [GS1, GS2, RS, Si]. This is conveniently expressed
in the dual language of ideals. If I = F∗ is the dual ideal of F , I<ω :=
{A ⊆ [ω]<ω : for some I ∈ I, a ∩ I ̸= ∅ for all a ∈ A} is the dual ideal of
F<ω and is generated by sets of the form {a ∈ [ω]<ω : a ∩ I ̸= ∅}, I ∈ I.

Let I be an ideal on ω. Define the orthogonal ideal I⊥ := {A ⊆ ω :
|I ∩ A| < ω for all I ∈ I}. Clearly I⊥⊥ ⊇ I and I⊥⊥⊥ = I⊥. We call
I Fréchet if I⊥⊥ = I. This is equivalent to saying that for all X ∈ I+

there is C ∈ [X]ω such that C ∈ I⊥. I is said to be tall if for all X ∈ [ω]ω

there is C ∈ [X]ω such that C ∈ I.

Observation 2. 1. Every countably generated ideal is Fréchet.

2. If I is tall, then I is not Fréchet.

3. I⊥ is always Fréchet.

The following is a reformulation of a result of [RS]. We include the
simple proof for the sake of completeness.

Lemma 1. The topological group (G, τF ) is Fréchet iff the ideal I<ω is
Fréchet where I = F∗.

Proof. (=⇒) Let X ∈ (I<ω)+. This means that for all I ∈ I there is
a ∈ X with I ∩ a = ∅. Equivalently, for all F ∈ F there is a ∈ X
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with a ⊆ F . So X ∩ [F ]<ω ̸= ∅ for all F ∈ F . By definition of τF , ∅
belongs to the closure X̄ of X. Since τF is Fréchet, there is a sequence
(an : n ∈ ω) ⊆ X converging to ∅. Let A = {an : n ∈ ω}. Then
A ∈ (I<ω)⊥.

(⇐=) Let X ⊆ [ω]<ω be such that ∅ ∈ X̄. So X ∩ [F ]<ω ̸= ∅ for all
F ∈ F . This means that X ∈ (I<ω)+. Since I<ω is Fréchet, there is
A ∈ [X]ω such that A ∈ (I<ω)⊥. Writing A = {an : n ∈ ω} we see that
an converges to ∅.

G. Gruenhage and P. Szeptycki [GS1] asked whether FUfin-filters of
uncountable character exist in ZFC. We shall show:

Theorem 1. It is consistent that c = ℵ2 and for all filters F , if F is
ω1-generated, then (G, τF ) is not Fréchet.

Or, equivalently:

Theorem 2. It is consistent that c = ℵ2 and for all ideals I, if I is
ω1-generated, then I<ω is not Fréchet.

1 Combinatorics and forcing

Assume a filter F on ω and its dual ideal I = F∗ are given. For a ∈ [ω]<ω

define cone(a) = {b ∈ [ω]<ω : a ⊆ b}, the cone over a.
Define the following families on [ω]<ω:

G = GI = {A ⊆ [ω]<ω : ∀I ∈ I ∃a (a ∩ I = ∅ ∧ cone(a) ⊆ A)}
J = JI = {A ⊆ [ω]<ω : ∀I ∈ I ∃a (a ∩ I = ∅ ∧ cone(a) ∩ A = ∅)}

J+ = {A ⊆ [ω]<ω : ∃I ∈ I ∀a (a ∩ I = ∅ → cone(a) ∩ A ̸= ∅)}

Lemma 2. G is a filter, J = G∗ is the dual ideal, and J+ is the collection
of J -positive sets. Furthermore, J is a Fréchet ideal.

Proof. Only the last assertion needs proof. Let A ∈ J+ and let I witness
this. Let {kn : n ∈ ω} enumerate ω\I, and set an = {ki : i < n}. Then for
each n there is bn ⊇ an with bn ∈ A. Clearly B = {bn : n ∈ ω} ∈ J⊥.

We consider L(H), Laver forcing associated to a filter H on a countable
set W . It is defined as the set of those trees T ⊆ W <ω for which there is
an s ∈ T (called the stem of T ) such that for all t ∈ T , t ⊆ s or s ⊆ t and
such that for all t ∈ T with t ⊇ s the set succT (t) = {a ∈ W : taa ∈ T}
belongs to H. It is ordered by inclusion. The forcing L(H) is σ-centered
and generically adds a function ℓ̇ : ω → W .

In what follows, we denote by Ẋ = ran(ℓ̇) the L(G)-name for the
generic subset of [ω]<ω added by L(G), where G is the filter defined above.

Lemma 3. °L(G) Ẋ ∈ (İ<ω)+

Proof. This is a straightforward genericity argument.
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We next intend to prove that if I is not countably generated, then L(G)
forces that Ẋ ∈ (İ<ω)⊥⊥ (Lemma 4 below). For preservation purposes
(see Proposition 1 and Lemma 5), however, we need a somewhat stronger
result. First, some additional notions.

We say that a family K ⊆ [ω]ω is countably tall (or ω-hitting) [Do]
if given (An : n ∈ ω) ⊆ [ω]ω there is an I ∈ K such that I ∩ An is
infinite for all n. Clearly, every countably tall ideal is tall. An important
property of countably tall families, which will be used several times in
what follows, is that if a countably tall family is partitioned into countably
many pieces, then at least one of the pieces is countably tall. For an
ideal K and X ∈ K+, define the restriction ideal of subsets of X by
K¹X = {I ∩ X : I ∈ K}.
Observation 3. Assume K¹X is tall. Then X ∈ K⊥⊥.

Lemma 4. Assume I is not countably generated. Then °L(G) “I<ω¹Ẋ is

countably tall”. In particular, °L(G) Ẋ ∈ (İ<ω)⊥⊥.

Proof. Let (Ȧn : n ∈ ω) be a sequence of names for infinite subsets of
[ω]<ω. We may suppose the Ȧn are forced to be subsets of Ẋ. Assume,
by way of contradiction, that for all I ∈ I there are pI ∈ L(G), and natural
numbers nI , mI such that

pI °
[

ȦnI ∩ I ⊆ mI . (⋆)

Recall the standard rank analysis for Laver forcing [Br1][Br2]. For
s ∈ ([ω]<ω)<ω, say s favors a ∈ Ȧn if there is no condition p ∈ L(G) with
stem s such that p ° a /∈ Ȧn, or, equivalently, every condition p ∈ L(G)
with stem s has an extension q such that q ° a ∈ Ȧn. Define the rank
rkn(s) by recursion on the ordinals by

rkn(s) = 0 iff ∃B ∈ G+ ∀b ∈ B (s ⌢ b favors b ∈ Ȧn)

rkn(s) ≤ α iff ∃B ∈ G+ ∀b ∈ B (rkn(s ⌢ b) < α)

for α > 0.

Claim 1. rkn(s) < ∞ for all s and n.

Proof. Fix n. Let k ∈ ω. Define an auxiliary rank ρk(s) by recursion such
that

ρk(s) = 0 iff ∃b ̸⊆ k (s favors b ∈ Ȧn)

and ρk(s) ≤ α is defined as for rkn, for α > 0. As Ȧn is forced to be
infinite, it is straightforward to see that ρk(s) < ∞ for all s and k. Also
note that since Ȧn is forced to be a subset of the generic Ẋ, any s can
favor only elements of ran(s).

If ρk(s) = 1, then there is a G-positive set of b such that s ⌢ b favors
c ∈ Ȧn for some c = cb with c ̸⊆ k. If on a G-positive set, the same c
works, we get ρk(s) = 0, a contradiction. Since cb ∈ ran(s)∪{b}, it follows
that on a G-positive set, cb = b. This, however, means that rkn(s) = 0.

Now, let k > max(
S

ran(s)). Then ρk(s) ≥ 1. By the preceding
paragraph and induction, we see that rkn(s) < ∞, as required.
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We continue with the proof of the lemma. Let sI be the stem of pI .
By strengthening the pI , if necessary, we may assume that rknI (sI) = 0
for all I.

Since the ideal I is not countably generated, there are s and n such
that for no J ∈ I, we have that for all I with sI = s and nI = n do we
have I ⊆∗ J . Fix such s and n.

Let B ∈ G+ witness that rkn(s) = 0. Let I0 ∈ I witness that B ∈ G+.
Recall that this means that for all a ∈ [ω]<ω with a ∩ I0 = ∅, we have
cone(a) ∩ B ̸= ∅.

Find I ∈ I such that sI = s, nI = n, and I\I0 is infinite. By definition
of G, there is a with a∩ I0 = ∅ such that cone(a) ⊆ succpI (s). Since I \ I0

is infinite, we may assume that (a ∩ I) \ mI ̸= ∅. Find b ∈ cone(a) ∩ B.
So b ∈ B ∩ succpI (s), and s ⌢ b favors b ∈ Ȧn by definition of B. Thus
we can construct a condition q ≤ pI whose stem extends s ⌢ b such that
q ° b ∈ Ȧn. Since (b ∩ I) \ mI ̸= ∅, this is a contradiction to the initial
assumption (⋆). Thus, for some I ∈ I,

°
[

Ȧn ∩ I is infinite for all n.

This immediately implies countable tallness of the restriction ideal in the
generic extension.

We now turn to the preservation of countable tallness in iterations.
In order to do that we introduce a stronger property: We say that a
forcing notion P strongly preserves countable tallness if for every sequence
(Ȧn : n ∈ ω) of P-names for infinite subsets of ω there is a sequence
(Bn : n ∈ ω) of infinite subsets of ω such that for any B ∈ [ω]ω, if B ∩Bn

is infinite for all n then °P B∩Ȧn is infinite for all n. Recall the definition
of Katětov order (see [HG, HZ]): Given two ideals I,J on ω, we say that
I ≤K J if there is a function f : ω → ω such that f−1[I] ∈ J for every
I ∈ I.

Proposition 1. Let K be an ideal on ω and let H = K∗ be the dual filter.
then the following are equivalent:

1. For every X ∈ K+ and every J ≤K K¹X the ideal J is not count-
ably tall.

2. L(H) strongly preserves countable tallness.

3. L(H) preserves countable tallness, i.e. if L is countably tall, then
°L(H) “L is countably tall”.

Proof. (1 ⇒ 2.) Let (Ȧn : n ∈ ω) be names for countable subsets of ω.
Aiming towards a contradiction, assume that for each (Bn : n ∈ ω) there
is a B ∈ [ω]ω such that B∩Bn is infinite for all n, yet there are a condition
pB and natural numbers nB , mB such that

pB ° B ∩ ȦnB ⊆ mB .

Let B be the family of all such B ∈ [ω]ω, i.e., the family of all B ∈ [ω]ω

such that there are a condition pB and natural numbers nB , mB such that
pB ° B ∩ ȦnB ⊆ mB . By our assumption B is countably tall.
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Define a new rank function rankn (cf. the proof of Lemma 4) by
recursion on the ordinals as follows:

rankn(s) = 0 iff either ∃Z ∈ [ω]ω ∀k ∈ Z (s favors k ∈ Ȧn)

or ∃X ∈ H+, f : X → ω

∀ℓ ∈ X (s ⌢ ℓ favors f(ℓ) ∈ Ȧn)

and ∀k ∈ ω (f−1(k) ∈ K)

and rankn(s) ≤ α is defined as for rkn, for α > 0.

Claim 2. rankn(s) < ∞ for all s and n.

Proof. Fix n. Assume rankn(s) = ∞. So Z := {k : s favors k ∈ Ȧn}
is finite. Recursively build p ∈ L(H) with stem s such that for all t ∈ p
extending s,

• rankn(t) = ∞, and

• {k : t favors k ∈ Ȧn} ⊆ Z.

Let such t be given. First, there is X0 ∈ H such that rankn(t ⌢ ℓ) = ∞
for all ℓ ∈ X0. Let X1 = {ℓ ∈ X0 : ∃k /∈ Z (t ⌢ ℓ favors k ∈ Ȧn)}.
If X1 ∈ H+, then we can define a function as in the definition of rankn,
and so rankn(t) = 0, a contradiction. Thus X1 ∈ K and X0 \ X1 ∈ H.
For t ⌢ ℓ with ℓ ∈ X0 \ X1, both clauses above are satisfied, and the
construction proceeds.

Now find q ≤ p and k /∈ Z such that q ° k ∈ Ȧn. Then the stem of q
in particular favors k ∈ Ȧn, a contradiction.

We continue with the proof of (1 ⇒ 2). Let sB be the stem of pB . By
strengthening the pB , if necessary, we may assume that ranknB (sB) = 0
for all B ∈ B. Since B is countably tall, there are s and n such that the
family B0 = {B ∈ B : s = sB and n = nB} is countably tall. Fix such s
and n.

We consider two cases, according to the definition of rankn.

Case 1. ∃Z ∈ [ω]ω ∀k ∈ Z (s favors k ∈ Ȧn).

Let B ∈ B0 be such that B ∩ Z is infinite. So there is k > mB such
that k ∈ B ∩ Z. Thus there is q ≤ pB with q ° k ∈ Ȧn, a contradiction.

Case 2. ∃X ∈ H+, f : X → ω ∀ℓ ∈ X (s ⌢ ℓ favors f(ℓ) ∈
Ȧn) and ∀k ∈ ω (f−1(k) ∈ K).

As B0 is countably tall, there is a B ∈ B0 such that f−1[B] ∈ K+, as
otherwise, f witnesses that the ideal generated by B0 is Katětov below
K¹X, which contradicts (1). So there is k ∈ B ∩ ran(f), k > mB , such
that f−1(k) ∩ succpB (s) ̸= ∅. Let ℓ ∈ f−1(k) ∩ succpB (s). Thus s ⌢ ℓ
favors k ∈ Ȧn. Hence there is q ≤ pB whose stem extends s ⌢ ℓ such that
q ° k ∈ Ȧn, again a contradiction.

2 ⇒ 3 is trivial.
(3 ⇒ 1.) Assume that there is a countably tall ideal J Katětov below

K¹X, for some X ∈ K+, witnessed by a function f . Let Ẏ be a name for
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the range of the L(G)-generic function. Then °L(G) f [Ẏ ∩ X] is infinite

and, moreover, °L(G) f [Ẏ ∩X] is almost disjoint from every element of J .
Hence °L(G) J is not tall and therefore not countably tall.

It is an immediate corollary of the proposition that L(H) strongly
preserves countable tallness if K = H∗ is a Fréchet ideal, as every Fréchet
ideal obviously satisfies condition (1).

Lemma 5. Finite support iteration of forcings strongly preserving count-
able tallness strongly preserves countable tallness.

Proof. This is a standard argument. We provide the details for the sake
of completeness. Obviously, it suffices to consider limit stages of cofinality
ω.

Let (Pk, Q̇k : k ∈ ω) be a finite support iteration of ccc forcing such
that each Pk strongly preserves countable tallness.

Let (Ȧn : n ∈ ω) be a sequence of Pω-names for infinite subsets of ω. In
the intermediate extension V [Gk] find a decreasing sequence of conditions
(pn,k : n ∈ ω) and infinite subsets An,k of ω such that

pn,k °P[k,ω) “the first n elements of Am,k and Ȧm agree for m ≤ n”.

The An,k are approximations to Ȧn.
Now, as each Pk strongly preserves countable tallness, there are infinite

subsets Bn,k of ω such that for every B ∈ [ω]ω, if B ∩ Bn,k is infinite for
all n then

°Pk B ∩ Ȧn,k is infinite for all n.

Consider {Bn,k : n, k ∈ ω} and let B ∈ [ω]ω be such that B ∩ Bn,k

is infinite for all n and k. To finish the proof, it suffices to show that
°Pω B ∩ Ȧn is infinite for all n.

If not, then there are a q ∈ Pω, n ∈ ω and m ∈ ω such that q °Pω

B ∩ Ȧn ⊆ m. Let k be such that q ∈ Pk.
Let Gk be a Pk-generic such that q ∈ Gk. As B ∩ An,k is infinite, let

ℓ ≥ m with ℓ ∈ B ∩ An,k. For large enough m,

pm,k °P[k,ω) ℓ ∈ Ȧn.

Since q ∈ Gk, this contradicts the initial assumption about q.

The proof of Theorem 2 is now immediate. By taking care of all
ω1-generated ideals I via book-keeping, we iterate forcing notions of the
type L(G) for ω2 steps with finite support. By Lemmata 3 and 4, we
add X ∈ (I<ω)+ such that I<ω¹X is countably tall (and so I<ω is not
Fréchet). By Lemmata 2, 5 and Proposition 1, the countable tallness of
I<ω¹X is preserved along the iteration, and we are done.

2 Final remarks and questions

Obviously, the question of Gruenhage and Szeptycki remains open. Even
though, we do not know whether in the model of ZFC just constructed
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there are any FUfin-filters of uncountable character (necessarily of char-
acter c = ℵ2).

It should also be noted that there are (consistently) topologies on
([ω]<ω,△) which are not of the form τF , yet make ([ω]<ω,△) a non-
metrizable Fréchet-Urysohn group. An easy example can be described as
follows:

Let X ⊆ P(ω) be such that X separates points of [ω]<ω, i.e. for every
a ∈ [ω]<ω \ {∅} there is an x ∈ X such that |a \ x| is odd. Let

FX = {A ⊆ [ω]<ω : (∃F ∈ [X]<ω)(∀a ∈ A)(∀x ∈ F ) |a \ x| is even}.

By declaring FX the neighbourhood base at ∅, we introduce a Hausdorff
group topology τX on G. To see this, consider the function ϕ : [ω]<ω −→
2X defined by ϕ(a)(x) = 0 if and only if |a \x| is even. Then ϕ is a group
homomorphism and as X separates points of [ω]<ω, it is an embedding. It
is easily seen that the topology τX is just the subspace topology induced
by ϕ (viewing [ω]<ω as a subgroup of 2X).

Now, it is easy to verify that if X is a γ-set then the topology τX on
([ω]<ω,△) is Fréchet-Urysohn. Indeed, let for a ∈ [ω]<ω

Ua = {x ∈ P(ω) : |a \ x| is even}

and for A ⊆ [ω]<ω let UA = {Ua : a ∈ A}. Note that Ua is a clopen subset
of P(ω) for every a ∈ [ω]<ω. It is now immediate from the definition
of FX that the topology τX is Fréchet-Urysohn at 0 (and hence Fréchet-
Urysohn) if and only if for every infinite A ⊆ [ω]<ω if UA is an ω-cover
of X then there is an infinite B ⊆ A such that UB is a γ-cover of X (see
either of [GN, GS1, Ny2] for the definitions of γ-sets and corresponding
covers).

The fundamental difference between the topologies of the type τF and
τX is that the group topology τX is always pre-compact, i.e. has a group
compactification, while the topology τF is pre-compact only if F is the
filter of co-finite sets. We do not know, whether there is a non-metrizable
topology of the type τX in our model. More about pre-compact group
topologies on countable abelian groups will appear in [HR].

Acknowledgements. M. Hrušák would like to thank Ulises Ariet
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in topological spaces, groups and locally convex vector spaces,
Moscow Univ. Math. Bull 54 (1999), 33-38.
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